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Abstract

Acute respiratory distress syndrome (ARDS) is a major cause of mor-
tality in adults with acute hypoxic respiratory failure and can pre-
dispose those afflicted to develop acute kidney injury (AKI). In the 
setting where AKI and ARDS overlap, incidence of mortality, length 
of intensive care unit stay, and complexity of management increases 
drastically. Lung protective ventilation strategy and conservative flu-
id management are the main focus of therapy in patients with ARDS, 
but have major implications on renal function. This review aims to 
provide concise discussion of pathophysiology, ventilation, and fluid 
management strategies as it relates to AKI in the setting of ARDS.
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Introduction

Acute respiratory distress syndrome (ARDS) is a life-threat-
ening condition characterized by severe hypoxemia due to res-
piratory failure that was first described as the “shock lung” by 
military clinicians in Vietnam in the 1960s [1]. This heteroge-
neous pathology is now understood to be the cause of death in 
nearly 200,000 people in the USA each year [2]. While there 
are many complications that results from ARDS, the develop-
ment of an acute kidney injury (AKI) is common and can be 
fatal in these patients. Over the past decade, significant ad-

vances have been made to understand the pathophysiology of 
ARDS and complications such as AKI. This article discusses 
the management of AKI in the setting of ARDS, and highlights 
its epidemiology, pathophysiology and treatment strategies for 
internists and intensivists alike.

Definitions

Acute lung injury (ALI) has been defined as acute lung disease 
that consists of acute hypoxemic respiratory failure, specifical-
ly with ratio of arterial oxygen tension to fraction of inspired 
oxygen (PaO2/FiO2) of less than 300 mm Hg with bilateral 
pulmonary infiltrates due to pulmonary and non-pulmonary 
risk factors, and which is not due to left atrial hypertension as 
per the American/European Consensus Conference definition 
[2, 3]. This definition created a distinction between ALI and 
ARDS based on PaO2/FiO2 ratio with ARDS categorized as be-
ing < 200 mm Hg and thus more severe. ARDS was redefined 
in 2012 and clarifies several uncertain areas not explained by 
the American/European Consensus conference definition [4]. 
As per the Berlin definition, ARDS can be diagnosed once car-
diogenic pulmonary edema and alternative causes of acute hy-
poxemic respiratory failure and bilateral infiltrates have been 
excluded [5]. The Berlin definition of ARDS requires that for 
the diagnosis to be present all the criteria listed in Table 1 [5] 
must be present.

For the sake of clarity, this review uses ALI and ARDS 
interchangeably as to include all patients with a PaO2/FiO2 less 
than 300 mm Hg. In our discussion of AKI, Kidney Disease: 
Improving Global Outcomes (KDIGO) recommendations for 
classification of AKI, AKI is defined as an increase in serum 
creatinine by ≥ 0.3 mg/dL within 48 h, or an increase of serum 
creatinine to ≥ 1.5 times the baseline, which is known to have 
occurred in the patient within the last 7 days, or a decrease 
in urine volume of < 0.5 mL/kg/h for 6 h [4]. The literature 
we review here includes articles published after 2012 and uses 
KDIGO recommendations for classification for AKI.

Epidemiology

ARDS has a huge impact on mortality. The Kings County 
Lung Injury Project (KCLIP) studied the incidence and out-
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comes of ALI and had emphasized 75,000 deaths from ALI in 
the USA each year [6]. These data are comparable to deaths 
from human immunodeficiency virus (HIV) and breast can-
cer [6]. Studies have also shown that patients with ARDS 
who develop AKI demonstrate increased all-cause mortality. 
Cooke et al found that the relative risk of death from ARDS 
in patients with oliguric renal failure was 1.97, where oliguric 
renal failure was defined as production of ≤ 500 mL of urine 
in a 24-h period and a serum creatinine of ≥ 2.0 on the day 
of onset [6]. As seen in the ARDSNet trial, patients with AKI 
and ARDS had close to 2 times the mortality of that seen with 
ARDS alone (58% among subjects with AKI compared to 28% 
without AKI (P < 0.001)) [7]. Newly theorized risk stratified 
scoring systems have found patients with severe ARDS with 
hypertension, elevated aspartate aminotransferase levels, and 
elevated D-dimers had higher risk of developing AKI, and 
higher risk of mortality [8]. Unfortunately, to gauge a proper 
understanding of epidemiological trend across multiple studies 
is difficult as there are multiple barometers of AKI utilized that 
differ from KDIGO recommendations.

