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Alzheimer’s dementia (AD) begins many years before its clinical symptoms. Metabolic
dysfunction represents a core feature of AD and cognitive impairment, but few
metabolomic studies have focused on cognitive aging in midlife. Using an untargeted
metabolomics approach, we identified metabolic predictors of cognitive aging in midlife
using fasting plasma sample from 30 middle-aged (mean age 57.2), male-male twin
pairs enrolled in the Vietnam Era Twin Study of Aging (VETSA). For all twin pairs, one
twin developed incident MCI, whereas his co-twin brother remained to be cognitively
normal during an average 5.5-year follow-up. Linear mixed model was used to identify
metabolites predictive of MCI conversion or cognitive change over time, adjusting for
traditional risk factors. Results from twins were replicated in an independent cohort of
middle-aged adults (mean age 59.1) in the Wisconsin Registry for Alzheimer’s Prevention
(WRAP). Results in twins showed that higher baseline levels of four plasma metabolites,
including sphingomyelin (d18:1/20:1 and d18:2/20:0), sphingomyelin (d18:1/22:1,
d18:2/22:0, and d16:1/24:1), DAG (18:2/20:4), and hydroxy-CMPF, were significantly
associated with a slower decrease in one or more domains of cognitive function. The
association of sphingomyelin (d18:1/20:1 and d18:2/20:0) was replicated in WRAP.
Our results support that metabolic perturbation occurs many years before cognitive
impairment and plasma metabolites may serve as early biomarkers for prediction or
monitoring of cognitive aging and AD in midlife.
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INTRODUCTION

Human brain aging and Alzheimer’s dementia (AD) impose a huge health and economic burden
on modern society. Recent research suggests that cognitive decline begins in middle age (45–
65 years old) (Singh-Manoux et al., 2012; Karlamangla et al., 2017). However, there is a substantial
heterogeneity in the trajectories of cognitive aging, with some individuals showing minimal
or no decline while others of the same age experiencing rapid decline or even dementia.
Discovery of sensitive, specific and non-invasive biomarkers is a prerequisite for identifying
high-risk individuals, and developing effective strategies that can monitor, delay or prevent the
onset of dementia.
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A growing body of evidence suggests that brain and cognitive
aging are accompanied by extensive metabolic perturbations
(Clarke et al., 2018). The altered metabolic profiles can be
quantified by metabolomics, a high-throughput biochemical
technology that can identify hundreds to thousands of small
molecules (metabolites) in biofluids or tissues (Rochfort, 2005).
These metabolites represent the endpoints of metabolic processes
encompassing the interaction between the internal genome and
the external environment (Harrigan and Goodacre, 2012), and
thus are closer to disease phenotypes compared to genomic,
transcriptomic and proteomic profiles.

While the majority of the existing metabolomics studies in
human (Han et al., 2011; Orešič et al., 2011; Björkqvist et al.,
2012; Mapstone et al., 2014; Inoue et al., 2015; Casanova et al.,
2016; Varma et al., 2018; Huo et al., 2020) have focused on older
individuals (aged 65+), several recent studies reported metabolic
changes associated with cognitive aging (Bressler et al., 2017;
Chouraki et al., 2017; Darst et al., 2018; van der Lee et al., 2018;
Proitsi et al., 2018; Tynkkynen et al., 2018) among individuals
in midlife (45–65 years). However, most of these studies have
examined a small number of metabolites (in general less than
300), leaving the full spectrum of blood metabolome largely
unexplored. To date, no consensus metabolites that can predict
brain and cognitive aging in midlife have been reported.

Leveraging the comprehensive clinical and cognitive
phenotypes in a well-characterized longitudinal twin cohort,
the current study aimed to identify metabolites predictive of
incident mild cognitive impairment (MCI) or cognitive change
using untargeted metabolomics in 30 middle-aged (mean age
57.2 at baseline), male-male twin pairs [15 monozygotic (MZ)
pairs, 15 dizygotic (DZ) pairs]. All twins were cognitively normal
at baseline (Wave 1, 2003–2007), but one twin in each of these
pairs developed incident MCI, while his co-twin remained
cognitively normal at the end of 5.5-year follow-up (Wave
2, 2008–2013). Our initial study was followed by replication
in an independent cohort of middle age adults (mean age
59.1 at blood draw). Although preliminary, findings of this
research are likely to generate novel hypotheses that may lead
to the identification of novel metabolic markers predictive
of cognitive aging in midlife and provide insights into our
understanding of the role of metabolic disturbance in early
cognitive aging.

