This is a Multimedia Appendix to a full manuscript published in the J Med Internet Res. For full copyright and citation information see http://dx.doi.org/10.2196/jmir.59922

Table: Summaries of Analyzed Articles (n=36)

Authors, Year, Country, Journal	Research Aim	Intervention & Control	Study Design	Participants	Adverse Event Reporting	Results
Abd-Elsayed et al. 2021 ¹⁷ United States, Pain Ther	To evaluate the effectiveness of the Harvard MedTech Vx Pain Relief Program on adult patients with acute and chronic pain.	Intervention: The Harvard MedTech Vx Pain Relief Program consisted of both home-based virtual reality therapy (VRT) and tailored behavioral therapy that was conducted through phone consultations. VRT lasted 90 days; participants were instructed to use Vx headset at least 1-2 times daily for 45 mins. VRT exercises includes experiences related to concepts such as knowledge of pain, distraction from pain, or meditation techniques. Behavioral therapy (30-60m each week) consisted of discussing progress with headset and goal- setting.	Retrospective single-arm cohort study. Primary outcome: VAS pain scores. Secondary outcomes: Change in opioid use, average time thinking about pain, anxiety awareness and level of immersion, perception that goals were achieved.	Population of interest: Adult patients with acute or chronic pain. Total participants: 36. Average age 45, 16/36 were male.	No assessment of side effects reported.	Primary outcome: Pain reduction of 40% while using VR headset, statistically significant at each weekly session. Secondary outcomes: 69% of patients reported decrease of cessation of opioids. 72% reduction in average hours thinking about pain. 70% reduction in anxiety due to pain. Strong immersion and satisfaction. Strong improvements in goals related to activity, attention, and endurance.

Austin et al. 2021 ¹⁸ Australia, <i>Spinal Cord</i>	To determine whether 3D VR is more effective than a 2D screen-based device in reducing neuropathic pain in spinal cord injury	Intervention: 3D VR non-interactive experience called Nature Trek, delivered one time over 15 minutes. Control: 2D non-interactive viewing of Nature Trek on a laptop screen, delivered one time over 15 minutes.	Randomized cross-over study. Primary outcome: Numerical pain rating scale. Secondary outcomes: Change in Depression Anxiety Stress Scale, iGroup Presence Questionnair e.	Population of interest: People with spinal cord injury and chronic neuropathic pain. Total participants: 16. Average age 54.3. 100% male.	No assessment of side effects reported.	Primary outcome: 3D VR was associated with significantly greater reductions in pain intensity from baseline compared to 2D video. Standardized mean difference (Hedges' g) for pain reduction in 3D versus 3D was 0.80, which indicates a large effect. Secondary outcomes: No significant differences in mood between groups. Presence was associated with greater reduction in pain intensity.
Austin et al. 2022 ¹⁹ Australia, Supportive Care in Cancer	To evaluate the feasibility of recruitment for VR and data collection procedures and acceptability and comfort of VR devices in people receiving palliative care for cancer pain both in hospital and at home. Additionally, to gather preliminary data on whether a 3D VR device results in reductions in chronic pain compared to a 2D screenbased device.	Intervention: 3D VR non-interactive experience called Nature Trek, delivered one time over 15 minutes. Control: 2D non-interactive viewing of Nature Trek on a laptop screen, delivered one time over 15 minutes.	Randomized cross-over study. Primary outcome: Numerical pain rating scale. Secondary outcomes: Edmonton Symptom Assessment System, Australian modified Karnofsky Perfomance Status, iGroup Presence Questionnair e, Feasibility/ Qualitative semi- structured interview.	Population of interest: Palliative care patients with cancer inpatient or at home. Total participants: 14. Average age 71.1. 6/14 Female. 11/14 inpatient.	No specific VR side effects reported, though some reporting as part of normal assessments. No significant symptoms of nausea or cybersickness noted.	Primary outcome: 3D and 2D produced significant reductions in chronic pain immediately after both interventions. No significant difference between 3D and 2D. Secondary outcomes: Higher presence from 3D VR, and presence was associated with greater reductions in pain intensity. Significant reductions in drowsiness, shortness of breath, and improvement in wellbeing in both 3D and 2D. Semi-structured interviews noted high satisfaction.