Pathophysiology

The exact underlying mechanism for AKI in patients with 
ARDS is an area of intense research, because it is not yet 
clearly understood. Previous studies have demonstrated that 
AKI in the setting of ARDS tremendously increases mortality 
[9]. Adult studies in patients with ARDS have found that 35% 
patients end up developing AKI [10]. In one study by Darmon 
et al, the mortality in patients who have ARDS and AKI was 
42.3%, while that in patients without AKI was 20% [11].

There have been some studies that attempt to explain 
the pathophysiology of AKI in ARDS. The three main pos-
sible mechanisms are mechanical ventilation, hypoxemia and 
systemic inflammation [11]. However, among these three fac-
tors, mechanical ventilation appears to be the most significant 
event. Mechanical ventilation leads to a cascade of events in 
multiple organs, including kidney, which eventually leads to 
AKI thus increasing mortality. There have also been multiple 
studies that showed that mechanical ventilation can indepen-
dently cause AKI [12-14].

In one study in a pediatric population, multiple aspects of 
mechanical ventilation were evaluated as potentially increas-

ing risk for AKI in ARDS: peak inspiratory pressure (PIP), 
positive end expiratory pressure (PEEP), mean airway pressure 
(MAP) and tidal volume (TV). However, only PEEP was inde-
pendently associated when adjusted for potential confounders. 
This association has been reported in multiple previous studies 
as well [15]. A systematic review and meta-analysis by van 
Der Akker and his team showed the mechanical ventilation in 
patients with ARDS increases the risk of developing AKI by 
almost 3 times. But this analysis failed to identify association 
of PEEP or TV with AKI [14]. Evidence also indicated that 
barotrauma caused by high pressure ventilation, not only has 
potential to injure the lung, but also causes systemic inflam-
mation and organ dysfunction due to release of inflammatory 
cytokines. Several cytokines such as tumor necrosis factor-α 
(TNF-α), transforming growth factor-β1 (TGF-β1), interleu-
kin-1B (IL-1B), IL-6, and IL-8 have been identified with high-
er rates of AKI [7, 16, 17].

In an experimental lung model, Imai and his team found 
that high alveolar pressures, which occur in the setting of high 
PEEP, increase incidence of programmed cell death in renal tu-
bules, which might lead to AKI [18]. The consequence of these 
elevated pressure alter the hemodynamic of the heart, which 
in turn affects the homeostasis of the kidney. Positive pres-
sure ventilation decreases venous return to the heart, which 
alters the cardiac preload, pulmonary vascular resistance and 
afterload to the right side of the heart. All these hemodynamic 
changes eventually lead to decreased perfusion to all the or-
gans in the body, especially kidneys, leading to reduced glo-
merular filtration rate (GFR) and AKI [19].

Ventilation Strategies of ARDS and AKI

Breakthrough studies have shown the benefits of low TV ven-
tilation strategies in the treatment of ARDS. ARDSNet trials 
performed in the 2000s pivoted the change in the ventilation 
management of patients in ARDS [20]. Low TV ventilation, 
described as 6 mL/kg TV based on ideal body weight, de-
creased mortality, duration of intensive care unit (ICU) days, 
duration of ventilation, and incidence of non-pulmonary organ 
injury [20]. In one of the studies, non-pulmonary organ injury 
defined renal failure as serum creatinine concentration of at 
least 2 mg/dL. Onset of renal failure took longer in low TV 
ventilation strategy when compared to traditional TV ventila-