MATERIALS AND METHODS

Study Populations
Discovery Cohort – Vietnam Era Twin Study of Aging
(VETSA)
Our discovery sample included 30 middle-aged, male-male twin
pairs (15 MZ pairs and 15 DZ pairs) participating in the
VETSA, a longitudinal observational study examining the role
of genetic and environmental factors for cognitive and brain
aging beginning in midlife using a twin design. Detailed methods
for twin recruitment, longitudinal follow-up and phenotypes
for the twins had been described previously (Kremen et al.,
2006, 2013a). Briefly, 1,237 twins (349 MZ pairs, 265 DZ

pairs, 9 singletons, age range 51–60, mean age 56) attended
the initial examination at Wave 1 (2003–2007), and 1,016
twins were re-examined at Wave 2 (2008–2013, mean follow-
up 5.5 years). The only two recruitment criteria for the VETSA
were: (1) the ages of participants at Wave 1 were between
51 and 59 years at the time of initial recruitment (2003–
2007), and (2) both twins in a pair were willing to participate
in the baseline assessment. Twins enrolled in VETSA were
predominately Caucasians (86%). Although all twins served
in the United States military between 1965 and 1975, nearly
80% of them did not serve in combat or Vietnam (Kremen
et al., 2006, 2011). Since 25% of the men nationwide within
this age range served in the military, the VETSA participants
were generally representative of middle-aged men living across
the United States, with respect to health and sociodemographic
characteristics (Schoenborn and Heyman, 2009). Participants
were administered identical protocols at the University of
California, San Diego, or Boston University. Individual twins
chose their site, although brothers most often chose the same site.
The complete protocols for twin enrollment and exams had been
described previously (Kremen et al., 2013a). The protocols were
approved by the University of California and Boston University
Institutional Review Boards.

The current analysis included 30 complete pairs (mean age
57.2, age range 52.6–59.6, all Caucasians) attending the clinical
exam at Wave 1 (baseline, 2003–2007) followed through Wave 2
(2008–2013). All twins were cognitively normal at baseline, but
one twin per pair developed incident MCI by Wave 2 (mean
follow-up period 5.5 years) while their co-twin did not. Both
twins of the same pair were examined at the same site. The
baseline characteristics of these twins are shown in Table 1.
There was no significant difference in the listed characteristics at
baseline between twins who converted to MCI (converters) versus
their co-twins who did not (non-converters).

Replication Cohort – Wisconsin Registry for
Alzheimer’s Prevention (WRAP)
We replicated our initial findings in the WRAP (La Rue et al.,
2008), which is an ongoing prospective cohort that enrolls
middle-aged adults and examines the transition from middle age
to early older adults (between 40 and 65). Participants had no
dementia at baseline. The WRAP allows for the enrollment of
siblings and is enriched for a parental history of Alzheimer’s
disease. Detailed information for the study design and methods
has been described elsewhere (Sager et al., 2005; Johnson et al.,
2018). The current analysis included 232 WRAP participants
(mean age 59.1, age range 40–72, 32% males, all Caucasians)
with complete clinical and metabolomics data at baseline (2011–
2015) and follow-up (average follow-up period = 4.1 years).
Supplementary Table 1 displays the baseline characteristics of
the WRAP participants.

Cognitive Phenotypes and Diagnostics
Vietnam Era Twin Study of Aging (VETSA)
All twins enrolled in the VETSA underwent extensive
neurocognitive testing including 13 neuropsychological tests
(23 scores) covering 7 cognitive domains (Kremen et al., 2019)
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TABLE 1 | Baseline characteristics of twins in the VETSA (N = 60).

