
 

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

Discuss this article

 (0)Comments

REVIEW

Meta-fibrosis links positive energy balance and mitochondrial
 metabolism to insulin resistance [version 1; referees: 3

approved]
Daniel S. Lark , David H. Wasserman1,2

Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN, USA

Abstract
Obesity and insulin resistance often emerge from positive energy balance and
generally are linked to low-grade inflammation. This low-grade inflammation
has been called “meta-inflammation” because it is a consequence of the
metabolic dysregulation that can accompany overnutrition. One means by
which meta-inflammation is linked to insulin resistance is extracellular matrix
expansion secondary to meta-inflammation, which we define here as
“meta-fibrosis”. The significance of meta-fibrosis is that it reflects a situation in
which the extracellular matrix functions as a multi-level integrator of local (for
example, mitochondrial reactive oxygen species production) and systemic (for
example, inflammation) inputs that couple to cellular processes creating insulin
resistance. While adipose tissue extracellular matrix remodeling has received
considerable attention, it is becoming increasingly apparent that liver and
skeletal muscle extracellular matrix remodeling also contributes to insulin
resistance. In this review, we address recent advances in our understanding of
energy balance, mitochondrial energetics, meta-inflammation, and
meta-fibrosis in the development of insulin resistance.
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Introduction
Advances in industrial and agricultural technology combined 
with lower rates of energy expenditure through physical activity 
have had the unintended consequence of creating a dramatic rise 
in the prevalence of obesity, insulin resistance (IR), hypertension,  
and dyslipidemia. These comorbidities are principal compo-
nents of the metabolic syndrome as well as risk factors for type 
2 diabetes mellitus and cardiovascular disease. The public health 
impact of these altered metabolic states is clear when considering 
that, in 2012, approximately 33% of United States citizens (over  
100 million people) were projected to have at least one component 
of the metabolic syndrome1.

Positive energy balance at the whole-body level and altered oxida-
tive metabolism at the cellular level are central to the development 
of IR. However, the conduit linking nutrient status and cellular  
energetics to pathophysiological states like IR is incompletely 
defined. In this commentary, we provide a framework for how  
mitochondrial energetics along with metabolically driven inflam-
mation (meta-inflammation) and extracellular matrix (ECM)  
remodeling leading to fibrosis (meta-fibrosis) link overnutrition 
to IR (Figure 1). As several recent discoveries suggest, there is a 

great deal to be learned regarding the etiology of IR by studying  
organ-level physiological events in the context of the extracellular  
milieu. The focus here will be on metabolism, molecular  
organization, and cell signaling in the pathogenesis of IR. The 
important roles of gene transcription and epigenetics in the  
development of IR are beyond the scope of this commentary.  
Readers are directed to recent reviews on these topics2,3.

Energy balance and the metabolic syndrome
Energy balance is defined as the gastrointestinal absorption of die-
tary macronutrients minus whole-body energy expenditure. Human 
evolution has selected for traits that facilitate the efficient mobili-
zation, metabolism, and storage of macronutrients. The biological 
significance of these adaptations lies in the need to store nutrients 
during times of nutrient excess and the ability to mobilize fuel in 
situations of nutrient deficiency. Nutrient storage is important for 
acute bouts of elevated energy expenditure or prolonged periods 
during which food is not readily available. Indeed, mechanisms for 
storing excess glucose (glycogen), lipids (triglyceride), and amino 
acids (protein) obtained from the diet are exquisitely sensitive. 
While these adaptations have been critical for survival and species 
propagation, people living in industrialized societies now have easy 
access to high-calorie foods and do not need to expend consider-
able energy to obtain their food. This has led to a sustained positive 
energy balance. Since this is a situation rarely encountered during 
the course of human evolution, the body is poorly equipped to adapt 
to dietary excess. As such, the chronic energy surplus incurred 
by overnutrition and sedentary behavior has become a persistent  
metabolic burden that leads to adipose tissue expansion and  
obesity in many individuals4. Obesity, in turn, is central to the 
development of IR.

The evolutionarily conserved mechanisms that make survival  
possible during periods of famine also make humans refractory to 
weight loss. Resistance to weight loss and weight maintenance is 
recognized as a primary barrier to improving metabolic health5. 
This is most clearly demonstrated when considering the effects of 
caloric restriction and physical activity on energy balance and body 
weight. In both obese and non-obese humans6–8, prolonged caloric 
restriction results in significant weight loss, but it is accompanied 
by reductions in resting metabolic rate (RMR) beyond that which 
can be accounted for by weight loss alone. Since RMR is a primary 
contributor to the daily energy budget9, this represents a significant 
barrier to long-term weight loss. It is notable that exercise alone 
is only marginally effective as a therapy for weight loss10–12. This 
is likely due to both metabolic and behavioral obstacles. Exercise 
training fails to increase RMR in obese individuals with diabetes13,  
and this is potentially due to increased metabolic efficiency14. 
Exercise training has had mixed results in eliciting weight loss in 
both rodents15 and humans10 and is explained in part by increased 
food intake. In addition to RMR, “non-exercise activity thermo-
genesis” (NEAT) is a major contributor to energy expenditure in 
mice and humans16. Mice given access to a running wheel increase 
their physical activity and energy expenditure over a four-week 
period, but the metabolic cost of activity progressively decreases 
concurrently with decreased NEAT17. This is significant because fat 
gain with overnutrition in humans is positively correlated with an 
increase in NEAT18. Whether the bidirectional modulation of NEAT 