Table 1.  Diagnostic Criteria for Diagnosis of ARDS (Adapted From the Berlin Definition [5])

Timing: Respiratory symptoms must have an onset within 1 week of known primary insult.
Chest imaging: Includes bilateral opacities not fully explained by effusions, lobar collapse, lung collapse, or nodules on chest X-ray or computed 
tomographic scan.
Cause of edema: Not fully explained by cardiac cause or fluid overload states with evidence from objective assessment and diagnostic tools 
required (i.e., echocardiography).
Severity assessment of hypoxemia using ratio of arterial oxygen tension to fraction of inspired oxygen:
  Mild: PaO2/FiO2 > 200 mm Hg but ≤ 300 mm Hg with PEEP or CPAP ≥ 5 cm H2O
  Moderate: PaO2/FiO2 > 100 mm Hg but ≤ 200 mm Hg with PEEP or CPAP ≥ 5 cm H2O
  Severe: PaO2/FiO2 ≤ 100 mm Hg with PEEP or CPAP ≥ 5 cmH2O
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tion (P = 0.005) [20]. Benefits of low TV ventilation strategy 
are seen with mild hypercarbia which can be renal protective 
but can be complicated with exacerbation of severe metabolic 
acidosis leading to hemodynamic instability [21]. Studies have 
demonstrated that higher TVs were associated with increased 
levels of TNF-α, IL-1B, IL-6, and IL-8, with higher rates of 
AKI or higher number of days with AKI [22]. Moreover, ani-
mal models have shown that exposure to moderate hypercap-
nia (PaCO2 80 - 100) is more favorable with less inflammatory 
injury than animals with severe hypercapnia (PaCO2 of 130 - 
150) due to the inhibition of NF-kB expression during increas-
ing levels of hypercapnia [23].

There is still mounting evidence to suggest that increas-
ing deleterious effects of lung dysfunction, its treatment 
strategies, and subsequent kidney injury explains the natural 
progression of multi-organ failure seen in critically ill pa-
tients. Elevated PEEP, well documented to be beneficial in 
ARDS management, can also alter hemodynamic changes as 
it relates to venous return, cardiac afterload, thus decreasing 
cardiac output along with renal blood flow [15]. Cardiorenal 
interactions studied by Annat et al has shown that increasing 
PEEP (PEEP of greater than 10 cm H2O) leads to significant 
reductions in urinary output, renal blood flow, sodium excre-
tion, and potassium excretion [21]. These changes were re-
versed when PEEP was withdrawn. In contrast, studies have 
also shown ventilation using higher volume and low levels 
of PEEP lead to increase epithelial injury in nephrons due to 
a correlation between Fas ligand changes and serum creati-
nine changes [18]. A large meta-analysis performed in 2013 
exhibited a 3-fold increase in the risk of AKI in both ARDS 
and mechanical ventilation [24, 25]. Data have shown inde-
pendent associations between ARDS and mechanical ventila-
tion to AKI [24]. Thus these studies have proposed that ARDS 
and mechanical ventilation be listed as risk factors of AKI. 
A secondary analysis of a multi-center observational study 
has shown that the presence of AKI was associated with pro-
longed duration of mechanical ventilation [25]. Patients who 
received higher TVs on day 1 to 3 upon intubation for ARDS 
had significantly higher risk of renal nonrecovery [26]. Com-
paratively, use of lower TVs over the first 3 days of patients 
diagnosed with ARDS was significantly associated with renal 
recovery [26]. Long-term consequences of ventilation strate-
gies in the treatment of ARDS to renal physiology remain to 
be determined [11].