Characteristics Mean ± SD or % P-value*

All MCI non-converter MCI converter

N 60 30 30

Mean age (year) at baseline 57.2 ± 2.3 57.2 ± 2.3 57.2 ± 2.3 0.97

Mean age (year) at Wave 2 62.8 ± 2.3 62.7 ± 2.3 62.8 ± 2.3 0.97

BMI (kg/m2) 30 ± 4.2 30 ± 4.6 30 ± 3.7 0.49

Education (year) 14 ± 2 14 ± 2.1 14 ± 1.9 0.53

Ever-smoker, n (%)† 23 (38) 13 (43) 10 (33) 0.60

General cognitive ability 0.28 ± 0.66 0.32 ± 0.69 0.25 ± 0.65 0.677

Episodic memory −0.072 ± 0.72 0.0046 ± 0.74 −0.15 ± 0.7 0.414

Short term memory −0.23 ± 0.66 −0.11 ± 0.71 −0.36 ± 0.58 0.133

Executive function −0.13 ± 0.27 −0.068 ± 0.24 −0.19 ± 0.29 0.071

*P-values comparing non-converters and converters were calculated using t-test for continuous variables, and Fisher’s exact test for binary variables. †Defined as
participants who smoked 100 cigarettes or more in lifetime.

that were designed to avoid ceiling effects in middle-age
adults. Specifically, general cognitive ability was measured
by the Armed Forces Qualification Test (AFQT), a 50-min
paper-and-pencil test with 100 multiple-choice items on
vocabulary, arithmetic, spatial processing, and mechanical
ability (Uhlaner and Bolanovich, 1952; Orme et al., 2001).
The AFQT is highly correlated (∼0.85) with other measures
of general cognitive ability, including the Wechsler scales
of intelligence (Lyons et al., 2009, 2017). Executive function
was assessed by a factor comprising 7 measures of prepotent
response inhibition, task-set shifting, and working memory:
Stroop interference; AX-Continuous Performance Test; Delis-
Kaplan Executive System (D-KEFS) Trails switching; D-KEFS
category switching; Wechsler Memory Scale-III (WMS-III)
Letter-number sequencing; Reading span; and WMS-III
Digit span (Gustavson et al., 2018). Episodic memory was
measured by summarizing verbal and visual-spatial episodic
memory measures, compromising 6 individual episodic memory
measures (Kremen et al., 2014), including California Verbal
Learning Test-II short/long delayed free recall; WMS-III logical
memory immediate/delayed free recall, and visual reproductions
immediate/delayed recall. Short-term memory was derived
based on standardized and averaged scores from WMS-III digit
span (forward condition) and spatial span (forward condition)
(Franz et al., 2011). MCI status was determined via the Jak-Bondi
approach, requiring at least 2 tests within a cognitive domain
to each be more than 1.5 SDs below normative expectations
in order to define impairment in that domain (Jak et al., 2009;
Kremen et al., 2013b; Granholm et al., 2017).

WRAP
As previously described (Dowling et al., 2010; Koscik et al.,
2014), the WRAP has also collected detailed neurocognitive
phenotypes for all participants. Since the WRAP did not have
the AFQT, we used the average of verbal and visuospatial
ability from the Wechsler Abbreviated Scale of Intelligence
(Koscik et al., 2014) as a surrogate measure for the general
cognitive ability. Executive function in the WRAP was calculated
by averaging the z-score of the following four components

(Clark et al., 2016), including trail making test part B (TMT B)
total time to completion; Stroop neuropsychological screening
test color-word interference total items completed in 120 s;
Wechsler abbreviated intelligence scale-revised (WAIS-R); and
digit symbol coding total items completed in 90 s. We used
a composite of delayed recall scores (Clark et al., 2016) as a
surrogate measure for episodic memory: Rey Auditory Verbal
Learning Test long-delay free recall, WMS-R logical memory
delayed recall, Brief Visuospatial Memory Test-Revised delayed
recall. Since WRAP did not collect short-term memory, we used
immediate memory, assessed by a factor compromising Trials 1
and 2 of Rey Auditory Verbal Learning Test (Schmidt, 1996), in
our replication analysis.

