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Abstract

We engineered light-gated channelrhodopsins (ChRs) whose current strength and light sensitivity 

enable minimally-invasive neuronal circuit interrogation. Current ChR tools applied to the 

mammalian brain require intracranial surgery for transgene delivery and implantation of invasive 

fiber-optic cables to produce light-dependent activation of a small volume of tissue. To facilitate 

expansive optogenetics without the need for invasive implants, our engineering approach leverages 

the significant literature of ChR variants to train statistical models for the design of new, high-

performance ChRs. With Gaussian Process models trained on a limited experimental set of 102 

functionally characterized ChRs, we designed high-photocurrent ChRs with unprecedented light 

sensitivity; three of these, ChRger1–3, enable optogenetic activation of the nervous system via 

minimally-invasive systemic transgene delivery, not possible previously due to low per-cell 

transgene copy produced by systemic delivery. ChRger2 enables light-induced neuronal excitation 

without invasive intracranial surgery for virus delivery or fiber optic implantation, i.e. enables 

minimally-invasive optogenetics.

Introduction

Channelrhodopsins (ChRs) are light-gated ion channels found in photosynthetic algae. 

Transgenic expression of ChRs in the brain enables light-dependent neuronal activation1. 

These channels are widely applied as tools in neuroscience research2; however, functional 
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limitations of available ChRs prohibit a number of optogenetic applications. These channels 

have broad activation spectra in the visible range and require high-intensity light for 

activation [~1 mW mm−2]. ChRs are naturally low-conductance channels requiring 

approximately 105–106 functional ChRs expressed in the plasma-membrane of a neuron to 

produce sufficient light-dependent depolarization to induce neuronal activation3. When 

applied to the mouse brain, ChRs require ~1–15 mW light delivered ~100 μm from the target 

cell population to reliably activate action potentials4–6. This confines light-dependent 

activation to a small volume of brain tissue [~1 mm3]7. Enabling optogenetics for large brain 

volumes without the need to implant invasive optical fibers for light delivery would be 

highly desirable for neuroscience applications.

Engineering ChRs to overcome limits in conductance and light sensitivity and extend the 

reach of optogenetic experiments requires overcoming three major challenges. First, 

rhodopsins are trans-membrane proteins that are inherently difficult to engineer because the 

sequence and structural determinants of membrane protein expression and plasma-

membrane localization are highly constrained and poorly understood8,9. Second, because 

properties of interest for neuroscience applications are assayed using low-throughput 

techniques, such as patch-clamp electrophysiology, engineering by directed evolution is not 

feasible10. And third, in vivo applications require retention and optimization of multiple 

properties, for example, localization in mammalian cells while simultaneously tuning 

kinetics, photocurrents, and spectral properties6.

Diverse ChRs have been published, including variants discovered from nature11,12, variants 

engineered through recombination9,13 and mutagenesis14,15, as well as variants resulting 

from rational design16. Studies of these coupled with structural information17 and molecular 

dynamic simulations18 have established some understanding of the mechanics and sequence 

features important for specific ChR properties1,16. Despite this, it is still not possible to 

predict functional properties of new ChR sequences.

Our approach has been to leverage the significant literature of ChRs to train statistical 

models that enable design of highly-functional ChRs. These models take as their input the 

sequence and structural information for a given ChR variant and then predict its functional 

properties. The models use training data to learn how sequence and structural elements map 

to ChR function. Once known, that mapping can be used to predict the behavior of untested 

ChR variants.

We trained models in this manner and found that they accurately predict the properties of 

untested ChR sequences. We used these models to engineer 30 ‘designer’ ChR variants with 

specific combinations of desired properties, a number of which have unprecedented 

photocurrent strength and light sensitivity. We characterized these low-light sensitive, high-

photocurrent ChRs for applications in the mammalian brain and demonstrate their potential 

for minimally-invasive activation of populations of neurons in the brain enabled by systemic 

transgene delivery with the engineered adeno-associated virus (AAV), rAAV-PHP.eB19. This 

work demonstrates how a machine learning-guided approach can enable engineering of 

proteins that have been challenging to engineer.
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Results

Functional characterization of ChR variants for machine learning

In previous work, we explored structure-guided recombination20,21 of three highly-

functional ChR parents [CsChrimsonR (CsChrimR)11, C1C217, and CheRiff22] by designing 

two 10-block recombination libraries with a theoretical size of ~120,000 (i.e. 2×310) 

chimeric variants9. These recombination libraries are a rich source of functionally diverse 

sequences9. Previously, we generated 102 ChR variants selected from these recombination 

libraries8,9, 76 of these were previously characterized for photocurrent properties (with 

patch-clamp electrophysiology) and 26 we characterized here. Together, these 102 ChR 

recombination variants provide the primary dataset used for model training. We 

supplemented this dataset with data from other published sources including 19 ChR variants 

from nature, 14 single-mutant ChR variants, and 28 recombination variants from other 

libraries (Dataset 1). As the data produced by other labs were not collected under the same 

experimental conditions as data collected in our hands, they cannot be used for comparison 

for absolute ChR properties (i.e. photocurrent strength); however, these data do provide 

useful binary information on whether a sequence variant is functional or not. Thus, we used 

published data from other sources when training binary classification models for ChR 

function.

Because our goal was to optimize photocurrent strength, wavelength sensitivity, and off-

kinetics, we used these measured properties to train machine-learning models (Figure 1a). 

Enhancing ChR photocurrent strength would enable reliable neuronal activation even under 

low-light conditions. Different off-rates can be useful for specific applications: fast off-

kinetics enable high-frequency optical stimulation23, slow off-kinetics is correlated with 

increased light sensitivity3,14,15, and very slow off-kinetics can be used for constant 

depolarization (step-function opsins [SFOs]14). In addition to opsin functional properties, it 

is also necessary to optimize or maintain plasma-membrane localization, a prerequisite for 

ChR function8.

Training Gaussian process (GP) classification and regression models

Using the ChR sequence/structure and functional data as inputs, we trained Gaussian process 

(GP) classification and regression models (Figure 1). GP models successfully predicted 

thermostability, substrate binding affinity, and kinetics for several soluble enzymes24, and, 

more recently, ChR membrane localization8. For a detailed description of the GP model 

architecture used for protein engineering see refs 8, 24. Briefly, these models infer predictive 

values for new sequences from training examples by assuming that similar inputs (ChR 

sequence variants) will have similar outputs (photocurrent properties). To quantify the 

relatedness of inputs (ChR sequence variants), we compared both sequence and structure. 

ChR sequence information is encoded in the amino acid sequence. For structural 

comparisons, we convert the 3D crystal-structural information into a ‘contact map’ that is 

convenient for modeling. Two residues are considered to be in contact and potentially 

important for structural and functional integrity if they have any non-hydrogen atoms within 

4.5 Å in the C1C2 crystal structure (3UG9.pdb)17. We defined the sequence and structural 
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similarity between two variants by aligning them and counting the number of positions and 

contacts at which they are identical24.