Fluid Management in ARDS and Renal Perfusion

Often patients with ARDS are given liberal amounts of fluids 
for management of the underlying cause of systemic injury 
(e.g. sepsis, trauma, other organ pathology). Initial phases 
of these conditions necessitate large volume resuscitation in 
order to achieve and maintain hemodynamic stability [24]. 
After the return of hemodynamic stability, administration of 
additional volume has been shown to be detrimental [27]. 
Inability to preserve lower fluid balance after hemodynamic 
stability was found to be an independent mortality risk factor 
in patients who developed ALI in the setting of septic shock 

[27]. Compared to the use of liberal fluid strategies, conserva-
tive use of normal saline by achieving a negative fluid balance 
improved oxygenation index, lung injury as well as decreased 
length of stay in the ICU [28]. Increased renal perfusion with 
liberal fluid management did not offset the worsening of lung 
function. There was also less reported use of dialysis in the 
first 60 days with the conservative fluid strategies. This trial, 
also known as Fluid and Catheter Treatment Trial (FACTT) 
study, also showed that administration of intravenous (IV) 
fluids to shock-free patients did not lead to improvement of 
kidney function, but only lead to delay in the resolution of 
lung injury [28]. Overall, the results of this study favored the 
use of a conservative fluid strategy for critically ill patients 
with ARDS.

Continuous renal replacement therapy (CRRT) in ARDS

CRRT has been used as a modality for renal support in critical-
ly ill patients in the ICU setting [29]. Continuous venovenous 
hemofiltration (CVVH) is a CRRT that combines clearance, 
diffusion, and convection, allowing for the extraction of fluids 
and electrolytes from a patient’s blood [30]. This modality has 
been useful in removing key humoral mediators of systemic 
inflammatory response by convection and absorption. Stud-
ies have shown the existence of therapeutic benefits of CRRT 
in patients with ARDS [31]. With the compromised alveolar-
capillary barrier function in patients with ARDS, CRRT is 
beneficial for extracorporeal treatment in maintaining goals 
for conservative fluid strategy [29]. CRRT is also beneficial 
in eliminating inflammatory mediators that contribute to the 
pathogenesis of ARDS. As discussed above, TGF-β1 is a key 
mediator for impeding development ARDS in patients [32]. 
TGF-β1 concentrations have been reported to be substantially 
elevated in lung fluids in patients with ALI and ARDS [33, 34]. 
Studies have also shown that after initiation of CRRT, TGF-β1 
concentrations decreased and were associated with clinical im-
provement of outcomes in patients based on PaO2/FiO2 ratios 
[29]. Data support findings which show that decreased TGF-β1 
concentrations are associated with more ventilator-free days 
and ICU-free says [35]. Use of CRRT, when initiated early, is 
associated with a 28% mortality risk reduction in patients with 
AKI in the ICU setting [36]. This statistic was not reproduced 
in the setting of severe ARDS due to influenza A. In a study 
looking at the outcomes of AKI in patients with severe ARDS 
due to influenza A, the need for CRRT was associated with 
increased mortality [26]. In this population, vasopressor use 
and duration was associated with CRRT utilization and with 
increased mortality [37].

However, due to the limitations underlying the results 
of these studies, conclusions for practical use warrants reex-
amination. There still exists variability in the defining ARDS 
in subset of studies as many still use the 1994 American-
European consensus definition for ARDS, as opposed to the 
most current Berlin ARDS definition [29]. Several inflam-
matory markers are involved in the development of ARDS 
in patients, not all of which have been examined with CRRT. 
Overall, multifactorial benefit with the use of CRRT for the 
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treatment of AKI in the setting of ARDS does merit discus-
sion.

Conclusions

AKI in conjunction with ARDS increases mortality drastically. 
Modalities used to treat ARDS also have a pronounced effect 
in causing kidney injury. This review aims to provide a concise 
understanding on the intricacies of managing AKI in the set-
ting of primary ARDS as it relates to low TV ventilation and 
fluid restriction strategies for internists and intensivists alike. 
Future studies that focus on the cause of death in patients with 
AKI with ARDS may improve the overall care in this critically 
ill population.
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