Metabolomics Data Acquisition
Fasting blood samples were drawn in the morning of the same
day when cognitive tests were performed. Plasma samples were
collected (EDTA tube), aliquoted and then stored at −80◦C.
Untargeted metabolomics data in fasting plasma samples were
assayed in both VETSA (n = 60) and WRAP (n = 232)
using the same protocols on the same platform at Metabolon
Inc. Detailed procedures for metabolomics analysis have been
described elsewhere (Evans et al., 2009, 2014). Briefly, automated
MicroLab STAR R© system from Hamilton Company was used
to remove protein and recover chemically diverse metabolites.
The consequent extract was equally aliquoted into five parts
for different analyses, including two separate reverse phase
(RP)/UPLC-MS/MS methods for positive ion mode electrospray
ionization (ESI), one RP/UPLC-MS/MS method for negative
ion mode ESI, one HILIC/UPLC-MS/MS method for negative
ion mode ESI, and the remaining one for backup purposes.
Quality control samples were also included to ensure the
Metabolon procedures were conducted within the specified
protocol. Internal standards (endogenous compounds) were
spiked into each analyzed sample to monitor instrument
performance and aid chromatographic alignment. Positive and
negative samples were randomized and QC samples were
evenly spaced among the injections. After drying, the samples
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were reconstituted according to the pre-mentioned methods,
followed by utilization of Ultrahigh Performance Liquid
Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS).
Metabolon’s software was used to extract the raw data and
perform peak-identification, QC processing, and biochemical
identification. A series of curation procedures were performed to
guarantee the quality of the data. The relative intensity of each
metabolite was quantified using area-under-the curve (AUC) of
its corresponding peak.

Metabolomics Data Pre-processing and
Quality Control
For the 30 twin pairs in VETSA, we obtained a total of 1,228
metabolites, including 960 known and 268 unknown compounds.
The AUCs of all samples were first normalized to their extracted
volume, followed by median normalization (average of the
median levels in all samples) as previously described (van
den Berg et al., 2006). The normalized data were further log2
transformed to improve normality. Metabolites with missing
values in >50% of the samples were removed. Metabolites with
missing value ≤ 50% of the samples were replaced by limit
of detection (LOD). A total of 1,131 metabolites (879 knowns
and 252 unknowns) was included in the final analysis in the
VETSA. Similar procedures were used to pre-process and QC the
metabolomics data in the WRAP (Darst et al., 2019), resulting in
a total of 1,097 metabolites in our replication analysis.

Statistical Analyses
Identifying Metabolites Predictive of MCI Onset and
Cognitive Change in VETSA
Discordant twin analyses
To identify plasma metabolites that can predict incident MCI,
we first performed paired t-tests by comparing the relative
abundance of metabolites between MCI converters and non-
converters. These discordant twin analyses can be particularly
powerful because twins within pairs are nearly perfectly matched
for demographic, developmental, and environmental factors,
resulting in considerably reduced error variance compared with
non-twin studies. In addition, MZ pairs are perfectly matched for
genetic background, and DZ pairs share, on average, 50% of their
genetic background.

Non-twin analyses
While matched pair analysis is powerful, it does not allow for
adjustments of other covariates. Thus, we also conducted non-
twin analyses, meaning that the unit of analysis was the individual
rather than the twin pair. This was done by constructing
generalized linear mixed models via the R package lme4 (Bates
et al., 2014), in which MCI status (y/n) was the dependent
variable, and baseline metabolite level was the independent
variable, adjusting for twin age, BMI, smoking, and education
at baseline and zygosity (MZ vs. DZ). To identify metabolites
that can predict the longitudinal change in cognitive function
over time, we fitted linear mixed models, in which change in
a cognitive measure (difference in a cognitive measure between
Wave 1 and Wave 2) was the dependent variable and baseline
metabolite level was the independent variable, adjusting for

twin age, zygosity (MZ vs. DZ), education, BMI, smoking,
and the cognitive measure at baseline. The effect size and
P-value were estimated for each metabolite for each cognitive
measure. In the above described models, twin pair was included
as a random effect to adjust for the correlated observations.
Multiple testing was controlled by false discovery rate (FDR)
(Benjamini and Hochberg, 1995) (adjusting for a total of 1,228
metabolites × 5 cognitive phenotypes including MCI, general
cognitive ability, executive function, episodic memory, and short-
term memory), and FDR-adjusted P-value was used to determine
statistical significance.