We trained a binary classification model to predict if a ChR sequence will be functional 

using all 102 training sequences from the recombination library (Dataset 2) as well as data 

from 61 variants published by others (Dataset 1). We then used this trained classification 

model to predict whether uncharacterized ChR sequence variants were functional (Figure 

1b). To test prediction accuracy, we performed 20-fold cross validation on the training data 

set and achieved an area under the receiver operator curve (AUC) of 0.78, indicating good 

predictive power (Supplemental Table 1).

Next, we trained three regression models, one for each of the ChR photocurrent properties of 

interest: photocurrent strength, wavelength sensitivity of photocurrents, and off-kinetics 

(Figure 1c). Once trained, these models were used to predict photocurrent properties of new, 

untested ChRs sequence variants. To test prediction accuracy, we performed 20-fold cross 

validation on the training dataset and observed high correlation between predicted and 

measured properties for all models (Pearson correlation [R] between 0.77–0.9; Supplemental 

Table 1–2). Models built using contact maps from either the ChR2 crystal structure25 or 

C1Chrimson crystal structure26 perform as well as models built with a contact map from the 

C1C2 structure17 (Supplemental Table 3, Supplemental Figure 1c,d) even though these maps 

share only 82% and 89% of their contacts with the C1C2 map, respectively (Supplemental 

Figure 1a,b).

Selection of designer ChRs using trained models

To select ‘designer’ ChRs (i.e. ChRs predicted to have a useful combination of properties), 

we used a tiered approach (Figure 1d). First, we eliminated all ChR sequences predicted to 

not localize to the plasma membrane or predicted to be non-functional. To do this, we used 

classification models of ChR localization8 and function to predict the probability of 

localization and function for each ChR sequence in the 120,000-variant recombination 

library. Not surprisingly, most ChR variants were predicted to not localize and not function. 

To focus on ChR variants predicted to localize and function, we set a threshold for the 

product of the predicted probabilities of localization and function (Figure 1b); any ChR 

sequence above that threshold would be considered for the next tier of the process. We 

selected a conservative threshold of 0.4.

The training data made clear that the higher the mutation distance from one of the three 

parents, the less likely it was that a sequence would be functional; however, we expect that 

more diverse sequences would also have the more diverse functional properties. To explore 

diverse sequences predicted to function, we selected 22 ChR variants that passed the 0.4 

threshold and were multi-block-swap sequences containing on average 70 mutations from 

the closest parent. These 22 sequences were synthesized, expressed in HEK cells, and their 

photocurrent properties were measured with patch-clamp electrophysiology. 59% of the 

tested sequences were functional (Figure 1e), compared to 38% of the multi-block swap 

sequences randomly selected (i.e., not selected by the model) and having comparable 

average mutation level. This validates the classification model’s ability to make useful 

predictions about novel functional sequences, even for sequences that are very distant from 
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those previously tested. We updated the models by including data from these 22 sequences 

for future rounds of predictions.

From the 120,000-variant recombination library, 1,161 chimeric sequence variants passed 

the conservative 0.4 predicted localization and function threshold (Figure 1). For the second 

tier of the selection process, we used the three regression models trained on all functional 

variants collected up to this point to predict the photocurrent strength, wavelength sensitivity 

of photocurrents, and off-kinetics for each of these 1,161 ChR sequence variants (Dataset 3). 

We selected 28 designer ChRs predicted to be highly functional with different combinations 

of properties including those predicted to have the highest photocurrent strength, most red-

shifted or blue-shifted activation wavelengths, and off-kinetics from very fast to very slow 

(Supplemental Figure 2–3).

Genes encoding the 28 selected designer ChR variants were synthesized, expressed in HEK 

cells, and characterized for their photocurrent properties with patch-clamp 

electrophysiology. All 28 selected designer ChRs were functional: 100% of variants selected 

using the updated classification model above the 0.4 threshold both localize and function. 

For each of the designer ChR variants, the measured photocurrent properties correlated well 

with the model predictions (R>0.9 for all models) (Figure 1f, Supplemental Table 1). This 

outstanding performance on a novel set of sequences demonstrates the power of this data-

driven predictive method for engineering designer ChRs. As a negative control, we selected 

two ChR variant sequences from the recombination library that the model predicted would 

be non-functional (ChR_29_10 and ChR_30_10). These sequences resulted from a single-

block swap from two of the most highly functional ChR recombination variants tested. As 

predicted, these sequences were non-functional (Figure 2b), which shows that ChR 

functionality can be attenuated by incorporating even minimal diversity at certain positions.

Sequence and structural determinants of ChR functional properties

We used L1-regularized linear regression models to identify a limited set of residues and 

structural contacts that strongly influence ChR photocurrent strength, spectral properties, 

and off-kinetics (Supplemental Figure 4a). We can assess the relative importance of each of 

these sequence and structural features by weighting their contributions using L2-regularized 

linear regression (Dataset 4 and Supplemental Figure 4). For each functional property, we 

identified a set of important residues and contacts and their respective weights. A specific 

residue or contact at a given position is weighted as likely to lead to, e.g., low (negative 

weight) or high (positive weight) photocurrents. A number of residues and contacts most 

important for tuning spectral properties are proximal to the retinal-binding pocket, including 

the blue-shifting contact between A206 and F269 and the blue-shifting contact between 

F265 and I267 that are conserved in the blue-shifted parents C1C2 and CheRiff while the 

red-shifting contact between F201 and Y217 originates from the red-shifted CsChrimR 

parent (Supplemental Figure 4). The most heavily weighted contact contributing to off-

kinetics includes the reside D195 (i.e., D156 according to ChR2 numbering) (Supplemental 

Figure 4), a residue that is part of the DC-gate1. Mutation of either the aspartic acid or 

cysteine within the DC-gate has been shown to decrease off-kinetic speed14,27. While the 

cysteine in the DC-gate is conserved in all three ChR parents, the aspartic acid at position 
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195 is only conserved in CheRiff and C1C2 but not in CsChrimR, which has a cysteine at 

that position. Interestingly, D195 is also part of a contact with L192 that contributes strongly 

to photocurrent strength (Supplemental Figure 4). A number of contacts proximal to retinal 

contribute strongly to photocurrent strength. For example, the most heavily weighted contact 

includes A295 (from CsChrimR), which is adjacent to the conserved lysine residue that 

covalently links retinal (Supplemental Figure 4). This position is a serine in both C1C2 and 

CheRiff.

Machine-guided search identifies ChRs with a range of useful functional properties

We assessed photocurrent amplitude, wavelength sensitivity, and off-kinetics of the designer 

ChRs and the three parental ChRs (Figure 2). In addition to the 28 regression model-

predicted ChRs, we also assessed the two top-performing ChRs from the classification 

models’ predictions (ChR_9_4 and ChR_25_9), for a total of 30 highly-functional model-

predicted ChRs as well as the two negative control ChRs (ChR_29_10, ChR_30_10). Of the 

30 model-predicted ChRs, we found 12 variants with ≥2-times higher blue-light activated 

photocurrents than the top-performing parent (CsChrimR) (Figure 2b). Three variants 

exhibit ≥1.7-times higher green-light activated photocurrents than CsChrimR. Eight variants 

have larger red-light activated photocurrents when compared with the blue-light activated 

parents (CheRiff and C1C2), though none out-perform CsChrimR. Both ChR variants 

predicted to be non-functional by the models produce <30 pA currents.

