
December 2017 | Volume 4 | Article 2341

Review
published: 20 December 2017

doi: 10.3389/fmed.2017.00234

Frontiers in Medicine | www.frontiersin.org

Edited by: 
Peter N. Robinson,  

Jackson Laboratory for Genomic 
Medicine, United States

Reviewed by: 
Carole Guillonneau,  

INSERM UMR1064 Centre de 
Recherche en Transplantation et 

Immunologie, France  
Melissa Anne Haendel,  

Oregon Health and Science 
University, United States

*Correspondence:
Xuqiang Liu 

shliuxuqiang@163.com; 
Min Dai 

daimin@medmail.com.cn

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted to 

Translational Medicine,  
a section of the journal  

Frontiers in Medicine

Received: 27 May 2017
Accepted: 04 December 2017
Published: 20 December 2017

Citation: 
Bi H, Chen X, Gao S, Yu X, Xiao J, 

Zhang B, Liu X and Dai M (2017) Key 
Triggers of Osteoclast-Related 

Diseases and Available Strategies  
for Targeted Therapies: A Review. 

Front. Med. 4:234. 
doi: 10.3389/fmed.2017.00234

Key Triggers of Osteoclast-Related 
Diseases and Available Strategies  
for Targeted Therapies: A Review
Haidi Bi1†, Xing Chen 2†, Song Gao1†, Xiaolong Yu1, Jun Xiao1, Bin Zhang1,  
Xuqiang Liu1* and Min Dai1*

1 Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and 
Technology Research Center of Jiangxi Province, Nanchang, China, 2 Department of Orthopaedics, The People’s  
Hospital of Changxing County, Huzhou, China

Osteoclasts, the only cells with bone resorption functions in  vivo, maintain the bal-
ance of bone metabolism by cooperating with osteoblasts, which are responsible 
for bone formation. Excessive activity of osteoclasts causes many diseases such as 
osteoporosis, periprosthetic osteolysis, bone tumors, and Paget’s disease. In contrast, 
osteopetrosis results from osteoclast deficiency. Available strategies for combating 
over-activated osteoclasts and the subsequently induced diseases can be categorized 
into three approaches: facilitating osteoclast apoptosis, inhibiting osteoclastogenesis, 
and impairing bone resorption. Bisphosphonates are representative molecules that 
function by triggering osteoclast apoptosis. New drugs, such as tumor necrosis fac-
tor and receptor activator of nuclear factor kappa-B ligand (RANKL) inhibitors (e.g., 
denosumab) have been developed for targeting the receptor activator of nuclear factor 
kappa-B /RANKL/osteoprotegerin system or CSF-1/CSF-1R axis, which play critical 
roles in osteoclast formation. Furthermore, vacuolar (H+)-ATPase inhibitors, cathepsin 
K inhibitors, and glucagon-like peptide 2 impair different stages of the bone resorption 
process. Recently, significant achievements have been made in this field. The aim of this 
review is to provide an updated summary of the current progress in research involving 
osteoclast-related diseases and of the development of targeted inhibitors of osteoclast 
formation.

Keywords: osteoclast, osteoporosis, periprosthetic osteolysis, rheumatoid arthritis, Paget’s bonedisease, 
osteopetrosis

iNTRODUCTiON

The bone tissue in humans is renewed and reconstructed continuously with a dynamic balance 
between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts, the only cells 
with bone resorption function in vivo, maintain the balance of bone metabolism by cooperating with 
osteoblasts that are responsible for bone formation (1). During the process of osteoclast maturation, 
two hematopoietic factors, macrophage colony-stimulating factor (M-CSF, also called CSF-1) and 
receptor activator of nuclear factor kappa-B ligand (RANKL), are required (2, 3). Osteoclast differen-
tiation and activation research have focused on tumor necrosis factor (TNF) receptor and TNF-like 
proteins, such as receptor activator of nuclear factor kappa-B (RANK), RANKL, and osteoprotegerin 
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TAble 2 | Mechanisms of targeted inhibitors.

Targeted agents Potential mechanisms Typical drugs

Bisphosphonates Inhibit farnesyl pyrophosphate synthase and impair osteoclast polarizing Pamidronate, risedronate, alendronate,  
zoledronic acid

RANKL antibody Specifically bind to and inactivate RANKL Denosumab

Cathepsin K inhibitors Removal of cathepsin K action Odanacatib, balicatib

Sclerostin antibody Specifically bind to and inactivate sclerostin Sclerostin antibody

V-ATPase inhibitors Impair V-ATPase assembly and inhibit osteoclast acidification Enoxacin, diphyllin, bafilomycin, concanamycin

Glucagon-like peptide 2 Mechanism is still unclear GLP-2

TNF-α inhibitors Inhibit TNF-α production and decrease the expression of RANKL and M-CSF Infliximab, adalimumab, etanercept

Colony-stimulating factor-1 receptor  
(CSF-1R) inhibitors

Block the binding between CSF-1, IL-34, and CSF-1R CSF-1R Ab huAB1

TAble 1 | Summary of osteoclast-related diseases and targeted inhibitors.