Baker et al.	To explore the	Intervention: 10	Single-arm	Population of	Common VR side	Primary outcome: Large
202220	feasibility of	minutes of	cohort study.	interest: Patients	effects reported.	clinically significant
	integrating VR	"commercially	<u>Primary</u>	from an	2 ppts reported	reductions in pain
United States,	into a chronic	available" VR programs	<u>outcome</u> :	outpatient	side effects.	during VR. More than
Pain Medicine	pain program,	for up to 6 visits,	Numerical	occupational		75% of participants
	to explore	followed by	pain rating	therapy program		achieved clinically
	whether VR	participation in regular	scale.	with chronic pain.		important reductions in
	reduced pain	occupational therapy	Secondary	Total participants:		pain. <u>Secondary</u>
	during	treatment.	outcomes:	29. Average age		outcome: High
	treatment and		User	42.6. 23/29		engagement in the VR
	was		Engagement	Female. 17/29		intervention.
	acceptable,		Scale.	with chronic pain		
	and to assess			syndrome and		
	adverse			7/29 with		
	events.			fibromyalgia.		
Chau et al.	To explore the	Intervention: 10 VR	Single-arm	Population of	No assessment of	Primary outcome:
202021	effects of	therapy sessions (1-3/	case series.	<u>interest</u> :	side effects	Lower pain scores after
	therapeutic	week), each lasting 45	<u>Primary</u>	Outpatients with	reported.	VR during each session,
United States,	immersive	minutes-1 hr, that	outcome:	CRPS in at least		but higher scores over
Innov Clin	virtual reality	consisted of guided	Short Form	one upper limb.		time, reflecting higher
Neurosci	(VR) on pain in	visualization exercises	McGill	Total participants:		pain. No statistical tests
	upper limb	and interactions with	Questionnair	8. Average age		were performed.
	complex	the virtual environment	e. <u>Secondary</u>	45.4. 7/8 Female.		Secondary outcomes:
	regional pain	using their virtual	outcomes:			Objective worsening in
	syndrome	hands (washing hands,	VAS pain			pain scores, but
	(CRPS).	tossing paper airplane,	scores,			subjective improvement
		assembling a sandwich,	Wong-Baker			in symptoms and daily
		sorting dishware,	FACES score.			function.
		arranging utensils).				

Darnall et al.	To evaluate a	Intervention: VR	Randomized	Population of	Adverse events	Primary outcome: Pain
202022	skills-based VR	therapy that teaches	controlled	interest: Adults	were	intensity decreased
	behavioral	self-management skills	trial. Primary	with chronic non-	systematically	over time, with a
United States,	medicine VR	based on CBT and	outcome:	malignant low	assessed post-	steeper non-significant
JMIR Form Res	program for	mindfulness used in	Pain	back pain or	treatment. 24%	decline in VR versus
	cLBP and	pain management.	numerical	fibromyalgia. <u>Total</u>	reported some	audio groups.
	fibromyalgia.	Delivered at home over	rating scale	participants: 97	side effects,	Secondary outcomes:
		21-days; each session	overall last	(analytic sample	mostly at low	Pain interference
		was 1-15 minutes.	24 hours.	74). Average age	frequency.	decreased more in the
		Control: Audio	Secondary	not reported; 43%		VR versus audio group.
		narrative content	outcomes:	55+. 70% male.		Pain-related
		congruent with the VR	Pain	66% white. 38%		interference on mood,
		intervention, with	interference	with High School		sleep, and stress
		approximately two-	on activity,	education or less.		decreased more in the
		thirds identical to the	mood, sleep,			VR versus audio group.
		VR intervention.	and stress;			Pain interference
		Adaptations made to	Pain			decreased over time,
		one-third of audio	Catastrophizi			but there was a non-
		content owing to lack	ng scale, Pain			significant difference by
		of images in audio	Self-Efficacy			group over time. Pain
		control. Delivered at	Questionnair			self-efficacy differed
		home over 21-days;	e, Patient			over time, but not by
		each session 1-15	Global			group. 84% of VR group
		minutes.	Impression			ppts noted their pain
			of Change,			was improved, versus
			Satisfaction			62% in the audio group.
			with			
			Treatment.			

Garcia et al.	To conduct a	Intervention: EaseVRx	Randomized	Population of	Adverse events	Primary outcome:
2021a ²³	placebo	program, an immersive	controlled	interest: Adults	were	EaseVRx showed
	controlled RCT	pain relief skills VR	trial. Primary	with self-reported	systematically	significant treatment
United States,	in community-	program that teaches	outcome:	non-malignant	assessed in post-	effect over time with
Journal of	based	self-management skills	DVPRS pain	low back pain.	treatment	large effect size and
Medical	individuals	based on CBT and	intensity.	Recruited online	survey. 9.7% in	moderate clinical
Internet	with CLBP to	mindfulness. Delivered	Secondary	through	EaseVRx group	importance on pain
Research	test	at home, daily over 56	outcomes:	organizations or	experienced	interference. 65% of
	therapeutic VR	days; each session 1-15	DVPRS pain	through Facebook.	nausea or motion	EaseVRx participants
	with chronic	minutes.	interference	Total participants:	sickness; 6.7% in	achieved 30% or more
	pain education		on activity,	179. Average age	ShamVR group.	reduction in pain
	and pain relief	Control: Sham VR. 2D	DVPRS pain	51.5. 76.5%	No participants	intensity, versus 40% in
	skills vs sham	VR nature content.	interference	female. 90.5%	reported AEs	ShamVR group.
	VR.	Delivered daily over 56	on mood,	white.	during	Secondary outcome:
		days; each session 1-15	DVPRS pain		treatment.	Significant decrease by
		minutes.	interference			treatment over time
			on sleep,			with pain interference
			DVPRS pain			on activity. Significant
			interference			decrease by treatment
			on stress,			over time with pain
			PROMIS			interference on mood.
			physical			Non-significant
			function,			decrease by treatment
			PROMIS			over time with pain
			sleep			interference on sleep.
			disturbance.			Significant decrease by
						treatment over time
						with pain interference
						on stress. Significant
						increase in physical
						function by treatment
						over time. Significant
						decrease in sleep
						disturbance by
						treatment over time.

