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Abstract. The pseudoknot structure of RNA molecular plays an important role
in cell function. However, existing algorithms cannot predict pseudoknots
structure efficiently. In this paper, we propose a novel simulated annealing
algorithm to predict nucleic acid secondary structure with pseudoknots. Firstly,
all possible maximum successive complementary base pairs would be identified
and maintained. Secondary, the new neighboring state could be generated by
choosing one of these successive base pairs randomly. Thirdly, the annealing
schedule is selected to systematically decrease the temperature as the algorithm
proceeds, the final solution is the structure with minimum free energy. Fur-
thermore, the performance of our algorithm is evaluated by the instances from
PseudoBase database, and compared with state-of-the-art algorithms. The
comparison results show that our algorithm is more accurate and competitive
with higher sensitivity and specificity indicators.
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1 Introduction

RNA is a long chain of nucleotides acid molecule which consists of A (Adenine),
U (Uracil), G (Guanine) and C (Cytosine). The four-base arrangement allows RNA to
have a variety of functions that can play a role in genetic coding, translation, regulation,
and gene expression. The search for the secondary structure of RNA sequence has been
widely used as the first step in understanding biological functions [1]. The RNA
secondary structure folds itself by forming hydrogen bonds between G-C, A-U, and
G-U. Therefore, the prediction of RNA secondary structure is returned to predict all
hydrogen connections from the primary structure of the sequence. Many components
can be identified in the secondary structure, such as stacked pairs or stacks, hairpin
loop, multi-branched loop or Multi-loops, bulge loop, and internal loop. The compo-
nent structures can be represented by a schematic representation or arc representation,
as shown in Fig. 1.
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Fig. 1. (a) Typical RNA Secondary Structure. (b) Arc representation of a typical RNA
secondary structure. This image was created using jViz.Rna [2].

Pseudoknots usually contains not well-nested base pairs, as shown in Fig. 1(b).
These non-nested base pairs make the presence of pseudoknots in RNA sequences
more difficult to predict by dynamic programming, which use a recursive scoring
system to identify paired stems. The general problem of predicting minimum free
energy structures with pseudoknots has been shown to be NP-complete [3].

The dynamic programming (DP) is the first computational approach used to predict
RNA structure [4-8]. It can be seen that the temporal and spatial complexity of the
prediction algorithm for dynamic programming is high, which is not good for the
algorithm to make predictions for long sequence because it will take more time and
resources. The other prediction approaches are based on heuristic methods and ther-
modynamics models [9-13].

In this paper, we propose a novel efficient simulated annealing algorithm to predict
nucleic acid secondary structure with pseudoknots. The performance of our algorithm
compared with RNA structure method using PseudoBase [14] benchmark instances.
The comparison result shows that our algorithm is more accurate and competitive with
higher sensitivity and specificity values.

2 Problem Defines

For a given RNA sequence X = 5’—xx;...x,—3" of length n, M(X) is the mapping
string of complementary base-pairs of X, M(X) = (m, my, ..., m;, ..., m,). Each m;
corresponds to the form of (i, j, k), which is called k successive base pairs, where i and j
are the base position, where k is the number of successive base pair, and two constraints
must be satisfied:
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Base Pairs Constraint: If (i,j,k) € M, then {(x; x;), (Xixs, Xj0)s -os Kpseers Xjta 1)}
€ {(A, U), (G, O), (G, U)} in RNA.

K Successive Base Pairs Constraint: If (i,j, k) € M, then j—i> 2% MinStem
+ Minloop, MinStem > 2, Minloop > 3 and k > MinStem, where MinStem is the min-
imum number of stack and MinLoop is the minimum number of loop (Fig. 2). Such as
there must be at least Minloop unpaired bases in a hairpin loop.

i i+1 ikl itk ko kel 1 j

MinStem MinLoop MinStem

Fig. 2. A graphical illustration of a MinStem and MinLoop

3 The Proposed Approach

3.1 Set of K Successive Base Pairs

In computer-simulated base pairing, we do not pair individual bases but use successive
base pairs. We reduced the range of all possible base pairs by setting MinStem and
MinLoop parameters. Assume that there are three variables i, j, k, which i and j are the
base position, where k is the number of successive base pair. According to the above
Fig. 2, we can be seen that i, j, k need to satisfy the following three constraints:

1 <i<RNA.Length — 2 x MinStem — MinLoop + 1 (2)
i+ 2 % MinStem + MinLoop <j<n (3)
MinStem <k < (j — i — MinLoop) /2 4)

3.2 Evaluation Function

For most MFE based RNA secondary structure prediction algorithm, the complex
thermodynamic model is often used to evaluate candidate solutions [15]. There are no
useful information to guide the candidate solution to find lower neighbor energy state.
Consequently, the convergence of these MFE based prediction algorithms is very slow.
However, among all of the secondary structure, only the successive base pairs stack
structure AGs provide negative free energy which contributes to the reduction of free
energy. The stability of RNA sequence can also be approximately evaluated by suc-
cessive base pairs stacks.