Designer ChRs’ off-kinetics span three orders of magnitude (τoff = 10 ms – >10 s) (Figure 

2c). This range is quite remarkable given that all designer ChRs are built from sequence 

blocks of three parents that have similar off-kinetics (τoff = 30–50 ms). We found that 5 

designer ChRs have faster off-kinetics than the fastest parent, while 16 have >5-times slower 

off-kinetics. The two fastest variants, ChR_3_10 and ChR_21_10 exhibit τoff = 13±0.9 ms 

and 12±0.4 ms, respectively (mean±SEM). Four ChRs have particularly slow off-kinetics 

with τoff > 1 s, including ChR_15_10, ChR_6_10, and ChR_13_10 (τoff = 4.3±0.1 s, 8.0±0.5 

s, and 17±7 s, respectively). Two ChRs with very large photocurrents, ChR_25_9 and 

ChR_11_10, exhibit τoff = 220±10 ms and 330±30 ms, respectively.

Three designer ChRs exhibit interesting spectral properties (Figure 2e, Supplemental Figure 

5). ChR_28_10’s red-shifted spectrum matches that of CsChrimR, demonstrating that 

incorporating sequence elements from blue-shifted ChRs into CsChrimR can still generate a 

red-shifted activation spectrum. Two designer ChRs exhibit novel spectral properties: 

ChR_11_10 has a broad activation spectrum relative to the parental spectra, with similar 

steady-state current strength from 400–546 nm light and strong currents (700 ± 100 pA) 

when activated with 567 nm light. ChR_25_9, on the other hand, exhibits a narrow 

activation spectrum relative to the parental spectra, with a peak at 481 nm light.

We assessed the light sensitivity of select designer ChRs. Compared with CsChrimR, 

CheRiff, and C1C2, the designer ChRs have ≥9-times larger currents at the lowest intensity 

of light tested (10−1 mW mm−2), larger currents at all intensities of light tested, and minimal 

decrease in photocurrent magnitude over the range of intensities tested (10−1–101 mW mm
−2), suggesting that photocurrents were saturated at these intensities and would only 

attenuate at much lower light intensities (Figure 2d). These select designer ChRs are 
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expressed at levels similar to the CsChrimR parent (the highest expressing parent) indicating 

that the improved photocurrent strength of these ChRs is not solely due to improved 

expression (Supplemental Figure 6–7).

We compared three of the top designer ChRs (ChR_9_4, ChR_25_9, and ChR_11_10) with 

ChR2(H134R)6,28, an enhanced photocurrent single mutant of ChR2 commonly used for in 
vivo optogenetics, and CoChR (from Chloromonas oogama)11, reported to be one of the 

highest conducting ChRs activated by blue light11. The selected designer ChRs produce 3–

6x larger photocurrents than ChR2(H134R) when exposed to high-intensity (2.2 mW mm−2) 

481 nm light and 10–18x larger photocurrents than ChR2(H134R) when exposed to low-

intensity (6.5×10−2 mW mm−2) 481 nm light (Supplemental Figure 8f,g). Although CoChR 

produced peak currents of similar magnitude to the designer ChRs, CoChR decays to a much 

lower steady-state level (Supplemental Figure 8d,e) with the designer ChRs producing 2–3x 

larger steady-state photocurrents than CoChR when exposed to high-intensity light and 3–4x 

larger steady-state photocurrents than CoChR when exposed to low-intensity light 

(Supplemental Figure 8f,g; Supplemental Table 4). The increased low-light sensitivity of 

these select designer ChRs is likely due in part to their relatively slow off-kinetics leading to 

the increased accumulation of the open state under low-light conditions14.

Validation of designer ChRs for neuroscience applications

For further validation we selected three of the top high-conductance ChRs, ChR_9_4, 

ChR_25_9, and ChR_11_10, and renamed them ChRger1, ChRger2, and ChRger3, 

respectively, for channelrhodopsin Gaussian process-engineered recombinant opsin 

(Supplemental Figure 9). When expressed in cultured neurons, the ChRgers display robust 

membrane localization and expression throughout the neuron soma and neurites (Figure 3b). 

The ChRgers outperform both CoChR and ChR2(H134R) in photocurrent strength with low-

intensity light in neuronal cultures (Figure 3c). The designer ChRgers require 1–2 orders of 

magnitude lower light intensity than CoChR and ChR2(H134R) for neuronal activation 

(Figure 3d, Supplemental Figure 8h).

Next, we performed direct intracranial injections into the mouse prefrontal cortex (PFC) of 

rAAV-PHP.eB packaging either ChRger1–3, or ChR2(H134R) under the hSyn promoter 

(Supplemental Table 5). After 3–5 weeks of expression, we measured light sensitivity in 

ChR-expressing neurons in acute brain slices. We observed greater light sensitivity for the 

ChRgers compared with ChR2(H134R) (Figure 3g,h). The ChRgers exhibit >200 pA 

photocurrent at 10−3 mW mm−2 while at the equivalent irradiance ChR2(H134R) exhibits 

undetectable photocurrents. The ChRgers reach >1000 pA photocurrents with ~10−2 mW 

mm−2 light, a four-fold improvement over ChR2(H134R)’s irradiance-matched 

photocurrents (Figure 3g). Our characterization of ChR2(H134R)’s light sensitivity and 

photocurrent strength is consistent with previous results from other labs6,22.

Designer ChRs and systemic AAVs enable minimally-invasive optogenetic excitation

We investigated whether these light-sensitive, high-photocurrent ChRs could provide 

optogenetic activation coupled with minimally-invasive gene delivery. Previous reports of 

‘non-invasive optogenetics’ relied on invasive intracranial virus delivery, which results in 
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many copies of virus per cell and thus very high expression levels of the injected 

construct29. Recently, we described the AAV capsid rAAV-PHP.eB19 that produces broad 

transduction throughout the central nervous system with a single minimally-invasive 

intravenous injection in the adult mouse30,31. Systemic delivery of rAAV-PHP.eB results in 

brain-wide transgene delivery without invasive intracranial injections19,30,31. Use of rAAV-

PHP.eB for optogenetic applications has been limited, however, by the low multiplicity of 

infection with systemically delivered viral vectors resulting in insufficient opsin expression 

and light-evoked currents to control neuronal firing with commonly-used channels (e.g. 

ChR2).