Garcia et al.	The objective	Intervention: EaseVRx	Randomized	Population of	Adverse events	Primary outcome:
2021b ²⁴	of the current	program, an immersive	controlled	interest: Adults	were	EaseVRx showed
	report was to	pain relief skills VR	trial. Primary	with self-reported	systematically	significant treatment
United States,	quantify	program that teaches	<u>outcome</u> :	non-malignant	assessed and	effect over time
The Journal of	treatment	self-management skills	DVPRS pain	low back pain.	described in	compared to ShamVR
Pain	effects to post-	based on CBT and	intensity.	Recruited online	another paper	on pain interference.
	treatment	mindfulness. Delivered	Secondary	through	published with	46.8% of EaseVRx
	month 3 and	at home, daily over 56	outcomes:	organizations or	primary outcome	participants achieved
	describe	days; each session 1-15	DVPRS pain	through Facebook.	data.	30% or more reduction
	durability of	minutes.	interference	Total participants:		in pain intensity versus
	effects of VR		on activity,	188. Average age		31.2% in Sham VR arm.
	on chronic	Control: Sham VR. 2D	DVPRS pain	51.7. 77% female.		Secondary outcomes:
	pain studied in	VR nature content.	interference	91% white.		Significant decrease by
	a prior study's	Delivered daily over 56	on mood,			treatment over time
	8-week home	days; each session 1-15	DVPRS pain			with pain interference
	VR program.	minutes.	interference			on activity. Non-
			on sleep,			significant decrease by
			DVPRS pain			treatment over time
			interference			with pain interference
			on stress,			on mood. Non-
			PROMIS			significant decrease by
			physical			treatment over time
			function,			with pain interference
			PROMIS			on sleep. Significant
			sleep			decrease by treatment
			disturbance.			over time with pain
						interference on stress.
						Significant increase in
						physical function by
						treatment over time.
						Significant decrease in
						sleep disturbance by
						treatment over time.

Garrett et al.	To better	Intervention: VR	Qualitative	Population of	Adverse events	Qualitative summary: 1)
2020, ²⁵	understand	experimental group	research;	interest: Patients	were assessed in	Experiences.
	experiences	consisted of a	two focus	above 16 with	the interview	Experiences were
Canada,	from	randomized series of	groups (6-7	current or past	guide. All	generally positive.
Heliyon	participating in	four interventions. Two	participants	diagnosis of	participants	Participants favored
	an ongoing	are based on cognitive	in each	cancer and	reported motion	mindfulness exercises
	randomized	engagement and two	group).	chronic pain	sickness with one	over cognitive
	controlled trial	are based on	<u>Topics</u>	enrolled in an RCT.	VR app that	engagement exercises.
	of a daily VR-	mindfulness	addressed:	Total participants:	involved flying,	2) Usability. Some
	based self	meditation. Each of	Participants'	12 in qualitative	with tolerance	physical limitations and
	administered	four interventions is 30	experiences	study. 6/12 male.	developing and	discomfort (sitting,
	home therapy	minutes per day for 6	and	Age range 37-73.	no significant	weight of headset). 3)
	for one	days; total participation	perceptions		lasting effects.	Effects. Majority
	month.	is 4 weeks. <u>Control</u> :	of the use of			reported positive
		Non-VR control of the	VR. Groups			experiences. VR
		same randomized	lasted 60			beneficial in their pain
		series of four	minutes			management. 4/12
		interventions described	each.			found no benefits.
		above.				Some enjoyed the
						relaxing experience
						while negative
						comments focused on
						frustration, depression,
						confusion, and fear.
						Motion sickness was
						common. Mixed
						reaction to how long
						effects lasted. 4) Mode
						of action. Most
						comments reflected
						that relaxation and
						distraction appeared to
						be most significant
						factors.