Let M(X) is the mapping string of complementary base pairs of X, M(X) = (my, my,
oees My, ..., my). Bach m; corresponds to the form of (i, 7, k), where m; .k equals k, group
is the number of stems, then the following formula:
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TotalBP x AverageBP?,if PesudoGroup < MaxPesudoGroup

FM(X)) = { TotalBP x AverageBP2 X Ummcr%’t’a ;gf{fg:ocmup ) ,else (5)

Where PseudoknotGroup is the predicted number of pseudoknot by the algorithm,
and MaxPesudoKnot is the expected number of pseudoknot.

TotalBasePair = ZL mi-k (6)

AverageBasePair = TotalBasepair | group (7)

3.3 Overall Algorithm

The process of natural RNA folding to its minimal free energy state is very similar to
the annealing process. In addition, compared with other heuristic prediction algorithms,
such as genetic algorithms, the SA algorithm has faster convergence. Therefore, the
paper proposes a new method to predict the RNA secondary structure with pseudoknots
based on SA framework. This algorithm framework is as follows:

Algorithm:
-Initial Max_T, Min_T, CurrentPairs, MaxPairs.
-While(Temperature>Final_ Temperature) do: /T is current temperature;
/[The upper limit of i is the maximum value of MinLoop
For (i=0 to RNA.Length-2*MinStem) do
The new Pair is randomly generated from random set of K successive pairs.
Remove the conflict match from the CurrentPairs.
CurrentPairs. Add(Pair);
AE = EnergyDelta(CurrentPairs, MaxPairs, maxPesudoKnot);.
If(AE >=0 OR (Exp(AE/T)>Random(0,1)))
MaxPairs = CurrentPairs;
End If
End For
Decrease Temperature.
-End While.
-Return best solutions: MaxPairs. // MaxPairs is final solutions based on SA.

4 Experiments Result

The computational result of our algorithm is compared with IPknot [16], TT2NE [17],
CyloFold [18] on 10 benchmark instances in PseudoBase RNA database. The evaluate
indicators are sensitivity (SN) and specificity (SP) [19], as shown in Eq. (8).
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SN = TP = TP+ FN,SP = TP < TP + FP (8)

Where TP represents the number of correctly predicted base pairs; FP represents the
number of incorrectly predicted base pairs; FN represents the number of unpredicted
base pairs compared to the known structure. When the prediction results are accurate,
both SN and SP should be close to 100%.

The comparisons of the proposed method with the other methods are shown in
Table 1. In terms of sensitivity, the proposed method provides the best results in six
sequences, yields not the worst result in remaining sequences. In terms of specificity,
the proposed method yields the best results in three sequences, similar result in five
sequences, and inferior results in two sequences. On average, from all sequences, the
proposed method outperforms the other methods in all measure. It has average sensi-
tivity and specificity of 92.6% and 84.3% respectively.

Table 1. Comparison results with sensitivity and specificity indicator

Sequences | [18] | TPknot | TT2NE | OPA |[18] |IPknot|TT2NE | OPA
Sensitivity Specificity
Ec_PK3 85.7 714 [100.0 | 92.9/100.0]76.9 [100.0 | 92.9
BEV 938813 | 87.5 100.0 100 813 | 66.7 | 762
BaEV 867/ 00 |100.0 | 933| 81.3| 0.0 | 652 | 70.0
VMV 100.0/50.0 | 929 100 | 73.7/389 | 650 | 70.0
ALFV 100.0 | 64.7 11000 100 | 739458 | 70.8 | 70.8
SARS-CoV| 6921692 | 517 | 84.6| 720|783 | 469 100
BCRVI 96.7/76.7 1000 | 100.0| 853 82.1 | 968 | 96.8
AMV3 718|744 | 744 | 89.7) 80.0 967 | 72.5 100
RSV 974|718 | 974 | 923 884903 | 90.5 | 90.0
CCMV3 | 667844 | 711 | 733 667 884 | 711 | 767
Average | 868|715 | 87.5 | 92.6| 82.1 754 | 746 | 843

5 Conclusion

This paper proposes efficient SA algorithm for the RNA secondary structure predicting
with pseudoknots, combined with the evaluation function to compensate for the high
time complexity of the free energy calculation model. The algorithm sets the MinStem
and MinLoop parameters to determine the pseudoknot structure formed by the base pair
cross-combination, and optimizes the pool of candidate solutions, thereby reducing the
time cost of the algorithm. We use the evaluation function to further reduce the time
consumption of RNA secondary structure prediction algorithms. Moreover, the per-
formance of our algorithm is compared with state of art algorithms using ten Pseu-
doBase benchmark instances, and the comparison result shows that our algorithm is
more accurate and competitive with higher sensitivity and specificity values.
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