We hypothesized that the ChRgers could overcome this limitation and allow large-volume 

optogenetic excitation following systemic transgene delivery. We systemically delivered 

rAAV-PHP.eB packaging either ChRger1, ChRger2, CoChR, or ChR2(H134R) under the 

hSyn promoter and observed broad expression throughout the brain (Figure 3i). We 

measured the fraction of opsin-expressing cells with sufficient opsin-mediated currents for 

light-induced firing (Figure 3j). Only 4% of ChR2(H134R)-expressing neurons produced 

light-induced firing, while 77% of CoChR-expressing neurons, 89% of ChRger1-expressing 

neurons, and 100% of ChRger2- or ChRger3-expressing neurons produced light-induced 

activity. With systemic delivery, we observed superior light sensitivity of ChRgers compared 

with CoChR in both photocurrent strength (Figure 3k) and spike fidelity (Figure 3l). 

ChRger2-expressing neurons exhibit healthy membrane properties similar to CoChR- or 

ChR2(H134R)-expressing neurons both in culture and in slice (Supplemental Figure 10; 

Supplemental Table 6). These results demonstrate the need for light-sensitive and high-

photocurrent opsins for applications where systemic delivery is desired.

We systemically delivered rAAV-PHP.eB packaging ChRger1–3 under the CaMKIIa 

promoter. With systemic delivery of ChRger2, we observed photocurrent strength similar to 

results observed after direct injection into the PFC (Figure 3g). When expressed in 

pyramidal neurons in the cortex, ChRger2 and ChRger3 enabled robust optically-induced 

firing at rates between 2–10 Hz, although spike fidelity was reduced at higher frequency 

stimulation (Figure 3m,n). ChRger2 performed best with higher frequency stimulation while 

ChRger1 performed worst. CoChR has better spike fidelity than the ChRgers at higher 

frequency stimulation (20–40 Hz) (Figure 3m).

We next evaluated the optogenetic efficiency of ChRger2 after systemic delivery using 

optogenetic intracranial self-stimulation (oICSS) of dopaminergic neurons of the ventral 

tegmental area (VTA)32. We systemically delivered rAAV-PHP.eB packaging a double-

floxed inverted open reading frame (DIO) containing either ChRger2 or ChR2(H134R) into 

Dat-Cre mice (Figure 4a and Supplemental Table 5). Three weeks after systemic delivery 

and stereotaxic implantation of fiber-optic cannulas above the VTA, mice were placed in an 

operant box and were conditioned to trigger a burst of 447 nm laser stimulation via nose 

poke. Animals expressing ChRger2 displayed robust optogenetic self-stimulation in a 

frequency-dependent and laser power-dependent manner. Higher frequencies (up to 20 Hz) 

and higher light power (up to 10 mW) promoted greater maximum operant response rates 

(Figure 4a). Conversely, laser stimulation failed to reinforce operant responding in 

ChR2(H134R)-expressing animals (Figure 4a); these results were consistent with results in 
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acute slice where the light-induced currents of ChR2(H134R) are too weak at the low copy 

number produced by systemic delivery for robust neuronal activation.

In order to determine if ChRger2 would enable both minimally-invasive transgene delivery 

and minimally-invasive optical excitation, we assayed directional control of locomotion in 

freely moving animals by optogenetic stimulation of the right secondary motor cortex 

(M2)33. In this assay, unilateral stimulation of M2 disrupts motor function in the 

contralateral lower extremities, causing mice to turn away from the stimulation side. We 

systemically administered rAAV-PHP.eB packaging either ChRger2 or ChR2(H134R) under 

a CaMKIIa promoter for transgene expression in excitatory pyramidal neurons in the cortex 

(Figure 4b, and Supplemental Table 5). We observed broad expression throughout the cortex 

for both ChRger2 and ChR2(H134R) injected animals (Supplemental Figure 11). We 

secured a fiber-optic cannula guide to the surface of the thinned skull above M2 without 

puncturing the dura and therefore leaving the brain intact (Figure 4b), which we consider to 

be minimally invasive. Despite the presence of the highly optically scattering calavarial 

bone, stimulation with 20 mW 447 nm light induced left-turning behavior in animals 

expressing ChRger2 but not in animals expressing ChR2(H134R) (Figure 4b and 

Supplemental Video 1–2). Left-turning behavior terminated upon conclusion of optical 

stimulation (Supplemental Video 1). Behavioral effects were seen at powers as low as 10 

mW. To ensure that the turning behavior was not due to visual stimuli or heating caused by 

the stimulation laser, we repeated treadmill experiments using 671 nm light, which is outside 

the excitation spectrum of both opsins. 20 mW 671 nm light failed to induce turning in both 

ChRger2 and ChR2(H124R). Overall, these experiments demonstrate that ChRger2 is 

compatible with minimally-invasive systemic gene delivery and can enable minimally-

invasive optogenetic excitation. Coupling ChRgers with recently reported upconversion 

nanoparticles may allow for non-invasive optogenetics in deep brain areas with systemic 

transgene delivery and tissue-penetrating near-infrared (NIR) light for neuronal excitation29.

Discussion

We demonstrated a data-driven approach to engineering ChR properties that enables efficient 

discovery of highly functional ChR variants based on data from relatively few variants. In 

this approach we approximate the ChR fitness landscape for a set of ~120,000 chimeric 

ChRs and use it to efficiently search sequence space and select top-performing variants for a 

given property10,24,34. By first eliminating the vast majority of non-functional sequences, we 

can focus on local peaks scattered throughout the landscape. Then, using regression models, 

we predict which sequences lie on the fitness peaks.

Machine learning provides a platform for simultaneous optimization of multiple ChR 

properties that follow engineering specifications. We were able to generate variants with 

large variations in off-kinetics (10 ms to >10 s) and photocurrents that far exceed any of the 

parental or other commonly used ChRs. We also use the machine-learning models to identify 

the residues and contacts most important for ChR function. Application of this machine-

learning pipeline (limited data collection from diverse sequences, model training and 

validation, and prediction and testing of new sequences) has great potential to optimize other 
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neuroscience tools, e.g., anion-conducting ChRs12, calcium sensors, voltage sensors35, and 

AAVs30.

We designed high-performance ChRs (ChRger1–3) with unprecedented light sensitivity and 

validated ChRger2’s application for in vivo optogenetics. The high-photocurrent properties 

of these ChRs overcome the limitation of low per-cell copy number after systemic delivery. 

ChRger2 enabled neuronal excitation with high temporal precision without invasive 

intracranial surgery for virus delivery or fiber optic implantation for superficial brain areas, 

extending what is currently possible for optogenetics experiments.

Online methods

Construct design and cloning

The design, construction, and characterization of the recombination library of chimeras is 

described in detail in Bedbrook et al.9. The 10-block contiguous and 10-block 

noncontiguous recombination libraries were designed and built using SCHEMA 

recombination9. Software packages for calculating SCHEMA energies are openly available 

at cheme.che.caltech.edu/groups/fha/Software.htm. Each chimeric ChR variant in these 

libraries is composed of blocks of sequence from the parental ChR (CsChrimR11, C1C217, 

and CheRiff22), including chimeras with single-block swaps (chimeras consisting of 9 

blocks of one parent and a single block from one of the other two parents) and multi-block-

swap chimera sequences.