Osteoclast-related bone 
diseases

Osteoclast formation  
and function

Critical mechanisms Current therapies and/or future 
targets

Osteoporosis Excessive osteoclast formation 
and hyperactivated function

Estrogen deficiency, increase in RANKL levels resulting 
in excessive osteoclast formation and decreased bone 
formation

Bisphosphonates, calcitonin, estrogen 
replacement, SERMs, strontiumranelate, 
PTH peptides, RANKL antibody, 
sclerostin antibody

Periprosthetic osteolysis Excessive osteoclast formation 
and hyperactivated function

Wear particles induce immoderate release of RANKL, 
resulting in excessive activation of osteoclasts

Bisphosphonates, revision surgery

Rheumatoid arthritis Excessive osteoclast formation 
and hyperactivated function

Overexpression of RANKL resulting in excessive  
activation of osteoclasts
MMP-9 and MMP-14 produced by osteoblasts

Immune inhibitors, TNF-α inhibitors,  
CSF-1R inhibitors, RANKL antibody

Bone tumors Excessive osteoclast formation 
and hyperactivated function

Imbalance between RANKL and OPG levels in local bone 
tissue, resulting in excessive activation of osteoclasts

Bisphosphonates, RANKL antibody

Paget’s bone disease Excessive osteoclast formation 
and hyperactivated function

High-RANKL expression leading to osteoclast hyperactivity RANKL antibody

Osteopetrosis Impaired osteoclast formation 
and function

(a) Abnormality in RANKL/RANK/OPG system
 (b) Mutation of M-CSF factor
 (c) Mutation of V-ATPase subunit
 (d) Loss of CLC-7 chloride channels
 (e) Shortage of cathepsin K
 (f) Lack of c-Fos protein

Hematopoietic stem cell implantation
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(OPG). The binding of RANKL to its receptor RANK activates 
signaling pathways that ultimately lead to osteoclastogenesis; 
however, this process can be suppressed by OPG, which is a 
soluble “decoy receptor” for RANKL (4, 5).

Functional disorders of osteoclasts and osteoblasts, particu-
larly those related to the excessive activity of osteoclasts, cause 
many bone and joint diseases (Table 1) (6, 7). For example, oste-
oporosis, which occurs in people aged 40 and over and is more 
commonly found in postmenopausal women, presents as an 
imbalance in bone resorption and bone formation due to exces-
sive osteoclast activation (8, 9). Excessive activation of osteoclasts 
induced by released wear particles also leads to periprosthetic 
osteolysis after artificial joint arthroplasty (10–12). In rheuma-
toid arthritis (RA), subchondral bone destruction is attributed to 
excessive bone absorption by osteoclasts after the differentiation 
and maturation induced by proinflammatory cytokines released 
by the autoimmune system (13, 14). The mechanism of bone 

metastases and bone destruction found in cancer is also related to 
the direct activation of osteoclasts by RANKL, which is secreted 
by cancer cells (15, 16). In addition, high expression of RANK 
(the RANKL receptor) on the osteoclast surface is an important 
factor in Paget’s disease (17). Considering the important roles 
osteoclasts play in the pathology of the above diseases, agents 
that modulate aberrant osteoclast differentiation and resorption 
would be useful in the development of bone-protective therapies 
(Table 2). Currently, approved and anti-resorptive agents include 
bisphosphonates (BPs), selective estrogen receptor modula-
tors (SERMs), and monoclonal antibodies against RANKL  
(e.g., denosumab). Though neutralizing excessive osteoclasts 
have been partially or mostly mitigated with current therapies, 
they are far from ideal and still face enormous challenges 
because of their unexpected adverse effects. The long-term usage 
of BPs is limited due to the occurrence of severe gastrointesti-
nal reactions, mandible necrosis, and atypical femur fractures 
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(18, 19). In addition, treatment with SERMs is associated with 
increased risks of stroke and cardiovascular events (20). Finally, 
while mandible necrosis has been rarely observed in denosumab 
clinical trials (6 cases among 4,450 patients) (21), its safety and 
efficacy requires further evaluation. Thus, the identification 
and development of novel anti-resorptive agents are urgently 
needed. In-depth studies on new therapeutic targets that inhibit 
osteoclast formation and bone resorption have made important 
contributions to treatment and are of great socioeconomic value. 
The aim of this review is to provide an updated summary of the 
progress in research involving osteoclast-related diseases and 
targeted inhibitors.

ethics Statement
This review research was conducted according to the guiding 
principles of the Ethics Committee of Nanchang University.