Replication in the WRAP
To replicate the metabolites identified in the VETSA, we
fitted linear mixed models in the WRAP, in which cognitive
change (difference in a cognitive measure between baseline
and follow-up) was the dependent variable and baseline
plasma level was the independent variable. The model adjusted
for age, sex, education, BMI, and the cognitive measure
under investigation at baseline. Family ID was included as
a random effect in the model to account for relatedness
between family members.

Network analysis
To identify metabolic networks (modules) associated with
cognitive functions, we conducted the weighted gene correlation
network analysis (WGCNA) (Langfelder and Horvath, 2008)
using all 1,131 metabolites (both known and unknown) in the
VETSA. The structure of each module was constructed using data
from MCI non-converters (n = 30) via the ARACNE algorithm
(Margolin et al., 2006) using R package minet (Meyer et al.,
2008). To examine whether module structure predicts incident
MCI, we performed modular differential connectivity (MDC)
analysis (McKenzie et al., 2016) by comparing the network
connectivity between MCI converters and non-converters. The
statistical significance of the MDC analysis was assessed by
1,000 permutations. The network structure of the modules
containing significant MDC was visualized by CytoScape
(Shannon et al., 2003).

Functional annotation
To functionally annotate the metabolites predictive of MCI
conversion or cognitive change over time, we conducted pathway
enrichment analysis using the software MetaboAnalyst 4.0
(Chong et al., 2019). Metabolites with raw P < 0.05 were used as
input, and hypergeometric test was employed to obtain P-values
for metabolic pathways.

RESULTS

Metabolites Predictive of Incident MCI or
Cognitive Change in VETSA
At raw P < 0.001, we identified four plasma metabolites that can
predict MCI conversion (Figure 1). Specifically, higher levels of
three known metabolites [gulonate, β = 0.36, P = 5.5 × 10−4;
1-palmitoyl-GPE (16:0), β = 0.35, P = 7.5 × 10−4; and 1-
palmitoyl-2-arachidonoyl-GPI (16:0/20:4) (16:0/20:4), β = 0.58,
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FIGURE 1 | Plasma metabolites predictive of incident MCI in twins (P < 0.001). P-values were obtained by paired t-test.

P = 9.7 × 10−4] and a lower level of one unknown metabolite
(X − 21959, β = −0.47, P = 7.2 × 10−4) predicted MCI
conversion. These P-values remained similar after adjustments
for age, cognition, zygosity, education, BMI, and smoking status
at baseline (Supplementary Table 2). However, none of them
passed multiple comparison at FDR-adjusted P < 0.05.

At FDR-adjusted P < 0.05, we found that baseline levels
of four plasma metabolites significantly predicted longitudinal
change in cognitive function over time (Table 2). Specifically,
higher baseline levels of hydroxy-CMPF, linoleoyl-arachidonoyl-
glycerol [DAG] (18:2/20:4), sphingomyelin [SM] (d18:1/20:1 and
d18:2/20:0), and SM (d18:1/22:1, d18:2/22:0, and d16:1/24:1)
significantly predicted a slower decrease in general cognitive
ability (β = 0.16, q = 0.04), short-term memory (β = 0.16, q =
0.03), and executive function (β = 0.04, q = 0.03; β = 0.04,
q = 0.04), respectively. Figure 2 depicts the associations of these
metabolites with cognitive functions. No metabolites significantly
predicted changes in episodic memory at FDR-adjusted P < 0.05.

Replication in the WRAP
Of the four metabolites predictive of cognitive change in
the VETSA, we were able to replicate the association of SM
(d18:1/20:1 and d18:2/20:0) (P = 0.003) with longitudinal change
in executive function in the WRAP. The other 3 metabolites
showed consistent effect size direction, but statistically non-
significant.

Metabolic Networks
We identified 16 metabolite modules (Supplementary Figure 1
and Supplementary Table 3). Of these, the network connectivity
(a measure quantifying the connections among metabolites)
for the pink module (Figure 3) was significantly higher in
MCI non-converters compared to that in converters (117
vs. 75, MDC = 0.64, p = 0.01), suggesting that reduced
connectivity between metabolites may be associated with MCI
onset. In addition, we identified several hub metabolites that
differ significantly between MCI converters and non-converters.
For example, 2,2′-methylenebis(6-tert-butyl-p-cresol), ceramide

TABLE 2 | Plasma metabolites whose baseline level predict cognitive changes
over time in twins (q-value < 0.05).