Selected ChR variant genes were inserted into a constant vector backbone [pFCK from 

Addgene plasmid #5169322] with a CMV promoter, Golgi export trafficking signal (TS) 

sequence (KSRITSEGEYIPLDQIDINV)5, and fluorescent protein (mKate). All ChR 

variants contain the SpyTag sequence following the N-terminal signal peptide for the 

SpyTag/SpyCatcher labeling assays used to characterize ChR membrane localization9,36. 

The C1C2 parent for the recombination libraries is mammalian codon-optimized. ChR 

variant sequences used in this study are documented in Dataset 2. All selected ChR genes 

were synthesized and cloned in the pFCK mammalian expression vector by Twist 

Bioscience. For visualization, sequence alignment between C1C2 and designer ChRs were 

created using ClustalΩ and visualized using ENDscript37 (Supplemental Figure 1c,d).

For characterization in neurons, selected ChR variants [ChRger1, ChRger2, ChRger3, 

CoChR11, and hChR2(H134R)] were inserted into a pAAV-hSyn vector backbone [Addgene 

plasmid #26973], a pAAV-CamKIIa vector backbone [Addgene plasmid #51087], and a 

pAAV-CAG-DIO vector backbone [Addgene plasmid #104052]. In all backbones, each ChR 

was inserted with a TS sequence5 and fluorescent protein (eYFP).

HEK293T cell and primary neuronal cultures

The culturing and characterization ChRs in HEK cells is described in Bedbrook et al.9,36. 

Briefly, HEK cells were cultured at 37 °C and 5% CO2 in D10 [DMEM supplemented with 

10% (vol/vol) FBS, 1% sodium bicarbonate, and 1% sodium pyruvate]. HEK cells were 

transfected with purified ChR variant DNA using FuGENE®6 reagent according to the 

manufacturer’s (Promega) recommendations. Cells were given 48 hours to express the ChRs 
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before photocurrent measurements. Primary hippocampal neuronal cultures were prepped 

from C57BL/6N mouse embryos 16–18 days post-fertilization (E16–E18 Charles-River 

Labs) and cultured at 37 °C in the presence of 5% CO2 in Neurobasal media supplemented 

with glutamine and B27. Cells were transduced 3–4 days after plating with rAAV-PHP.eB 

packaging ChR2(H134R), CoChR, ChRger1, ChRger2, or ChRger3. Whole-cell recordings 

were performed 5–10 days after transduction.

Patch-clamp electrophysiology

Whole-cell patch-clamp and cell-attached recordings were performed in transfected HEK 

cells, transduced cultured neurons, and acute brain slices to measure light-activated inward 

currents or neuronal firing. For electrophysiological recordings, cultured cells were 

continuously perfused with extracellular solution at room temperature (in mM: 140 NaCl, 5 

KCl, 10 HEPES, 2 MgCl2, 2 CaCl2, 10 glucose; pH 7.35) while mounted on the microscope 

stage. For slice recordings, 32 °C artificial cerebrospinal fluid (ACSF) was continuously 

perfused over slices. ACSF contained 127 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 1.25 

mM NaH2PO4, 12 mM d-glucose, 0.4 mM sodium ascorbate, 2 mM CaCl2, and 1 mM 

MgCl2 and was bubbled continuously with 95% oxygen / 5% CO2. Firing and photocurrent 

measurements were performed in the presence of 3 mM kynurenic acid and 100 μM 

picrotoxin to block optically evoked ionotropic glutamatergic and GABAergic currents, 

respectively.

Patch pipettes were fabricated from borosilicate capillary glass tubing (1B150–4; World 

Precision Instruments) using a model P-2000 laser puller (Sutter Instruments) to resistances 

of 3–6 MΩ. Pipettes were filled with K-gluconate intracellular solution containing the 

following (in mM): 134 K gluconate, 5 EGTA, 10 HEPES, 2 MgCl2, 0.5 CaCl2, 3 ATP, and 

0.2 GTP. Whole-cell patch-clamp and cell-attached recordings were made using a 

Multiclamp 700B amplifier (Molecular Devices), a Digidata 1440 digitizer (Molecular 

Devices), and a PC running pClamp (version 10.4) software (Molecular Devices) to generate 

current injection waveforms and to record voltage and current traces.

Photocurrents were recorded from cells in voltage clamp held at −60 mV. Neuronal firing 

was measured in current clamp mode with current injection for a −60 mV holding potential. 

Access resistance (Ra) and membrane resistance (Rm) were monitored throughout recording, 

and cells were discarded if Ra or Rm changed more than 15%. During ChR variant 

functional screening in HEK cells, photocurrents were only recorded from cells that passed 

our recording criteria: Rm > 200 MΩ and holding current >−100 pA. Our measured 

membrane properties of ChR expressing neurons were consistent with previous literature of 

opsin-expressing cells11 and are also consistent with previous reports of properties of 

cultured hippocampal neurons38,39 and PFC neurons in slice40,41 (Supplemental Figures 10). 

For cell culture experiments, the experimenter was blinded to the identity of the ChR being 

patched but not to the fluorescence level of the cells. For acute slice recordings, the 

experimenter was not blinded to the identity of the ChR.
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Light delivery and imaging

Patch-clamp recordings were done with short light pulses to measure photocurrents. Light 

pulse duration, wavelength, and power were varied depending on the experiment (as 

described in the text). Light pulses were generated using a Lumencor SPECTRAX light 

engine. The illumination/output spectra for each color were measured (Supplemental Figure 

5). To evaluate normalized green photocurrent, we measured photocurrent strength at three 

wavelengths (peak ± half width at half maximum): (red) 640 ± 3 nm, (green) 546 ± 16 nm, 

and (cyan) 481 ± 3 nm with a 0.5 s light pulse. Light intensity was matched for these 

measurements, with 481 nm light at 2.3 mW mm−2, 546 nm light at 2.8 mW mm−2, and 640 

nm light at 2.2 mW mm−2. For full spectra measurements depicted in Figure 2e, we 

measured photocurrents at seven different wavelengths (peak ± half width half maximum): 

(red) 640 ± 3 nm, (yellow) 567 ± 13 nm, (green) 546 ± 16 nm, (teal) 523 ± 6 nm, (cyan) 481 

± 3 nm LED, (blue) 439 ± 8 nm LED, and (violet) 397 ± 3 nm with a 0.5 s light pulse for 

each color. Light intensity is matched across wavelengths at 1.3 mW mm−2.

Imaging of ChR variants expression in HEK cells was performed using an Andor Neo 5.5 

sCMOS camera and Micro-Manager Open Source Microscopy Software. Imaging of ChR 

expression in neuronal cultures and in brain slices was performed using a Zeiss LSM 880 

confocal microscope and Zen software.