Osteoporosis
Osteoporosis is a systemic skeletal disease characterized by a loss 
of bone mass and the destruction of bone microstructure, leading 
to fragility and fractures (22). It is considered to be a multifacto-
rial disease potentially caused by genetic mutations, endocrine 
disorders, and nutritional deficiency. Hormones, such as estro-
gen, calcitonin, parathyroid hormone (PTH), and vitamin D, act 
to maintain the normal bone metabolism (23). PTH functions 
to improve the production of activated vitamin D and calcium 
absorption. In contrast, osteoclast activity can be accelerated 
through the stimulation of PTH, causing further bone resorp-
tion. Calcitonin exerts bone-protective effects by transferring 
calcium into bone tissues when binding to its receptor. In addi-
tion, estrogen deficiency reduces the rate of bone remodeling and 
increases osteoclast formation and resorption (24). Inhibition of 
the wingless-type and integrase 1 (Wnt) and bone morphogenetic 
protein signaling pathways, which play critical roles in regulating 
osteoblast formation, leads to decreased bone formation in post-
menopausal women (22). In research on osteoclasts, the RANKL/
RANK/OPG system represents an important discovery that has 
occurred in recent years. RANKL, produced by osteoblasts and 
bone matrix cells, is the key cytokine that stimulates osteoclast 
precursor cells to differentiate into mature osteoclasts (7, 25–27). 
It binds to RANK on the surfaces of osteoclast precursor cells 
and mature osteoclasts. Through this process, bone resorption is 
induced by the formation and differentiation of osteoclasts. As a 
decoy receptor that can block interactions between RANKL and 
RANK, OPG is also produced by osteoblasts and bone matrix 
cells. This RANKL/RANK/OPG system plays an important role 
in the occurrence of osteoporosis (28, 29). Estrogen deficiency 
is involved in the pathogenesis of osteoporosis in the elderly 
population, especially in postmenopausal women who are com-
monly found to have osteoporosis. In postmenopausal women, 
estrogen deficiency causes a decrease in OPG levels, which leads 
to an increase in RANKL levels; increased RANKL levels over-
activate osteoclasts and result in loss of bone mass (22). These 
data indicate that the RANKL/RANK/OPG system represents a 
potential therapeutic target in the prevention and treatment of 
osteoporosis.

Periprosthetic Osteolysis
Arthroplasty is a reliable treatment used in cases of severe 
trauma, end-stage arthritis, and periarticular tumors. Knee and 
hip arthroplasties are being performed around the world at an 
increasing rate. However, the long-term use of artificial joints 
exhibits a major limitation in terms of periprosthetic osteolysis 
and the loosening induced by the wear particles released from 
the surface of the prosthesis (30, 31). Although the mechanism 
of wear particle-induced periprosthetic osteolysis is not clear, 
it is generally agreed that the excessive activation of osteoclasts 
caused by wear particles plays a critical role in this process 
(10–12). As foreign bodies, wear particles can stimulate mono-
cytes/macrophages, fibroblasts, T  lymphocytes, etc. to produce 
large amounts of inflammatory cytokines such as TNF-α, 
interleukin 1 (IL-1), IL-6, IL-11, IL-17, prostaglandin E2, and 
monocyte colony-stimulating factor (M-CSF). These inflam-
matory factors can induce local aseptic inflammation, but can 
also stimulate osteoblasts to express and release large amounts 
of RANKL, resulting in excessive activation of osteoclasts and 
periprosthetic osteolysis (32–34). This periprosthetic osteolysis 
induces loosening; in time, the instability caused by the loosen-
ing may further increase mechanical wear and produce more 
wear particles, resulting in more severe osteolysis. This creates 
a vicious cycle between periprosthetic osteolysis and loosening 
in this pathological process (35). Although the relative motions 
of the components of artificial joints and material corrosion and 
degradation in vivo during the use of prostheses will inevitably 
lead to the generation of wear particles, the effective inhibition 
of osteoclast formation, and bone resorption may be an effective 
way to prevent the loosening of prostheses and therefore extend 
their lives.