Metabolite Cognitive phenotype Effect size* P-value q-value

Hydroxy-CMPF General cognitive ability 0.16 2.60 × 10−5 0.04

DAG (18:2/20:4) Short term working memory 0.16 4.75 × 10−6 0.03

SM (d18:1/20:1,
d18:2/20:0)

Executive function 0.04 1.23 × 10−5 0.03

SM (d18:1/22:1,
d18:2/22:0,
d16:1/24:1)

Executive function 0.04 3.96 × 10−5 0.04

*Effect size indicates the effect of per log2 fold change in metabolite level on change
in cognitive change over time.
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FIGURE 2 | Significant metabolites predictive of cognitive change over time in twins (FDR-adjusted P < 0.05). X-axis indicates the relative abundance in plasma
metabolite (log2 transformed) at baseline. Y-axis indicates cognition change over time (Wave 1 to Wave 2). P-values were obtained by linear mixed models, in which
change in a cognitive measure (difference in a cognitive measure between Wave 1 and Wave 2) was the dependent variable and metabolite level was the
independent variable, adjusting for twin age, zygosity (MZ vs. DZ), education, BMI, smoking, and the cognitive measure at baseline. Twin pair was included as a
random effect in the model.

FIGURE 3 | Differential network analysis showing significant structural changes of the pink module by comparing twins who developed incident MCI versus their
co-twin brothers who did not. Only hub metabolites were labeled. The hub metabolites for NCI network were 2,2′-Methylenebis(6-tert-butyl-p-cresol), ceramide
(d16:1/24:1, d18:1/22:1), and gamma-glutamylglutamate. The hub metabolites for the MCI network were 2,2′-Methylenebis(6-tert-butyl-p-cresol), iminodiacetate
(IDA), and sebacate (C10-DC).

Frontiers in Aging Neuroscience | www.frontiersin.org 6 November 2020 | Volume 12 | Article 555850

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-555850 October 31, 2020 Time: 11:41 # 7

Huo et al. Midlife Metabolomics for Cognitive Aging

(d16:1/24:1, d18:1/22:1) and gamma-glutamylglutamate were the
hub metabolites only in non-converters but not in converters.

Functional Annotation
The aminoacyl-tRNA biosynthesis pathway showed the
most significant association with short-term memory
(P = 4.59 × 10−6), followed by the sphingolipid metabolism
pathway associated with MCI (P = 1.56 × 10−4), and the valine,
leucine, and isoleucine biosynthesis pathway in relation to
short-term memory (P = 5.02 × 10−4). The top five metabolic
pathways are shown in Table 3.

DISCUSSION

In an untargeted metabolomic analysis including 30 middle-
aged twin pairs discordant for progression to MCI, we identified
four fast plasma metabolites whose baselines significantly
predict cognitive change over time after adjusting for multiple
testing and known covariates. Of these, the association
between a sphingomyelin (SM [d18:1/20:1, d18:2/20:0]) and the
longitudinal change in executive function was replicated in an
independent cohort of middle-aged adults. Metabolic network
analysis revealed that a reduced metabolic connection could be
associated with progression to MCI. The identified metabolites
were enriched in several metabolic pathways. Together, our
results provide initial evidence that metabolic perturbation affects
cognitive aging in midlife and suggest that plasma metabolites
may serve as potential biomarkers for early cognitive aging and
AD prediction in midlife.

Of the four metabolites predictive of cognitive change
identified in twins, higher baseline levels of two sphingomyelins
predict a slower decline in executive function, and one of
these associations was replicated in WRAP. This finding is
in agreement with findings from previous epidemiologic study
among older adults (age 65+) (Mielke et al., 2010, 2011; Han
et al., 2011; Orešič et al., 2011). The relationship between
sphingomyelins and cognitive function was also consistent with
previous research demonstrating that a disrupted sphingomyelin
pathway is involved in Aβ pathology (Jana and Pahan, 2004),
and a reduced level of sphingomyelin in human AD brain than
that in cognitively healthy individuals (He et al., 2010). We were
unable to replicate the other three metabolites in the WRAP,
probably due to the small sample size, the heterogeneous clinical
phenotypes across different studies, or other differences such
as WRAP included women as well and participants who were

enriched with a parental history of AD. The lack of replication
could also be attributed to false positives as a result of the small
sample size in our discovery cohort.