Garrett et al. 2017, ²⁶ Canada, JMIR Medical Informatics	To explore the effectiveness of at home VR on pain and to establish feasibility of VR interventions in chronic pain.	Intervention: VR therapy consisting of 4 different experiences over 4 weeks. Week 1: passive VR experiences where they traveled through VR environment. Week 2: mindfulness focused VR applications. Week 3: active exploratory VR environments. Week 4: active problem-solving experiences. Participants were instructed to use for 30 min on every other day.	Mixed methods case series. Primary outcome: Pain numerical rating score. Secondary outcomes: Brief Pain Inventory, Short Leeds Assessment of Neuropathic Symptoms and Signs, Cybersicknes s Reporting Form, Qualitative interviews at start and end of study.	Population of interest: Adult patients diagnosed with a chronic pain condition for at least 6 months. Total participants: 8. Average age 51. 6/8 female.	Systematically assessed during study. One participant dropped out of the study due to cybersickness. 5/8 participants who were retained reported cybersickness for at least one VR experience. One participant noted symptoms persisted for some time after experience.	Primary outcome: No significant effect on prepost intervention pain intensity. Secondary outcomes: No significant differences in Brief Pain Inventory or neuropathic symptoms. Qualitative summary: 1) Interactive sessions were favored over passive. 2) Distraction was cited as a reason for pain relief but this did not persist. 3) Frustrating user experience limited applicability. 4) Cybersickness was common.
Gulsen et al. 2020, ²⁷ Turkey, Assistive Technology	To evaluate the effects of fully immersive VR treatment combined with exercise training in fibromyalgia patients.	Intervention: Exercise + IVR (Immersive VR): 30 mins of aerobic training and 30 minutes of pilates plus 20 mins of IVR tx twice per week x 8 weeks. IVR included Kinect and Oculus VR football games and dungeon game. Control: Exercise: 30 mins of aerobic and 30 minutes of pilates twice per week x 8 weeks.	Randomized controlled trial. Primary outcome: Pain VAS. Secondary outcomes: Modified Sensory Organization Tests (for balance), Tampa Scale of Kinesiophobi a, Fibromyalgia Impact Questionnair e, Fatigue Severity Scale, International Physical Activity Questionnair e, Health-related quality of life.	Population of interest: Adult patients with fibromyalgia. Total participants: 16. Average age in IVR group 46.5, average age in Exercise control group 38.5. 100% female.	No assessment of side effects reported.	Primary outcome: Exercise + IVR showed more significant improvement over time in pain scores compared to Exercise group. Secondary outcomes: No difference in balance. Significant improvements in exercise + IVR (vs exercise) in kinesophobia, Fibromyalgia impact, fatigue severity, physical activity, and mental component of quality of life.

Hennessy et al. 2019, ²⁸ United States, The Journal of Pain (abstract)	To assess feasibility of a VR graded exposure intervention for chronic lower back pain.	Intervention: VR gaming modules while on a self-driven treadmill. Users walk, reach, crouch to accomplish game objectives. 3 sessions over 1 week.	Single-arm cohort study. Primary outcome: Feasibility of using VR games. Secondary outcomes: Acceptability, pain intensity, Kinesiophobi a.	Population of interest: Individuals with chronic low back pain. Total participants: 13. 8/13 female.	No assessment of side effects reported.	Primary outcome: High feasibility with high retention (12/13 completed study). Secondary outcomes: Participants viewed VR modules as acceptable. Pain intensity and kinesophobia did not change over the course of the study.
Hennessy et al. 2020, ²⁹ United States, JMIR Serious Games	To determine content validity of VR application and to determine the feasibility of persons with cLBP performing locomotionenabled physical activities.	Intervention: VR application, Lucid, to practice real-world movement tasks along the spectrum of activities (reaching, bending, long lasting loads) in games that required different levels of each movement task to complete. 6 3-min modules, 3x/week for 1 week	Single-arm cohort study. Outcomes: Content validity of VR application, acceptability and usability, pain and pain-related fear.	Population of interest: Patients with low back pain for >3 months and high pain related fear. Total participants: 12. Average age 54.3. 8/12 female. 100% Black.	No assessment of side effects reported.	Outcomes: Higher avoidance, expected pain, and expected concern to the Lucid sessions that are designed to be more challenging. 92% of participants rated exercises as acceptable. 75% reported the system was usable. No changes to pain or pain-related fear.
Jeon et al. 2014, ³⁰ Korea, Cyberpsycholo gy, Behavior, and Social Networking	To determine if virtual body swapping for patients with chronic regional pain syndrome type 1 (CRPS) is beneficial.	Intervention: VR video meant to evoke virtual body swapping illusion. Participants asked to act out maneuvers. 3 minute and 20 sec video, filmed from first person perspective. Control: VR video without being asked to act out maneuvers.	Randomized controlled trial. Primary outcome: Pain numerical rating score. Secondary outcomes: Modified Body Perception Disturbance Questionnair e, Perception of virtual body's movement as own body.	Population of interest: Patients with Chronic Regional Pain Syndrome CRPS type 1. Total participants: 10. Average age 39.3. 100% male.	No assessment of side effects reported.	Primary outcome: No significant difference between groups in pain intensity. Secondary outcomes: Significant improvement in body perception disturbance in intervention vs control. Treatment group experienced greater virtual body swapping illusion than the control group.