Electrophysiology data analysis

Electrophysiology data were analyzed using Clampfit 10.7 (Molecular Devices, LLC) and 

custom data-processing scripts written using open-source packages in the Python 

programming language to perform baseline adjustments, find the peak and steady state 

inward currents, perform monoexponential fits of photocurrent decay for off-kinetic 

properties, and quantify spike fidelity. Only neurons with an uncompensated series 

resistance between 5 and 25 MΩ, Rm > 90 MΩ, and holding current >−150 pA (holding at 

−60 mV) were included in data analysis (Supplemental Figures 10). The photocurrent 

amplitude was not adjusted for expression level since both expression and conductance 

contribute to the in vivo utility of the tool. However, comparisons of expression with 

photocurrent strength for all ChR variants tested are included in Supplemental Figures 6–7. 

As metrics of photocurrent strength, peak and steady-state photocurrent were used (Figure 

1a). As a metric for the ChR activation spectrum, the normalized current strength induced by 

exposure to green light (546 nm) was used (Figure 1a). Two parameters were used to 

characterize ChR off-kinetics: the time to reach 50% of the light-activated current and the 

photocurrent decay rate, τoff (Figure 1a).

AAV production and purification

Production of recombinant AAV-PHP.eB packaging pAAV-hSyn-X-TS-eYFP-WPRE, 

pAAV-CAG-DIO[X-TS-eYFP]-WPRE, and pAAV-CaMKIIa-X-TS-eYFP-WPRE (X = 

ChR2(H134R), CoChR, ChRger1, ChRger2, and ChRger3) was done following the methods 

described in Deverman et al.42 and Challis et al.31. Briefly, triple transfection of HEK293T 

cells (ATCC) was performed using polyethylenimine (PEI). Viral particles were harvested 

from the media and cells. Virus was then purified over iodixanol (Optiprep, Sigma; D1556) 

step gradients (15%, 25%, 40% and 60%). Viruses were concentrated and formulated in 
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phosphate buffered saline (PBS). Virus titers were determined by measuring the number of 

DNase I–resistant viral genomes using qPCR with linearized genome plasmid as a standard.

Animals

All procedures were approved by the California Institute of Technology Institutional Animal 

Care and Use Committee (IACUC). Dat-Cre mice (006660) and C57Bl/6J mice (000664) 

were purchased from Jackson Laboratory.

Intravenous injections, stereotactic injections, and cannula implantation

Intravenous administration of rAAV vectors was performed by injecting the virus into the 

retro-orbital sinus at viral titers indicated in the text. There were no observed health issues 

with animals after systemic injection of virus at the titers presented in the paper. Mice 

remain healthy >6 months after systemic delivery of ChR2 and ChRgers. With slice 

electrophysiology, there was no observed indication of poor cell health due to viral-mediated 

expression, which was quantified by measuring the membrane resistance [Rm], leak current 

[holding at −60 mV], and resting membrane potential (Supplemental Figures 10). Local 

expression in the prefrontal cortex (PFC) was achieved by direct stereotactic injection of 1 μl 

of purified AAV vectors at 5×1012 vg ml−1 targeting the following coordinates: anterior-

posterior (AP), −1.7; media-lateral (ML), +/− 0.5; and dorsal-ventral (DV), −2.2. For 

stimulation of the VTA, 300 μm outer diameter mono fiber-optic cannulae (Doric Lenses, 

MFC_300/330–0.37_6mm_ZF1.25_FLT) were stereotaxically implanted 200 μm above the 

VTA bilaterally targeted to the following coordinates: AP, −3.44 mm; ML, +/−0.48 mm; DV, 

4.4 mm. For stimulation of the right secondary motor cortex (M2), 3 mm long, 400 μm 

mono fiber-optic cannulae (Doric Lenses, MFC_400/430–0.48_3mm_ZF1.25_FLT) were 

surgically secured to the surface of the skull above M2 (unilaterally) targeted to the 

following coordinates: AP, 1 mm; ML, 0.5 mm. The skull was thinned ~40–50% with a 

standard drill to create a level surface for the fiber-skull interface. Light was delivered from 

either a 447 nm or 671 nm laser (Changchun New Industries [CNI] Model with PSU-H-

LED) via mono fiber-optic patch cable(s) (Doric Lenses, MFP_400/430/1100–0.48_2m_FC-

ZF1.25) coupled to the fiber-optic cannula(e). Fiber-optic cannulae were secured to the skull 

with Metabond (Parkel, SKU S396) and dental cement.

Analysis of behavioral experiments was performed using the open-source MATLAB 

program OptiMouse43 to track mouse nose, body, and tail position while the mouse was 

running on the treadmill. Optogenetic intracranial self-stimulation was performed using a 

mouse modular test chamber (Lafayette Instruments, Model 80015NS) outfitted with an IR 

nose port (Model 80116TM).

Gaussian process modeling

Both the GP regression and classification modeling methods applied in this paper are based 

on work detailed in ref 8 and 23. For modeling, all sequences were aligned using MUltiple 

Sequence Comparison by Log-Expectation (MUSCLE) (https://www.ebi.ac.uk/Tools/msa/

muscle/). For modeling, aligned sequences were truncated to match the length of the C1C2 

sequence, eliminating N- and C-terminal fragments with poor alignment quality due to high 

sequence diversity (Dataset 1 and Dataset 2). Structural encodings (i.e., the contact map) use 
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the C1C2 crystal structure (3UG9.pdb) and assume that ChR chimeras share the contact 

architecture observed in the C1C2 crystal structure. Models built using structural encodings 

built from the ChR2 structure (6EID.pdb) and the C1Chrimson structure (5ZIH.pdb) 

performed as well as models using the C1C2 structure (Supplemental Figure 1c,d). The 

models are robust to differences in contact maps because they use both sequence and 

structural information, which is somewhat redundant.

For a given ChR, the contact map is simply a list of contacting amino acids with their 

positions. For example, a contact between alanine at position 134 and methionine at position 

1 of the amino acid sequence would be encoded by [(‘A134’), (‘M1’)]. Both sequence and 

structural information were one-hot encoded. Regression models for ChR properties were 

trained to predict the logarithm of the measured properties. All training data was normalized 

to have mean zero and standard deviation one.

Gaussian process regression and classification models require kernel functions that measure 

the similarity between protein sequences. Learning involves optimizing the form of the 

kernel and its hyperparameters (Supplemental Table 2). The Matérn kernel was found to be 

optimal for all ChR properties (Supplemental Table 1).

For classification model training, all 102 functionally characterized ChR variants from our 

recombination libraries (Dataset 2) were used as well as data from 61 sequence variants 

published by others (Dataset 1). The model was then updated with data collected from the 

22 additional ChR recombination variants with high sequence diversity (~70 mutations from 

the closest parent) and predicted to be functional (Figure 1d). For training the regression 

models, all 102 functionally characterized training sequences (Dataset 2) were initially used 

and then the models were updated with data collected from the 22 additional ChR variants 

(Figure 1d).