We also found a higher baseline level of plasma DAG
(18:2/20:4) was associated with a slower decrease in short-
term memory. While the precise mechanism underlying this
association is unclear and awaits further investigation, the
association appears to be consistent with previous studies
showing that neuronal glycerolipid biosynthesis promotes axon
regeneration after optic nerve injuries (Yang et al., 2020), and
that diffuse axonal injury causes cognitive impairment including
short-term memory (Wallesch et al., 2001). In addition, a higher
plasma level of hydroxy-CMPF was associated with a slower
decrease in general cognitive ability. The CMPF is a furan
fatty acid that inhibits insulin secretion in both human and
mouse models (Nagy et al., 2017). A higher level of CMPF
has been associated with type 2 diabetes (Prentice et al., 2014)
and biological aging (Menni et al., 2013) in human. While
these findings are seemingly contradictory to the protective
effect of hydroxy-CMPF on cognitive function identified in the
current study, it is possible that hydroxylation of CMPF may
reduce the plasma concentration of CMPF, which could likely
improve neuronal insulin resistance, thereby exerting beneficial
effects on cognition.

Our network analysis revealed that loss of metabolites
connectivity (the pink module) may be related to cognitive
change, and we identified several hub metabolites that differ
significantly between MCI converters and non-converters.
Although the precise mechanisms are unclear, it is likely that
the differences in network connectivity and hub metabolites
may explain, at least in part, why some twins progressed
to MCI while his co-twin brother did not. For example, we
found that 2,2′-methylenebis(6-tert-butyl-p-cresol), ceramide
(d16:1/24:1, d18:1/22:1), and gamma-glutamylglutamate were
the hub metabolites only in non-converters but not in converters.
Ceramides are sphingolipids that play important roles in
cellular processes including differentiation, proliferation,
and apoptosis (Hannun and Obeid, 2008). Dysregulation of
ceramides in the brain has been implied in Alzheimer’s and
other neurodegenerative disease (Filippov et al., 2012; Jazvinšćak
Jembrek et al., 2015). Gamma-glutamylglutamate acid is a
dipeptide consisting of gamma-glutamate and glutamic acid.
Glutamic acid is the main excitatory neurotransmitter in the
brain, which can be released to neurons and form glutamate; the
latter can convert to glutamic acid via astrocytes, which completes
the glutamate-glutamine cycle (Daikhin and Yudkoff, 2000).

TABLE 3 | Top metabolic pathways derived using plasma metabolites predictive of MCI onset or cognitive change over time.

Metabolic pathway MCI GCA EpiMem STMem EF

Aminoacyl-tRNA biosynthesis 5.02 × 10−1 2.26 × 10−1 1.47 × 10−1 4.59 × 10−6 6.38 × 10−1

Sphingolipid metabolism 1.56 × 10−4 3.29 × 10−1 2.61 × 10−1 3.74 × 10−1 8.26 × 10−3

Valine, leucine and isoleucine biosynthesis 5.02 × 10−4

Nicotinate and nicotinamide metabolism 2.31 × 10−3 1.81 × 10−2

Phenylalanine, tyrosine and tryptophan biosynthesis 2.73 × 10−3

MCI, mild cognitive impairment; GCA, general cognitive ability; EpiMem, episodic memory; STMem, short-term memory; EF, executive function.
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Dysregulation of glutamate signaling has been implicated in
neurodegeneration and cognitive behaviors (Vogel et al., 1966;
Rahn et al., 2012).