Rheumatoid Arthritis
Rheumatoid arthritis is a chronic systemic autoimmune disease 
characterized by progressive irreversible damage of bone and 
cartilage. Although the detailed mechanism of bone and cartilage 
destruction in RA has not yet been elucidated, the formation 
and increased activity of osteoclasts caused by an imbalance 
in the ratio of RANKL and OPG is considered to be the main 
factor responsible. Recent studies have revealed the presence 
of several mature osteoclasts and osteoclast precursor cells in 
localized lesions in RA. The overexpression of RANKL by active 
lymphocytes, macrophages, osteoblasts, etc. leads to excessive 
proliferation and abnormal activation of osteoclasts caused by the 
binding of RANKL to RANK on the surface of osteoclast precur-
sor cells and mature osteoclasts. In addition to the overexpression 
of RANKL in damaged joint bone tissue, RANKL mRNA is also 
expressed by fibroblasts in the synovial tissue, which leads to the 
production of the RANKL protein (36). Kotake et  al. isolated 
multinucleated cells from the synovial lesions of RA patients and 
showed that they could form bone absorption pits, thus confirm-
ing them to be osteoclasts (36). The formation of bone pits can be 
inhibited by OPG, and the number of pits formed is closely related 
to the ratio of RANKL and OPG at the mRNA level. Therefore, 
quantitative analysis of the RANKL/OPG levels in the synovial 
tissue and synovial fluid may contribute to the early diagnosis of 
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RA. Moreover, MMP-9 and MMP-14 produced by osteoblasts are 
also important factors that lead to the degradation of the cartilage 
matrix, pannus formation, and migration of osteoclasts to the 
bone surface. All of these factors contribute to the erosion of the 
articular cartilage, subchondral bone, and synovial surface in RA, 
where osteoclasts play a key role.

bone Tumors
Primary or secondary tumors are commonly found in orthope-
dics, but the success of clinical therapy for such tumors is limited 
due to the characteristics of invasion, metastasis, and recurrence. 
In-depth studies in recent years have shown that the RANKL/
RANK/OPG system affects tumor biology by regulating osteoclast 
activity (37–39), imbalances in RANKL and OPG levels in local 
bone tissues are the main reason for increases in osteoclast bone 
resorption (40, 41). A previous study showed that the expression 
levels of OPG and RANKL mRNA in giant cell tumors of the 
bone are much higher than those in normal bone tissues (42, 43). 
Sezer et al. also studied the expression of RANKL and RANK in 
biopsy specimens of multiple myeloma (44). Data from the study 
by Sezer et al. also revealed lower serum OPG levels in multiple 
myeloma patients compared with those in healthy humans and 
similar patients without bone destruction (44). Although there 
is sufficient evidence indicating the effect of the RANKL/RANK/
OPG system in bone metastases, the mechanism of metastasis 
is not entirely clear. However, abnormal osteoclast activation, 
which is caused by an imbalance in RANKL and OPG levels, is 
considered to be responsible for most tumors.

Paget’s bone Disease
Paget’s disease of the bone is a metabolic bone disease accompa-
nied by increased bone resorption and abnormal bone formation. 
This results in an increased risk of fracture caused by structural 
disorder, leading to a decrease in the mechanical properties of 
the bone (45, 46). Some studies have indicated that high-RANKL 
expression leading to osteoclast hyperactivity is an important 
factor in Paget’s disease (47, 48). Roodman (49) and Roodman 
and Windle (50) also showed that the number of osteoclasts in 
patients with Paget’s bone disease is increased, the osteoclasts 
are larger, and the number of nuclei is hundreds of times higher 
than that in normal cultures. In addition, whether the point of 
origin of the disease is the bone marrow or peripheral blood, 
mononuclear cells always exhibit a high degree of sensitivity to 
RANKL, and differentiation to mature osteoclasts seems to be 
increased (47).

Osteopetrosis
Osteopetrosis is a metabolic bone disease characterized by increa-
sed bone mass caused by polygenic disorders. Disorders in 
osteoclast formation and loss of osteoclast function are the main 
reasons for decreased bone resorption and increased bone mass. 
Recent studies have suggested that decreased bone resorption 
could be caused by abnormalities in the RANKL/RANK/OPG 
system, lack of c-Fos protein, and mutations in M-CSF, while 
mutations in the vacuolar (H+)-ATPase (V-ATPase) subunit, loss 
of CLC-7 chloride channels, and a shortage of cathepsin K are the 

most common reasons for osteopetrosis caused by bone resorp-
tion disorders. Bone marrow transplantation and the subsequent 
differentiation of hematopoietic stem cells from the implanted 
new bone marrow into mature and functioning osteoclasts is a 
treatment option for osteopetrosis.