Jin et al. 2016,31 Canada, Studies in Health Technology and Informatics	To determine if an immersive VR game can be effective for chronic pain management.	Intervention: VR interactive game, Cryoslide, a game where you slide in an icy world and shoot snowballs at creatures. 10 minute duration. Control: Pain distracting activities, such as meditating, reading, mobile games, audiobooks. 10 minute duration.	Randomized crossover study. Primary outcome: Pain VAS. Secondary outcomes: Time spent thinking about pain.	Population of interest: Subjects recruited with chronic pain from a complex pain clinic. Total participants: 20. Age range 30-75. 16/20 female.	No assessment of side effects reported. 3 dropouts due to time constraints or nausea.	Primary outcome: Significant 36.7% reduction in pain intensity during the intervention, but no difference after the intervention. Secondary outcome: VR intervention group more likely to report "reduction in time thinking about pain," "losing track of time," non significantly lower "thinking unrelated things" or "thinking inwardly."
Jones et al. 2016, ³² United States, <i>PLOS ONE</i>	To determine the impact of a brief VR session on the experience of pain in patients with chronic pain conditions.	Intervention: 5 minutes of engagement in VR experience called COOL!, which is an "Interactive journey through a fully immersive VR fantasy landscape."	Single-arm cohort study. Primary outcome: Pain numerical rating scale. Secondary outcomes: Engagement in VR, side effects.	Population of interest: Adults with chronic pain. Total participants: 30. Average age 50. 67% female. 96% white.	Systematically assessed during study. One participant reported mild nausea that did not prevent participation.	Primary outcome: Significant 33% reduction in pain. 33% of participants reported 100% pain relief while doing the session. Secondary outcomes: High engagement in VR world. Limited side effects.
Kelleher et al. 2022, ³³ United States, Palliative and Supportive Care	To examine feasibility, acceptability, safety and impact of a 30-minute VR experience for reducing pain and pain related symptoms in patients with advanced colorectal cancer.	Intervention: Single, 30 minute VR session of an underwater/sea environment.	Single-arm cohort study. Primary outcomes: Feasibility, acceptability, and safety. Secondary outcomes: BPI pain severity, Mood VAS, Pain Catastrophizing Questionnair e, Chronic Pain Self-Efficacy Scale, qualitative interview.	Population of interest: Patients with stage 4 colorectal cancer and moderate to severe pain. Total participants: 20. Average age 56.7. 14/20 male. 15/20 white.	Systematically assessed during study. All participants completed VR without self-report of significant side effects. One participant had self-limited mild dizziness.	Primary outcomes: Recruitment accrual was strong, with 20 participants recruited in about 6 months. All participants completed the intervention. VR found to be highly acceptable. Secondary outcomes: No statistical hypothesis testing was performed. Pain decreased, tension decreased, stress decreased, Anxiety decreased, relaxation increased, and mood improved. In qual study: Easy to use and comfortable, immersed. Majority preferred home use

Liu et al. 2021, ³⁴ United States, Alternative Therapies	To examine the efficacy of VR-guided meditation in US veterans to facilitate meditation and relaxation practice.	Intervention: One 10-minute VR-guided Zen meditation using Guided Meditation VR application; script focused on effortless breathing and mindfulness meditation with six backgrounds selected by participants.	Single-arm cohort study. Primary outcome: Pain numerical rating scale. Secondary outcomes: Stress numerical rating scale, resting-state BP and HR, experiences and attitudes.	Population of interest: Veteran patients with chronic headaches or other chronic pain. Total participants: 31. Average age 55.2. 93.5% male.	No assessment of side effects reported.	Primary outcome: Pain significantly reduced post intervention with small-to-medium effect size. Secondary outcome: Stress significantly reduced post intervention with medium effect size. Systolic and diastolic BPs significantly reduced post intervention with small-to-medium effect size. HR significantly reduced post intervention with small effect size. VR was acceptable and enjoyable to patients.
Louw et al. 2019, ³⁵ United States, J of Physiotherapy Pain Association	To describe how VR-delivered pain neuroscience education can lead to reductions in pain catastrophizati on.	Intervention: Three VR sessions using BehaVR: pain neuroscience education, breathing exercises, mindfulness. Sessions lasted 15-26 minutes and took place weekly.	Case study. Outcomes: Pain numerical rating scale, Neck Disability Index, Pain Catastrophizi ng Scale, formal measures of pressure pain thersholds of neck.	Population of interest: One 18-year-old participant with history of MVA and subsequent chronic headaches and neck and upper back pain.	No assessment of side effects reported.	Outcomes: Neck pain improved after each session. Neck disability improved 29%. Pain catastrophizing improved over 50%. Pressure pain thresholds decreased for the neck but increased for the low back.