Among the metabolic pathways we identified to be associated
with cognitive changes, the aminoacyl-tRNA biosynthesis
pathway showed the most significant association with changes in
short-term memory. The process of aminoacyl tRNA biosynthesis
catalyzes the ligation of amino acids to their cognate tRNAs,
and dysregulation of this pathway has been associated with
neurodegeneration (Park et al., 2008; Kapur et al., 2017). The
observed association of the amino acid (valine, leucine, and
isoleucine) pathway with short-term memory is consistent with
previous research demonstrating that branched-chain amino
acids (BCAAs) were associated with dementia (Tynkkynen
et al., 2018) and metabolic conditions such as insulin resistance
and diabetes (Roberts et al., 2014), both of which have been
linked to cognitive impairment (Ma et al., 2015) and AD
(Arnold et al., 2018).

In this study, we identified associations of circulating plasma
metabolites with cognitive change over time, independent of
known risk factors. The mechanisms underlying the observed
associations are unclear but believed to be highly complex. While
genome-wide association studies (GWAS) have identified many
genetic variants associated with cognitive functions, cognitive
impairment and AD in various human populations under
different clinical settings (Trampush et al., 2017; Jansen et al.,
2019), the identified genetic variants explain only a small
proportion of the disease risk. A larger contributor to the
phenotypic variation may be due to the complex interactions
between environmental and inherited factors. Metabolomics
provides a snapshot of hundreds to thousands of small molecules
(metabolites) in a biological sample (e.g., plasma) at a given time.
The abundance of these metabolites is influenced by both genetic
and environmental factors, such as diet, lifestyle, behavior, drug,
microbiome, hormones, etc., probably through various epigenetic
mechanisms. Metabolomic study of circulating metabolites could
facilitate the identification of environmental factors contributing
to cognition changes during aging, and provides mechanistic
insight into how environmental exposures contribute to cognitive
impairment in AD progression. Moreover, we identified that
different plasma lipids were associated with different cognitive
domains, including general cognitive ability, short term memory,
executive memory, but not episodic memory. While the
mechanism underlying this differential associations remain to
be determined, the lack of association with episodic memory
might suggest that the underlying pathological mechanisms are
dementia-related but not necessarily specific to AD. However, it
is worth noting that the VETSA and WRAP samples are both
relatively young. Although prospective studies of AD usually
emphasize episodic memory, there is also evidence suggesting
that executive function can predict progression to MCI or AD
as early or possibly earlier than memory deficits (Clark et al.,
2012; Ewers et al., 2012; Gibbons et al., 2012). Executive function
deficits, which were associated with metabolites in the present
study, are also common in MCI and AD, and executive control
functions do affect functioning in other cognitive domains
(Buckner, 2004; Baudic et al., 2006). Indeed, there is also evidence

for an executive-prominent AD subtype (Mukherjee et al., 2012).
Thus, although it remains uncertain, it is possible that the
associated deficits that were observed will contribute to AD-
related deficits.

Limitations of our study include the small sample size
and the inclusion of only Caucasian men in the twin study,
the sample differences across studies such as the selection of
WRAP biased toward parental history of AD, and the different
cognitive measures in our discovery and replication cohorts.
The uncertainty of the unknown metabolites represents another
limitation. However, our study has several strengths, including
a focus on midlife, the well-matched MCI discordant twin pairs
(which eliminates confounding by age and sex and minimized
confounding by multiple background factors), the inclusion
of a replication cohort comprised of middle-aged adults in a
similar age range, the prospective design of both discovery and
replication cohorts, the comprehensive cognitive phenotypes,
and the comprehensive coverage of plasma metabolome by using
an untargeted metabolomics approach on the same platform
in both cohorts.

CONCLUSION

In summary, in an untargeted metabolomics analysis of middle-
aged adults in two well characterized prospective cohorts,
we identified four plasma metabolites that are significantly
predictive of cognitive change over time, after adjusting for
multiple testing and known clinical covariates. The observed
association of a sphingomyelin (SM [d18:1/20:1, d18:2/20:0])
with executive function was replicated in an independent cohort
including participants in a similar age range. We also identified
metabolic networks and hub metabolites that may be involved in
the relationship between metabolic dysregulation and cognitive
impairment in midlife. Our results support that metabolic
perturbation occurs many years before cognitive impairment,
and suggest the possibility of using blood metabolites as non-
invasive biomarkers in early prediction of cognitive aging
and AD in midlife.
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