Figure 1. Positive energy balance promotes insulin resistance via 
metabolism-driven inflammation and fibrosis. Energy balance is 
defined as the difference between absorbed dietary macronutrients 
(Supply) and energy expenditure (Demand). Energy supply is 
determined by the quantity and composition of macronutrients 
consumed, whereas energy demand is determined by exercise, 
non-exercise activity thermogenesis, and resting metabolic rate. A 
net positive energy balance (Supply > Demand) leads to obesity 
and a cascade of events that includes mitochondrial carbon stress 
(that is, an oversupply of macronutrients to mitochondria). This 
metabolic stress on mitochondria can promote meta-inflammation 
and meta-fibrosis that ultimately contribute to cellular and systemic 
insulin resistance.
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based on whole-body energy balance is modifiable therapeutically 
remains to be seen but may be a viable strategy for combating  
obesity. Complicating therapeutic strategies further is a growing 
body of literature demonstrating that the metabolic adaptations 
that occur with weight loss predispose an individual to accelerated 
weight regain and increased adiposity upon cessation of a super-
vised diet or exercise regimen or both19. Notably, recent work sug-
gests that glucocorticoid antagonism mitigates the weight regain 
and IR that occur following cessation of voluntary exercise in rats20. 
A better understanding of how humans resist weight loss, even in 
the setting of obesity, is critically important in that it may reveal 
novel therapeutic strategies for treating obesity and IR.

Mitochondrial energetics and the pathogenesis of 
insulin resistance
As the demand-driven terminus of oxidative metabolism, mito-
chondria are intricately involved in the maintenance of energy  
balance, and several recent reviews have highlighted the  
importance of mitochondrial energetics to the etiology of IR21–23.  
At the level of the mitochondrion, energy balance is established by 
a dynamic rate of carbon flux through the tricarboxylic acid (TCA) 
cycle that supports ATP production via oxidative phosphorylation. 
In the setting of overnutrition, there is a supply/demand mismatch 
that results in excess anaplerotic flux of carbon from fatty acids 
entering the TCA cycle relative to the ATP demand leading to IR24. 
Excessive anaplerotic flux creates a mitochondrial “carbon stress” 
that has been well documented in both skeletal muscle (SkM) and 
liver. This carbon stress promotes IR through incompletely defined 
mechanisms that likely involve post-translational protein modi-
fications that alter insulin signaling or protein trafficking (that is, 
GLUT4 translocation). The teleological explanation for limiting 
SkM glucose uptake in the face of excess dietary lipids may be that 
SkM is unable to efficiently convert excess intracellular glucose to 
an inert metabolite (that is, fatty acids).

In the liver, greater fatty acid availability accelerates anaplerotic 
flux contributing to IR that correlates with the severity of non- 
alcoholic fatty liver disease (NAFLD) in humans25. This appears 
to be linked, at least in part, to incomplete β-oxidation in the set-
ting of overnutrition26. This hypothesis is supported by findings 
that acyl-carnitine, the carbon chain intermediate of β-oxidation, 
is increased in human plasma27 as well as rodent SkM26. Free car-
nitine in SkM is also reduced in the setting of obesity or high-fat 
feeding or both28, suggesting a reduced capacity to handle excess 
fatty acids. Collectively, excess dietary fatty acids entering meta-
bolically active tissues overload the mitochondria, leading to IR.  
A teleological explanation for why mitochondria induce IR may be 
to mitigate oxidative damage induced by overnutrition29.