Matamala- Gomez et al. 2019, ³⁶ Spain, <i>The</i> Journal of Pain	To determine how virtual arm characteristics can modulate pain ratings in patients with chronic pain due to Chronic Regional Pain Syndrome (CRPS) and Peripheral Nerve Injury (PNI).	Intervention: VR session with life sized virtual body, with instructions to position arm where virtual arm was. This was followed by a phase in which 4 different representations of the arm were displayed in random order, all related to how transparent the virtual arm was. Next, participants were exposed to 3 different size representations of the virtual arm, again presented in random order. Each representation lasted 45 seconds. Total time for session was 55 minutes.	Randomized cross-over study. Primary outcome: Pain intensity numerical rating scale, performed after each representati on. Secondary outcome: Ownership of virtual hand.	Population of interest: Patients with neuropathic chronic pain with CRPS type 1 or with peripheral nerve injury in the upper limb. Total participants: 19 (CRPS 9; peripheral nerve injury 10). Average age CRPS 43.8, PNI 52.7. CRPS 7/9 female, PNI 7/10 female.	No assessment of side effects reported.	Primary outcome: All 7 conditions reduced pain ratings by half. Increasing transparency decreased pain in CRPS but increased pain in PNI. Secondary outcomes: Participants expressed ownership over virtual arm.
Nakad and Rakel 2019, ³⁷ United States, Innovation in Aging (abstract)	To determine attitudes of older adults to VR distraction therapy for chronic pain using mixed methods techniques.	Intervention: 2 VR simulations, active and passive, lasting 10 minutes each.	Single-arm cohort study. Primary outcome: Treatment acceptability. Secondary outcomes: Usability and side effects. Qualitative study of experiences also performed.	Population of interest: Older adults with chronic musculoskeletal pain. Total participants: 21.	Assessment of side effects reported. 14% of participants experienced moderate to severe side effects, but these are not outlined.	Primary outcome: Treatment acceptability was high (32.5/40). Secondary outcomes: Usability scores were mediocre (62.9/100). Qualitative analysis demonstrated VR was an enjoyable distraction to pain.
Oneal et al. 2008, ³⁸ United States, Int J Clin Exp Hypn	To describe a case of a patient with upper extremity neuropathic pain after use of VR hypnosis for 6 months.	Intervention: 33 Virtual Reality Hypnosis sessions over 6 months. Sessions in VR included audio recording of hypnotic induction, suggestions for pain relief, then immersive 3D world.	Case study. Outcomes: Pain intensity numerical rating scale, pain unpleasantn ess numerical rating scale.	Population of interest: One 36-year-old patient with upper extremity neuropathic pain after car accident.	No assessment of side effects reported.	Outcomes: VRH did not lead to significantly different pain intensity or pain unpleasantness at post treatment or 1 month follow-up. VRH led to 36% reduction in pain intensity immediately after VR treatment, 33% reduction in pain unpleasantness.

Orakpo et al. 2021 ³⁹ United States, Frontiers in Psychiatry	To test VR with neurofeedback for sustained analgesia for centralized pain.	Intervention: 20 sessions of VR- neurofeedback with EEG monitoring, two sessions weekly for 10 weeks.	Case study. Outcomes: Pain intensity, pain interference, pain related anxiety, sleep deprivation due to pain, pain related stress, pain related fatigue, depression due to pain.	Population of interest: One 55-year old woman with cervical stenosis with radiculopathy, sciatica with persistent right sided shoulder and neck pain.	No assessment of side effects reported.	Outcomes: 40% decrease in pain intensity. 40% decrease in Pain interference with activities of daily living, 50% decrease in pain interference with instrumental activities of daily living, 50% in Pain related anxiety, 10% decrease in Sleep deprivation, 40% decrease in pain related stress. Pain intensity decrease was durable, with 80% decrease in pain intensity at 1 year follow-up.
Putrino et al. 2021, ⁴⁰ United States, International Journal of Environmental Research and Public Health	To investigate the effect of 2 VR protocols (somatic vs scenery virtual environments) on pain intensity in people with spinal cord injury.	Intervention: Two VR environments, scenery (passive nature experiences) and somatic (upper and lower extremity movements), each VR session lasting 10 minutes. Presented in random order; participant allowed to take as much time as necessary for washout afterwards.	Randomized cross-over study. Primary outcome: Neuropathic pain numerical rating scale. Secondary outcomes: Immersive Tendencies Questionnair e, UQO-PQ Presence Questionnair e.	Population of interest: Adult persons with chronic neuropathic pain after spinal cord injury. Total participants: 8. Average age 55. 50% female.	No assessment of side effects reported.	Primary outcome: Significant reduction in pain in both VR environments. No significant difference between VR environments. Secondary outcomes: Greater immersion score in scenery intervention, greater decrease in pain; this was not true in the somatic intervention. Presence showed no significant correlations.
Solca et al. 2021, ⁴¹ United States, <i>PAIN</i>	To test an integrated spinal cord stimulation and VR method that shows patients visual illumination of a circumscribed region on the patients legs corresponding to stimulated sections.	Intervention: Spinal cord stimulation (SCS) enhanced by VR. Participants had VR congruent illumination of leg as SCS was stimulated. 2 sessions at 24 hours interval. Control: Two controls: incongruent illumination and no illumination.	Randomized cross-over study. Primary outcome: Pain intensity visual analog scale. Secondary outcome: Embodiment in VR.	Population of interest: Patients with SCS implants for chronic leg pain due to Complex Regional Pain Syndrome or Failed Back Surgery Syndrome. Total participants: 15. Average age 47.7. 10/15 male.	No assessment of side effects reported.	Primary outcome: Significantly larger analgesic effect during congruent VR sessions than 2 control conditions; incongruent also had larger effect than VR alone. Average pain levels decreased 44% from baseline. Secondary outcome: SCS enhanced by VR induced changes in leg embodiment.