TARGeTeD OSTeOClASTiC iNHibiTORS

There is a wide spectrum of diseases induced by osteoclast dys-
function, and excessive activation of osteoclasts plays a dominant 
role in most of these diseases. Therapies to inhibit osteoclast 
formation and bone resorption efficiently and safely are ideal 
approaches to combat such diseases. Frequent and long-term 
clinical use of BPs to reduce osteoclast formation is associated 
with serious complications including gastrointestinal reactions, 
mandible necrosis, and non-specific femur fractures (51–53). 
Monoclonal antibodies against RANKL, such as denosumab, are 
a new class of drugs used for the targeted inhibition of osteoclast 
formation. These act by blocking the RANK/RANKL/OPG regu-
latory system, and this has been a major discovery in the field 
of osteoblast research in recent years. Glucagon-like peptide 2 
(GLP-2), cathepsin K, and V-ATPase inhibitors are also expected 
to be of use in inhibiting osteoclast formation, and other meas-
ures such as anti-TNF-α therapy can also be used.

bisphosphonates
Bisphosphonates, such as alendronate and zoledronic acid, are 
anti-bone resorption drugs commonly used as a therapeutic 
choice for bone diseases including Paget’s disease of the bone 
and myeloma. Their ability to inhibit osteoclast resorption is the 
desired pharmacological effect. McClung (54) and Russell et al. 
(55) showed that BPs could effectively inhibit bone resorption by 
binding to hydroxyapatite (HAP) crystals, which results in block-
ing the prenylation process of proteins due to the inhibition of 
farnesyl pyrophosphate synthase. When prenylation is blocked, 
the osteoclast cytoskeleton cannot be rearranged and polarized 
as an enclosed area for adhering to the bone surface cannot be 
formed. Thus, although BPs have been confirmed to show an 
inhibitory effect on osteoclast resorption, this desired clinical 
effect is often limited by the above-mentioned complications. 
Due to the high affinity of BPs to HAP crystals in the bone matrix, 
novel bone-targeting agents have been synthesized based on the 
molecular structure of BPs. Toro et al. and Rivera et al. demon-
strated that BP-enoxacin, a BP derivative, had an inhibitory effect 
on osteoclast formation and bone resorption and represented 
an ideal therapeutic agent for preventing orthodontic tooth 
movement (56, 57). Furthermore, our previous study showed 
a beneficial effect of BP-enoxacin on cortical bone mass and 
strength in ovariectomized rats (58). We speculate that it would 
be an exciting and insightful approach to explore bone-targeting 
agents that are BP “carriers.”

CSF-1/CSF-1R Axis Inhibitors
The binding of M-CSF (also called CSF-1) to its tyrosine kinase 
receptor (CSF-1R) promotes the differentiation of myeloid 
progenitors into monocytes, macrophages, dendritic cells, and 
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osteoclasts. In vivo, circulating CSF-1 regulates the migration, 
proliferation, and survival of macrophages, which is beneficial 
to the innate and adaptive immune system, as well as osteoclas-
togenesis at multiple levels (59). Theoretically, targeting of the 
CSF-1/CSF-1R axis to modulate macrophage populations may 
result in potential therapeutic effects in four types of clinical 
diseases: inflammatory diseases, cancer, autoimmunity, and bone 
diseases (60). Antibodies against CSF-1 and its receptor, as well as 
specific inhibitors of CSF-1R kinase, have been evaluated either in 
animal models or in patients. As reported, the in vivo administra-
tion of CSF-1 exacerbated the inflammation and joint erosion in 
collagen-induced arthritis (61, 62) due to the role of CSF-1 in the 
pathology of osteoclastogenesis and subsequent osteolysis. Thus, 
anti-CSF-1 antibody or blockade of CSF-1R reduces inflamma-
tion in humans and in RA models (63, 64). According to the 
research of Cenci et al. (65), CSF-1 facilitates the process of bone 
loss in ovariectomized mice. In contrast, Gow et al. (66) observed 
an osteopetrosis phenotype in CSF-1-deficient animals due to the 
deficient production of bone-resorbing osteoclasts. Therefore, it 
is expected that anti-CSF-1 may be beneficial in treating human 
osteoporosis. Furthermore, it was demonstrated by Rietkotter 
et al. that anti-CSF-1 therapy was beneficial in preventing carci-
noma invasion induced by monocyte-derived cells (67). Although 
an increasing number of studies have indicated the significant 
role of CSF-1 in osteoclastogenesis and the efficacy of anti-CSF-1/
CSF-1R therapy in treating osteoclast-related diseases, further 
investigations to determine the safety and side effects of these 
methods still need to be conducted.

Interleukin-34 was first discovered to be a second ligand 
of CSF-1R in 2008 (68). It was reported that CSF-1 and IL-34 
share structural homology and have largely overlapping 
effects in regulating monocyte survival and osteoclastogenesis  
(69, 70). Previous evidence had demonstrated that IL-34, both 
from giant cell tumors and gingival fibroblasts, plays a critical 
role in RANKL-induced osteoclast formation as a complete 
substitute for CSF-1 and that the systemic administration 
of IL-34 would result in a decrease in trabecular bone mass  
(71, 72). Cheng et al. (73) confirmed this opinion and demon-
strated that IL-34 promotes the proliferation and differentiation 
of bone marrow macrophages by stimulating p-STAT3 expres-
sion, as well as inhibiting the expression of Smad7 in the absence 
of CSF-1. Regretfully, IL-34 has not been clinically tested for the 
potential existence of other receptors and adverse pathologies 
mediated by over-activated macrophages.