GP regression—In regression, the goal is to infer the value of an unknown function f(x) at 

a novel point x* given observations y at inputs X. Assuming that the observations are subject 

to independent and identically distributed Gaussian noise with variance σn
2, the posterior 

distribution of f * = f x*  for Gaussian process regression is Gaussian with mean

f * = k*
T K + σn

2I −1y (1)

and variance

v* = k x*, x* − k*
T K + σn

2I −1k* (2)

Where K is the symmetric, square covariance matrix for the training set: Kij = k(xi, xj) for xi 

and xj in the training set. k* is the vector of covariances between the novel input and each 

input in the training set, and k*i = k x*, xi . The hyperparameters in the kernel functions and 

the noise hyperparameter σn were determined by maximizing the log marginal likelihood:
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log p y|X = − 1
2 yT K + σn

2I −1y − 1
2log K + σn

2I − n
2log 2π (3)

where n is the dimensionality of the inputs. Regression was implemented using open-source 

packages in the SciPy ecosystem44–46.

GP classification—In binary classification, instead of continuous outputs y, the outputs 

are class labels yi ∈ {+1, −1}, and the goal is to use the training data to make probabilistic 

predictions π x* = p y* = + 1 x* . We use Laplace’s method to approximate the posterior 

distribution. Hyperparameters in the kernels are found by maximizing the marginal 

likelihood. Classification was implemented using open-source packages in the SciPy 

ecosystem44–46. The binary classification model was trained to predict if a ChR sequence is 

or is not functional. A ChR sequence was considered to be functional if its photocurrents 

were >100 pA upon light exposure, a threshold set as an approximate lower bound for 

current necessary for neuronal activation.

GP kernels for modeling proteins—Gaussian process regression and classification 

models require kernel functions that measure the similarity between protein sequences. A 

protein sequence s of length L is defined by the amino acid present at each location. This can 

be encoded as a binary feature vector xse that indicates the presence or absence of each 

amino acid at each position resulting in a vector of length 20L (for 20 possible amino acids). 

Likewise, the protein’s structure can be represented as a residue-residue contact map. The 

contact map can be encoded as a binary feature vector xst that indicates the presence or 

absence of each possible contacting pair. Both the sequence and structure feature vectors 

were used by concatenating them to form a sequence-structure feature vector.

Three types of kernel functions k(si, sj) were considered: polynomial kernels, squared 

exponential kernels, and Matérn kernels. These different forms represent possible functions 

for the protein’s fitness landscape. The polynomial kernel is defined as:

k s, s′ =   σ0
2 + σp

2xTx′ d
(4)

where σ0 and σp are hyperparameters. We considered polynomial kernels with d = 3. The 

squared exponential kernel is defined as:

k s, s′ =   σp
2 exp −

x − x′ 2
2

l (5)

where l and σp are also hyperparameters and |⋅|2 is the L2 norm. Finally, the Matérn kernel 

with v = 5
2  is defined as:

k s, s′ =   1 +
5 x − x′ 2

2

l +
5 x − x′ 2

2

3l2
exp −

5 x − x′ 2
2

l (6)
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Where l is once again a hyperparameter.

L1 regression feature identification and weighting—L1 regression was used to 

identify residues and contacts in the ChR structure most important for each ChR functional 

property of interest. First, residues and contacts that covary were identified using the 

concatenated sequence and structure binary feature vector for each of the training set ChR 

variants. Each set of covarying residues and contacts was combined into a single feature. L1 

linear regression was used to select the features that contribute most to each ChR functional 

property of interest. The level of regularization was chosen by maximizing the log marginal 

likelihood of the Gaussian process regression model trained on the features selected at that 

level of regularization. We then performed Bayesian ridge regression on the selected features 

using the default settings in scikit-learn47. Residues and contacts with the largest absolute 

Bayesian ridge linear regression weights were plotted onto the C1C2 structure 

(Supplemental Figure 4). For feature identification and weighting, models were trained on 

both the training set and also the test set of 28 ChR sequences predicted to have useful 

combinations of diverse properties.

Statistical analysis

Plotting and statistical analysis were done in Python 2.7 and 3.6 and GraphPad Prism 7.01. 

For statistical comparisons, we first performed a D’Agostino & Pearson normality test. If the 

p-value of a D’Agostino & Pearson normality test was < 0.05, the non-parametric Kruskal-

Wallis test with Dunn’s multiple comparisons post hoc test was used. If the data passed the 

normality test, a one-way ANOVA was used.

Data availability

The authors declare that data supporting the findings of this study are available within the 

paper and its supplementary information files. Source data for classification model training 

are provided in Dataset 1 and Dataset 2. Source data for regression model training are 

provided in Dataset 2. DNA constructs for the ChRger variants are deposited for distribution 

at Addgene (http://www.addgene.org, plasmid numbers 127237–44).

Code availability

Code used to train classification and regression models can be found at: https://github.com/

fhalab/channels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Machine learning-guided optimization of ChRs. (a) Upon light exposure, ChRs open and 

reach a peak inward current and then desensitize reaching a lower steady-state current. We 

use both peak and steady-state current as metrics for photocurrent strength. To evaluate ChR 

off-kinetics we used the current decay rate (τoff) after a 1 ms light exposure and also the 

time to reach 50% of the light-exposed current after light removal. As a metric for 

wavelength sensitivity of activation, we used the normalized photocurrent with green (546 

nm) light, which easily differentiates blue-shifted ChRs (peak activation: ~450–480 nm) and 

red-shifted ChRs (peak activation: ~520–650 nm). (b) We trained classification models to 

predict whether ChRs would localize correctly to the plasma membrane and function (i.e., 

ChRs above the 0.4 threshold for the product of the predicted probabilities (pp) of 

localization and function). (c) We then trained regression models to approximate the fitness 

landscape for each property of interest for the recombination library (inset show hypothetical 

fitness landscapes). (b–c) Models were trained with photocurrent properties for each ChR in 

the training set (plots show 20-fold cross validation on the training set). Sequences predicted 

to localize and function by the classification models and predicted to have an optimized set 

of functional properties by the regression models were selected for further characterization, 
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e.g., the 28 top variants. (d) The classification model was trained with 102 recombination 

variants (Dataset 2) and 61 previously-published ChRs (Dataset 1) and the regression 

models were trained with 124 recombination variants. (e) Measurements of training set ChR 

and model-predicted ChR, peak photocurrent, off-kinetics, and normalized green current (n 
= 3–8 cells per variant; Dataset 2). Each gray-colored point is a ChR variant. Training set 

data are shaded in blue. Mean number of mutations for each set is below the plots. (f) Model 

predictions vs measured photocurrent property for each of the 28 designer ChRs. R 

represents the Pearson correlation coefficient.
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Figure 2. 
The model-predicted ChRs exhibit a large range of functional properties often far exceeding 

the parents. (a) Representative current traces after 0.5 s light exposure for select designer 

ChR variants with corresponding expression and localization in HEK cells. Vertical colored 

scale bar for each ChR current trace represents 500 pA, and horizontal scale bar represents 

250 ms. The variant color presented in (a) is constant throughout panels. (b) Measured peak 

and steady-state photocurrent with different wavelengths of light in HEK cells (n = 4–8 

cells, see Dataset 2). 397 nm light at 1.5 mW mm−2, 481 nm light at 2.3 mW mm−2, 546 nm 

light at 2.8 mW mm−2, and 640 nm light at 2.2 mW mm−2. (c) Off-kinetics decay rate (τoff) 

following a 1 ms exposure to 481 nm light at 2.3 mW mm−2 (n = 4–8 cells, see Dataset 2). 