Solca et al. 2018, ⁴² Switzerland, Neurology	To test the effect of heartbeat enhanced VR in patients with complex regional pain syndrome (CRPS).	Intervention: VR virtual hand on a table matched to laterality of disease in the participant, sex, and skin color. VR has synchronous flashing of virtual hand with heartbeat. One experiment, repeated 3 times consecutively. Control: VR virtual hand as above, but asynchronous flashing with heartbeat.	cross-over study. Primary outcome: Pain intensity visual analog scale. Secondary outcomes: Grip strength, heart rate variability, embodiment in VR.	Population of interest: Patients with upper limb CRPS after upper limb trauma or stroke. Total participants: 24. Age range 23-73. 14/24 female.	No assessment of side effects reported.	Primary outcome: Decrease in pain intensity after synchronous compa asynchronous block Secondary outcome Grip strength increa more after synchronous block compared to asynchronous block Heart rate variability increased during synchronous blocks compared to asynchronous block Embodiment was hi and similar in synchronous vs asynchronous block
Soltani et al. 2011, ⁴³ United States, Contemp Hypn Integr Ther	To describe a case of a patient who used VR hypnosis for pain from hidradenitis.	Intervention: 30 minutes of VR hypnosis, which consisted of an audio recording and a trip through a VR environment followed by hypnotic suggestions, twice over 2 days. Each session 30 minutes.	Case study. Outcomes: Pain intensity, anxiety, time spent thinking about pain.	Population of interest: One hospitalized 55 year old African American female with gluteal hidradenitis.	No assessment of side effects reported.	Outcomes: Pain decreased by 70%, anxiety by 100%, tir thinking about pain 89%. However, opio analgesics also increased between 1 and day 2.
Stamm et al. 2020, ⁴⁴ Germany, Journal of Neuroengineer ing and Rehabilitation	To determine requirements for a VR game that could be used to supplement multimodal pain therapy for patients with chronic back pain.	Intervention: After semi-structured interviews, participants were asked to demo two VR application prototypes: 1) teaching posture through game mechanics, and 2) experiencing a passive tour of an immersive virtual environment.	Qualitative study. Outcomes: Semi- structured qualitative interview with patients, focus groups with physiotherap ists and psychothera pists.	Population of interest: Older adults over 65 with chronic back pain. Total participants: 6. Average age 75.9.	No assessment of side effects reported.	Outcomes: Recommendations included an individu briefing for the syste with sufficient time instruction. Also emphasized, among other recommendations, v user-friendliness, an age-appropriate feedback.

Stamm et al.	To test an	Intervention: VR	Randomized	Population of	No assessment of	Primary outcome: B
2022, ⁴⁵	active VR	exergame with	controlled	interest: Older	side effects	groups showed a
	exergame for	movement therapy and	trial. Primary	adults with	reported.	reduction in pain
Germany,	older patients	psychoeducation for	outcome:	chronic back pain.		intensity, but there
Virtual Reality	with chronic	four weeks, 3	Composite of	Total participants:		no difference betwe
	back pain.	appointments per week	pain	22. Average age		VR group and chair-
		lasting about 30	intensity,	75. 14/22 female.		based group. Signific
		minutes each. Control:	changes in			improvement in
		Chair based group	functional			functional capacity i
		exercises, four week	capacities,			the VR group. No
		movement therapy	changes in			difference in fear
		with seated exercises	fear			avoidance in either
		and psychoeducation in	avoidance,			group. <u>Secondary</u>
		a group setting, 3	changes in			outcomes: No chang
		appointments per week	maximum			general physical or
		lasting about 30	trunk muscle			mental health in VR
		minutes each.	strength, and			group. High ratings
			muscular			immersion of VR
			imbalance.			system.
			Secondary			
			outcomes:			
			SF-12 Health			
			Survey,			
			Immersion of			
			VR system.			
Tejera et al.	To compare	Intervention: Two VR	Randomized	Population of	No assessment of	Primary outcome: N
2020,46	the effects of	applications: 1) Fulldive	controlled	interest: Patients	side effects	significant difference
	VR versus	VR, simulating living	trial. <u>Primary</u>	with non-specific	reported.	between groups in p
Spain,	exercise on	room of house, utilizing	outcome:	chronic neck pain.		intensity, conditione
International	pain intensity	tilting movements of	Pain	Total participants:		pain modulation.
Journal of	in patients	the neck; 2) VR Ocean,	intensity	44. Average age		Secondary outcome
Environmental	with non-	where neck	visual analog	29.7. 23/44		VR group led to low
Research and	specific	movements must be	scale,	female.		pain kinesiophobia
Public Health	chronic neck	integrated in passive	conditioned			scores compared to
	pain.	environment. Two	pain			control. Range of
		treatment sessions per	modulation.			motion, neck disabil
		week for 4 weeks.	Secondary			fear avoidance all no
		Control: Neck exercises:	outcomes:			significant difference
		flexion exercises,	Neck range			between groups.
		extension exercises,	of motion,			
		rotation and tilt	neck			
		exercises.	disability,			
	1		kinesiophobi	1	1	