Anti-RANKl Monoclonal Antibody  
(e.g., Denosumab)
The RANKL/RANK/OPG axis is the key regulatory system that 
decides whether differentiation occurs. RANKL, a member of the 
TNF superfamily, is produced and secreted by osteoblasts, bone 
stromal cells, fibroblasts, and activated T  cells. The interaction 
between RANKL and RANK (surface receptors on osteoclast 
precursor cells) promotes osteoclast differentiation and matura-
tion and helps osteoclasts survive (74, 75). As a pseudo-receptor 
of RANKL, OPG can also inhibit osteoclast formation and 
accelerates apoptosis by binding to RANKL, which inhibits the 

interaction between RANKL and RANK. RANKL is therefore 
treated as an ideal target for inhibiting osteoclast formation 
based on the information obtained so far regarding the RANKL/
RANK/OPG system. Denosumab, a synthetic IgG2 monoclonal 
antibody, can also specifically bind to and inactivate RANKL 
using the same action mechanism as OPG. In 2010, denosumab 
was approved for use in treating postmenopausal osteoporosis. 
A phase III trial, conducted over 3 years, has indicated that the 
incidence of hip and vertebral fracture decreased by 41 and 68% 
after administration of 60  mg of denosumab every 6  months 
(76). To evaluate the long-term efficacy and safety of denosumab 
use for up to 10 years, participants from the Fracture Reduction 
Evaluation of Denosumab in Osteoporosis every 6  Months 
(FREEDOM) trial were asked to join the 7-year FREEDOM 
Extension trial (clinicaltrials.gov: NCT00523341). This trial 
reported a sustained reduction in bone turnover markers and 
progressive increase in bone mineral density in the long-term 
denosumab treatment group, resulting in the maintenance of 
low-fracture rates (21, 77–79). However, several side effects of 
denosumab were also observed in this extension trial, includ-
ing malignancy, eczema/dermatitis, pancreatitis, endocarditis, 
delayed fracture healing, and infections, especially the occasional 
occurrence of opportunistic infections, and these should be taken 
into serious consideration (79).

Anti-Sclerostin Monoclonal Antibody
Sclerostin is a small protein encoded by the SOST gene and 
produced in osteocytes. It responds to mechanical stress and 
targets the Wnt signaling cascade. When activated, sclerostin 
acts as a key negative regulator of bone anabolic metabolism and 
exhibits an inhibitory effect on osteoblast differentiation and 
bone formation (80, 81). Patients or gene mutation mice with 
consistently low levels of sclerostin due to rare skeletal disorders 
exhibit high-bone mineral density and low-fracture risk (81). 
Thus, anti-sclerostin therapy could potentially be used to treating 
bone metabolism diseases resulting in low-bone mass. Recently, 
humanized anti-sclerostin antibodies, such as romosozumab 
(AMG785), blosozumab (AMG167), and BSP804, have been 
synthesized and subjected to clinical trials. Increased bone mass 
at the spine and hip, along with modified bone turnover markers 
(increased bone formation markers and decreased resorption 
markers) have been observed in romosozumab and blosozumab 
clinical trials (82, 83). Following these trials, research has been 
conducted to clarify whether the increased bone mineral density 
resulted in an improvement in bone mechanical properties. 
Finite element analysis was employed to assess the strength of 
the spine (L1 vertebral body) and proximal femur under a simu-
lated compression overload. Results showed that both spinal and 
femoral strength had increased from the baseline (27.3 versus 
−3.9%, P < 0.0001 and 3.6 versus −0.1%, P = 0.059, respectively) 
and that gains in bone mechanical properties corresponded to 
gains in bone mineral density (84). Additionally, research con-
ducted on animal models or under other conditions indicated 
a potentially wide therapeutic application of anti-sclerostin 
antibodies in treating other bone and joint diseases, such as 
RA, osteoarthritis, and bone complications of type 2 diabetes 
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mellitus (85). The most common side effects included elevated 
liver enzymes and injection site reactions. However, hypotheses 
regarding the relationship between sclerostin and cardiovascular 
events, intracranial pressure, and some tumors require further 
investigation (23).