Parent ChRs are highlighted in light gray. Inset shows representative current traces with 1 

ms light exposure for select ChRs revealing distinct profiles: ChR_21_10 turns off rapidly, 

ChR_25_9 and ChR_11_10 turn off more slowly, and ChR_15_10 exhibits little decrease in 

photocurrent 0.5 s after the light exposure. (d) Peak and steady-state photocurrent strength 
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with varying light irradiances compared with parental ChRs (CheRiff, n = 5 cells; 

CsChrimR, n = 5 cells; C1C2, n = 4 cells; 28_10, n = 5 cells; 11_10, n = 5 cells; 25_9, n = 5 

cells). (e) Wavelength sensitivity of activation for select ChRs compared with parental ChRs 

(CheRiff, n = 6 cells; CsChrimR, n = 5 cells; C1C2, n = 4 cells; 11_10, n = 6 cells; 12_10, n 
= 7 cells; 25_9, n = 5 cells; 10_10, n = 4 cells). Top variants, ChR_9_4, ChR_25_9, and 

ChR_11_10 are named ChRger1, ChRger2, and ChRger3 in subsequent figures. Plotted data 

are mean±SEM.
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Figure 3. 
ChRger variants in cultured neurons and in acute brain slices outperform the commonly used 

ChR2(H134R) and the high performance CoChR. (a) ChRs were cloned into an AAV vector 

with either the hSyn or CamKIIa promoter and packaged into rAAV-PHP.eB for expression 

in culture and in vivo. (b) Cultured neurons expressing ChRgers and ChR2(H134R) under 

the hSyn promoter (repeated independently six times per construct with similar results). (c) 

Peak and steady-state photocurrent with low-intensity (8×10−3 mW mm−2) and moderate-

intensity (0.8 mW mm−2) light in cultured neurons (ChR2, n = 16 cells; CoChR, n = 17 

cells; ChRger1, n = 9 cells; ChRger2, n = 24 cells; ChRger3, n = 9 cells). (d) Spike fidelity 

with varying intensity light for 5 ms light-pulse width at 2 Hz stimulation (ChRger1, n = 6 

cells; ChRger2, n = 6 cells; ChRger3, n = 6 cells; CoChR, n = 7 cells; ChR2, n = 7 cells). (e) 

Spike fidelity with varying stimulation frequency with 2 ms light-pulse width in cultured 

neurons (ChRger1, n = 9 cells; ChRger2, n = 12 cells; ChRger3, n = 7 cells; ChR2, n = 8 

cells). (f) Representative voltage traces of ChRgers and ChR2(H134R) at 2 Hz with 5 ms 

pulsed low-intensity blue light stimulation (3×10−2 mW mm−2) shows robust neuronal firing 

for ChRgers while ChR2(H134R) and CoChR exhibit only sub-threshold light-induced 

depolarization. (g) Photocurrent strength with varying light irradiances in acute brain slice 

after direct injection of rAAV-PHP.eB packaged hSyn-ChR constructs into the PFC 

(ChRger1, n = 11 cells; ChRger2, n = 11 cells; ChRger3, n = 11 cells; ChR2, n = 9 cells) or 

after systemic delivery of CamKIIa-ChRger2 (ChRger2, n = 6 cells; 5×1011 vg/animal). (h) 

Representative current traces of ChRgers and ChR2(H134R) with a 300 ms light pulse at 
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varying light irradiances in acute brain slice after direct injection. (i) Systemic delivery of 

rAAV-PHP.eB packaged hSyn-ChRger2 or hSyn-ChR2(H134R) resulted in broad expression 

throughout the cortex (5×1011 vg/animal; repeated independently five times per construct 

with similar results). (j) The fraction of light excitable neurons in the PFC after systemic 

delivery of hSyn-ChRs measured by cell-attached recording in acute slice targeting only 

neurons expressing the eYFP marker (1×1011 vg/animal). Peak (solid line) and steady-state 

(dashed line) photocurrent strength (k) and spike fidelity (l) with varying light irradiances in 

acute brain slice after systemic delivery (1×1011 vg/animal) of hSyn-ChRger2 (n = 13 cells) 

and hSyn-CoChR (n = 14 cells) (recorded in PFC neurons). (m) Spike fidelity with varying 

stimulation frequency in acute brain slice after systemic delivery (1×1011 vg/animal) 

(CoChR, n = 15 cells; ChRger1, n = 9 cells; ChRger2, n = 5 cells; ChRger3, n = 8 cells) with 

1 mW mm−2 intensity light. (n) Representative voltage traces with blue light–driven (1 mW 

mm−2) spiking at the indicated frequencies. vg, viral genomes. Plotted data are mean±SEM.
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Figure 4. 
Validation of high-performance ChRger2 for minimally-invasive optogenetic behavioral 

modulation. (a) Systemic delivery of rAAV-PHP.eB packaged CAG-DIO ChRger2-TS-eYFP 

or ChR2(H134R)-TS-eYFP (3×1011 vg/mouse) into Dat-Cre animals coupled with fiber 

optic implantation above the VTA enabled blue light-induced intracranial self-stimulation 

(ten 5 ms laser pulses) exclusively with ChRger2 and not ChR2(H134R) with varying light 

power and varying stimulation frequencies. ChRger2, n = 4 animals; ChR2(H134R), n = 4 

animals. Images show fiber placement and opsin expression for ChR2(H134R) (top) and 

ChRger2 (bottom). (b) Minimally-invasive, systemic delivery of rAAV-PHP.eB packaged 

CaMKIIa ChRger2-TS-eYFP or ChR2(H134R)-TS-eYFP (5×1011 vg/mouse) into wild type 

(WT) animals coupled with surgically secured fiber-optic cannula guide to the surface of the 

skull above the right M2 that had been thinned to create a level surface for the fiber-skull 

interface. Three weeks later, mice were trained to walk on a linear-track treadmill at fixed 

velocity. Coronal slices show expression throughout cortex with higher magnification image 

of M2 (inset) for ChR2(H134R) (left) and ChRger2 (right). Unilateral blue light stimulation 

of M2 induced turning behavior exclusively with ChRger2 and not ChR2(H134R) (10 Hz 

stimulation with 5 ms 447 nm light pulses at 20 mW). ChRger2, n = 5 animals; 

ChR2(H134R), n = 5 animals. No turning behavior was observed in any animal with 10 Hz 

stimulation with 5 ms 671 nm light pulses (20 mW). Plotted data are mean±SEM. vg, viral 

genomes.
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