Tong et al. 2016, ⁴⁷ Canada, Stud Health Technol Inform	To assess the usability of a VR and an enhanced desktop display to determine if these are suitable in patients with chronic pain.	Intervention: VR Meditative Walk, which involves walking through an environment with a forest, blue sky, small ponds and mountains." Intervention lasted 10 minutes and utilized head mounted display (HMD). Control: Meditative Walk app, but delivered through DeepStream 3D, a desktop display with 3D capabilities.	Cross-over usability study. Outcome: Simulator sickness questionnair e.	Population of interest: Patients from a pain clinic with chronic pain. Total participants: 20. Age range 20-70. 13/20 female.	Systematically assessed during study. Oculomotor symptoms, nausea, and physical discomfort tended to predominate, and were worse in the HMD compared to desktop display.	Outcome: HMD had higher Simulator Sickness Questionnaire scores than desktop display. Patients enjoyed experience of larger field of view afforded by HMD versus desktop display HMD caused more discomfort due to weight.
Trost et al. 2022, ⁴⁸ United States, <i>PAIN</i>	To test feasibility and preliminary efficacy of the first fully immersive spatially tracked virtual reality walking interface for patients with neuropathic pain due to spinal cord injury.	Intervention: Interactive VRWalk: arm movement tracked and translated to leg movements in an immersive environment with compensation for exploratory behaviors; 10 successive days of intervention with 2 sessions per day, at least 4 hours apart. Control: Passive control with no control over virtual gait.	Non-randomized controlled trial. Primary outcome: Pain intensity numerical rating score. Secondary outcomes: Last week pain intensity numerical rating score, neuropathic pain quality, pain interference.	Population of interest: Participants with spinal cord injury and neuropathic pain. Total participants: 27. Average age 42.5. 22/27 male. 17/27 Black.	No assessment of side effects reported.	Primary outcome: Both groups experienced declines in current neuropathic pain intensity with no difference between groups. Secondary outcomes: Significant decrease in average neuropathic pain in interactive group vs passive group. Significant decrease in neuropathic pain interference in interactive group vs passive group. Interventions found to be highly acceptable.
Trujillo et al. 2020, ⁴⁹ United States, Journal of Pain Research	To assess the feasibility of embodiment in VR for decreasing pain intensity and catastrophizin g of chronic lower back pain.	Intervention: 7 sessions of KVET, a 30–45-minute session of exercises in an embodied VR experience, based in principles of graded motor imagery. Observe virtual avatar performing a task, visualize it themselves, then perform it.	Case series. Outcomes: Pain intensity visual analog scale, pain catastrophizi ng.	Population of interest: Patients with chronic low back pain of at least six months. Total participants: 2. 37M and 64M.	Systematically assessed during study. Neither patient reported side effects.	Outcomes: Significant improvement in pain intensity after single sessions of KVET for both participants. Pain catastrophizing showed decrease from pre to post sessions.

Wiederhold 2014a, ⁵⁰ United States, Cyberpsycholo gy, Behavior, and Social Networking	To test mobile phone displays to deliver pain distraction VR.	Intervention: Virtual environments on a mobile phone display. Control: Virtual environments in a head mounted display (HMD).	Cross-over study. Primary outcome: Pain intensity numerical rating scale and visual analog scale. Secondary outcomes: Physiological activity.	Population of interest: Patients with non-cancer chronic pain. Total participants: 31.	Unclear if systematically assessed. "No cybersickness" was reported.	Primary outcome: HMD significantly decreased pain intensity greater than mobile phone. Secondary outcome: Heart rate was decreased in HMD and mobile phone conditions, but this did not reach statistical significance.
Wiederhold 2014b, ⁵¹ United States, Cyberpsycholo gy, Behavior, and Social Networking	To investigate the efficacy of an interactive VR virtual environment on pain.	Intervention: VR exposure session, 14 minutes of pleasant and relaxing scenes with natural habitats. Control: Non-VR pain focus session, not fully described here.	Cross-over study. Outcomes: Pain intensity numerical rating system, skin temperature, physiological activity.	Population of interest: Patients with chronic pain. Total participants: 40 (6 in a pilot, 34 in an additional study).	Systematically assessed during study. Very low side effects reported. No serious side effects.	Outcomes: Decreased pain in VR exposure group compared to pain focus group. Increase in overall mean temperature in VR exposure group compared to pain focus group in pilot sample. In experimental sample, significant decrease in heart rate in VR exposure group vs pain focus group.
Won et al. 2021, ⁵² United States, Journal of Medical Internet Research	To pilot test the feasibility of an open source VR mirror module in patients with upper limb chronic regional pain syndrome.	Intervention: Weekly sessions (min 4) of immersive VR with optional 5th visit. Participants experienced a virtual environment that consisted of a modification of mirror therapy, whereby affected arm was controlled by the unaffected arm. VR sessions were movement and goal oriented to contact objects in the midline.	Single-arm cohort study. Outcomes: Pain intensity, physical activity, mood, quality of sleep.	Population of interest: Patients with upper limb unilateral chronic regional pain syndrome. Total participants: 9. Average age 44. 6/9 female. 7/9 white.	Systematically assessed during study. 7/9 reported no symptoms of cybersickness. 2/9 reported slight symptoms.	Outcomes: No statistically significant differences over time on pain, physical activity, mood, quality of sleep.