Cathepsin K inhibitors
Cathepsin K, which is specifically expressed and secreted by 
activated osteoclasts during bone resorption, is a key enzyme in 
the degradation of critical proteins in the bone matrix, including  
type I collagens (86). Bone resorption can be inhibited by 
the removal of cathepsin K from osteoclasts. Unlike other 
anti-resorptive drugs, cathepsin K inhibitors do not affect 
osteoclast activity, and osteogenic activity is maintained by 
the cross-coupling of osteoblasts to osteoclasts (87). Balicatib 
has been artificially synthesized as a specific cathepsin K 
inhibitor. However, phase II clinical trials for balicatib were 
discontinued because of morphea-like skin changes observed 
in the participants (88). Another new cathepsin K inhibitor, 
odanacatib, is orally selective (89). According to a 2-year rand-
omized controlled study, 3.2 and 5.5% increases were observed 
in the BMD of the hip and spine, respectively, after odanacatib 
therapy (90). Recent research has indicated that the beneficial 
effect of odanacatib in improving bone mineral density is dose-
dependent and persists for up to 5 years. Along with increased 
bone mineral density, the risk of fragility fracture was reduced, 
and the effect was similar to that of BPs and denosumab (91). 
Aside from its therapeutic efficacy, however, the safety of odan-
acatib should be studied and seriously evaluated. According 
to reported investigations, increased risks of stroke, arterial 
fibrillation, and atypical fractures were observed during the 
treatment procedures, although these types of agents are still 
under development (92).

v-ATPase inhibitors
During the process of bone matrix degradation, an acidic micro-
environment, which is created by V-ATPase that pump protons 
into the resorption lacuna, is necessary for osteoclast bone 
resorption. It has been shown that therapeutic interventions 
that involve modulating osteoclast V-ATPase activity would be 
reasonable for the treatment of osteoporosis and other osteolytic 
diseases (93). V-ATPases are protein complexes composed of at 
least 14 different protein subunits and are responsible for the active 
transmembrane transport of hydrogen ions in vivo. V-ATPases 
are organized into V1 and V0 domains, which have two different 
functions. The V1 domain is composed of eight different subunits 
(A–H), is located in the cytoplasm, and generates energy by ATP 
hydrolysis. The V0 domain contains six different subunits (a, c,  
c′, c′′, d, and e) and is involved in the active transmembrane 
transport of hydrogen ions (94, 95). In addition, the Ac45 and 
M8-9 auxiliary subunits found in mammal V-ATPases have 
a collaborative effect in facilitating hydrogen ion transport 
(96, 97). Some studies have shown that the dysfunction of 
V-ATPases may lead to the occurrence of many diseases such 
as osteopetrosis and tumor bone metastasis (98). V-ATPases 
are thus considered to be a potential target in the treatment of 

such osteoclast-hyperactive diseases such as osteoporosis and 
bone tumor metastasis. In 2002, two research groups reported 
that bafilomycin and concanamycin can inhibit the acidification 
of V-ATPases by affecting the c protein subunit in the V0 domain 
(99, 100), whereas diphyllin, as a new V-ATPase inhibitor, 
inhibits osteoclast resorption and apoptosis (101). In recent 
years, enoxacin has also been confirmed as a type of V-ATPase 
inhibitor that acts by blocking the binding of the B2 subunit 
to actin microfilaments, thus destroying suture zone formation 
in osteoclasts and inhibiting osteoclast acidification (102). 
Although there are many V-ATPase inhibitors, none has been 
subjected to a clinical trial. Thus, the mechanisms, targets, 
efficacy, and safety of these drugs in vivo remain to be studied in 
future research and feasibility studies.

Glucagon-like Peptide 2
Glucagon-like peptide 2, whose secretion has a clear circadian 
rhythm and is regulated by diet, is a peptide hormone produced 
by intestinal mucosal cells (103). Henriksen et al. (104) found 
that bone remodeling also shows a circadian rhythm with a 
close relationship to food intake and eating time. Osteocalcin 
is a marker that is closely related to bone formation during 
the treatment of osteoporosis. Another study by Henriksen 
et  al. (105) indicated that GLP-2 has no influence on bone 
formation due to the increase in bone resorption and the stable 
expression of osteocalcin, which occurs after GLP-2 treatment 
before sleeping. Although some studies have shown that GLP-2 
can inhibit bone resorption and increase bone density, its 
mechanism is unclear, particularly with regard to its influence 
on the biological function of osteoclasts, which is still poorly 
understood.

TNF-α inhibitors
The release of cytokines is closely related to RA and other bone 
destructive diseases. TNF-α is stimulated by activated T  cells, 
macrophages, and synovial cells under inflammatory conditions 
and is the most critical inflammatory cytokine, causing excessive 
activation of osteoclasts (106, 107). The expression of TNF-α has 
several effects on osteoclastogenesis. RANKL is secreted is large 
quantities by osteoblasts and bone stromal cells (108), while the 
expression of RANK on the surface of osteoclast precursor cells 
increases and the sensitivity of RANK to RANKL is enhanced 
due to the recruitment of osteoclasts (109). Furthermore, TNF-α 
can stimulate the expression of another cytokine, M-CSF, which 
maintains the continuous formation and survival of osteoclasts 
(110). Based on the above-mentioned roles in bone destructive 
diseases, TNF-α therefore represents a candidate therapeutic tar-
get. Currently, biological targeted therapy using cytokines can be 
roughly divided into two categories: monoclonal antibodies and 
soluble receptors, each with different mechanisms. Monoclonal 
antibodies can be used as cytokines or cytokine receptors, while 
soluble receptors can pre-capture and inactivate cytokines before 
the connection between cytokines and cytokine receptors is 
established. Infliximab, adalimumab, and etanercept, represent-
ing TNF-α antagonists, have been investigated in clinical trials for 
use in the treatment of RA (111, 112).
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FiGURe 1 | Biological procedures of osteoclast differentiation, bone resorption, and mechanisms of current or future therapeutic drugs. Osteoclasts matured from 
bone marrow hematopoietic stem cells (BMMs) with the stimulation of two critical factors, M-CSF (CSF-1) and receptor activator of nuclear factor kappa-B ligand 
(RANKL). When binding to its specific receptors [CSF-1R and receptor activator of nuclear factor kappa-B (RANK)] on BMMs membrane, a series of cascades are 
activated, and BMMs were then differentiated into matured osteoclast. Realizing the importance of M-CSF and RANKL in osteoclast differentiation, inhibitors to 
CSF-1R and RANKL were considered as available strategy to suppress over-activated osteoclasts. Bisphosphonates, a widely used anti-osteoporosis agent, can be 
absorbed by osteoclast and induce osteoclast apoptosis. Additionally, it has been indicated that GLP-2 is a negative regulator of osteoclast differentiation, thus, the 
exact mechanisms are still unclear. Bone resorption is demonstrated as specific function of osteoclast, and bone matrix degradation is induced by the release of 
cathepsin K, as well as H+, and the release of H+ is enabled by V-ATPase on the membrane of matured osteoclast. So that, cathepsin K and V-ATPase are 
considered as another two targets to impair osteoclast function, especially, inhibitors of cathepsin K, such as Odanacatib, Balicatib are undergoing clinical trials.  
(⊝ represents inhibitory or down-regulated effect, ⊕ represents facilitated or up-regulated effect).
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CONClUSiON

Osteoclasts are responsible for the necessary function of bone 
resorption in vivo, but the clinical treatment of many diseases caused 
by osteoclast dysfunction, in particular by excessive activation of 
osteoclasts, faces enormous challenges. The development of new 
targeted drugs designed to inhibit osteoclast formation is urgently 
needed for clinical treatment. According to research on new drugs 
to inhibit osteoclast formation, the RANKL/RANK/OPG system, 
CSF-1/CSF-1R axis, cathepsin K, sclerostin, V-ATPases, and the 
cytokine TNF-α are currently considered as potential critical targets 
(Figure 1). The broad application prospects of denosumab, anti-
sclerostin antibodies, cathepsin K inhibitors, and TNF-α inhibitors 
are currently being studied in phase II and phase III clinical trials. 
V-ATPases provide a theoretical advantage due to their important 
roles in osteoclast acidification and bone matrix degradation and 
the fact that they have been found to have no effect on osteogenic 
activity. However, although several V-ATPase inhibitors have been 
identified, no mature inhibitor has entered clinical trials because of 
limitations such as the associated toxicity, an unclear mechanism 
of action, and the lack of credible animal research models. GLP-2, 
a polypeptide produced by the body, has no physiological side 

effects and can regulate the circadian rhythm of bone remodeling 
and shorten bone resorption time, which indirectly prolongs 
osteogenic time. However, few studies have been conducted on the 
relationship between GLP-2 and bone metabolism, and the mecha-
nism of action of GLP-2 remains unclear; therefore, its conversion  
and clinical application requires further research and feasibility 
studies.

Taken together, we propose that future research would be best 
served by focusing on two aspects. First, more studies should be 
conducted to explore and clarify the underlying mechanisms 
of each disease. Although, it has been reported that osteoclasts 
are the key factor triggering osteolytic diseases, the influence 
of osteoblast formation and activity should also be considered, 
as cross-talk between osteoclasts and osteoblasts exists in bone 
metabolic processes. Second, randomized, multicenter, con-
trolled, and long-term studies are urgently needed to confirm 
the safety and efficacy of newly developed pharmacological 
agents. Anti-sclerostin antibody, which is associated with bone 
formation, increased bone mineral density, and suppressed bone 
resorption, is distinct from other anabolic agents and shows the 
potential for widespread application in treating diseases associ-
ated with aberrant bone metabolism. In addition, V-ATPases 
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