Mitochondria can also engage in cataplerosis, which is removal 
of carbons from the TCA cycle. In SkM, one proposed role for  
cataplerosis is as a buffering system to avoid mitochondrial  
carbon excess that can lead to increased reactive oxygen species 
(ROS) production during overnutrition24. SkM cataplerosis occurs 
in large part via carnitine acetyltransferase (CrAT), an enzyme 
that is responsible for exporting acetyl and acyl groups bound to  
carnitine from the mitochondrial matrix into the cytosol. Mice 
with SkM-specific deletion of CrAT have impaired glucose  

tolerance and increased oxidative stress30, illustrating a need for 
mitochondrial carbon efflux (that is, cataplerosis) to preserve 
SkM metabolic homeostasis in the setting of overnutrition. In the 
liver, cataplerosis is essential for the production of both glucose  
(gluconeogenesis) and ketones (ketogenesis). Predominantly 
expressed in gluconeogenic organs (liver and kidney), phosphoe-
nolpyruvate carboxykinase (PEPCK) converts oxaloacetate to  
pyruvate and is a key enzyme for gluconeogenesis. Loss of  
PEPCK in mice reduces hyperglycemia in leptin receptor– 
deficient (db/db) diabetic mice31. Similarly, ketogenesis exerts 
partial protection against high-fat diet (60% calories from fat)– 
induced hyperglycemia and fatty liver, primary complications 
linked to obesity and overnutrition32. Notably, however, mice fed 
a ketogenic diet (more than 90% calories from fat) are lean and 
hypoinsulinemic but also display fatty liver33,34. This may be due 
to the impaired liver mitochondrial respiratory capacity observed 
in mice fed a short-term (14 days) ketogenic diet35. Strategies to 
increase cataplerosis in a tissue- and product-specific fashion  
could yield valuable strategies for preserving glucose homeosta-
sis and insulin sensitivity but should be considered in the context  
of also preventing the development of fatty liver.

How does mitochondrial carbon excess promote IR? Carbon  
turnover that exceeds metabolic demand leads to accumulation 
of reducing equivalents (NADH and FADH

2
) that exert greater  

“reducing pressure” (that is, more electrons) on the electron  
transport system36. This buildup of reducing equivalents in the 
matrix and electrons within the electron transport system promotes 
the formation of ROS that modulate a wide variety of normal and 
pathophysiological cellular processes37. For example, acute or 
chronic high-fat feeding increases mitochondrial ROS produc-
tion that has been shown in some29,38–40, but not all41, reports to 
be causal for the development of IR. Notably, fatty acids can also  
“uncouple” oxidative phosphorylation42, raising the possibility that 
mitochondrial oxidative efficiency may be an additional mecha-
nism to manage carbon excess in obesity. Targeting this mechanism 
may be feasible in light of recent work demonstrating that mito-
chondrial oxidative efficiency is a dynamic process that is acutely  
sensitive to energetic demand43. Historically, the use of mitochon-
drial uncouplers as therapeutic agents has been met with skepti-
cism following a string of deaths linked to the protonophore  
2-dinitrophenol in the 1930s. However, recent efforts have  
provided new lead compounds that may be promising in the  
treatment of obesity44–46. While mitochondria-targeted therapies 
are being studied intensively and hold great promise, an alter-
native approach may be to address downstream effectors of  
mitochondrial oxidants. The downstream processes affected by 
mitochondrial oxidants are incompletely defined but include  
inflammation and expansion of the ECM. The remainder of this 
article will be spent discussing these processes in the context of 
their individual, and collective, contributions to the etiology of IR.

Inflammation and extracellular matrix expansion in 
the etiology of insulin resistance
Low-grade metabolically driven “meta-inflammation”47 contrib-
utes to IR in obesity48. There are numerous intersecting mecha-
nisms linking inflammation and ROS49, including a critical role for  
the innate immune system that is coupled to macrophage  
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infiltration50,51. Macrophages recruited with chronic overnutrition 
are pro-inflammatory (M1; CD11b+) and secrete tumor necrosis 
factor alpha (TNFα) that has been shown to contribute to IR in  
adipose, SkM, and liver52–54. M1 macrophages also play a criti-
cal role in wound healing. It has been observed that the meta- 
inflammatory response to obesity that includes M1 macrophage 
infiltration is responsible for the accumulation of ECM proteins in 
insulin-sensitive tissues55. The evidence linking these processes in 
adipose, SkM, and liver is outlined below.

Adipose tissue function is reliant upon, and in certain situations 
compromised by, the ECM surrounding adipocytes56. Healthy 
adipose tissue expansion involves a balance between enzymatic  
degradation and subsequent synthesis of ECM proteins57.  
Pathogenic obesity in humans is characterized by adipose tissue  
fibrosis due to excessive ECM deposition and reduced ECM  
degradation that is associated with IR58–61. Paradoxically, recent 
work by Muir et al.62 showed that diabetics have reduced adi-
pose tissue fibrosis and greater adipose tissue hypertrophy.  
Genetically obese (ob/ob) mice have increased expression of genes 
encoding collagens63 that is exacerbated by high-fat feeding64.  
Genetic loss of the adipose tissue–abundant collagen VI in mice 
mitigates adipocyte inflammation, diet-induced obesity (DIO), 
and glucose intolerance while permitting greater adipocyte  
hypertrophy63. Beyond collagen, various other ECM components—
including osteopontin65,66, hyaluronan67, thrombospondins68,69, and  
microfibril-associated glycoprotein 1 (MAGP1)70—accumulate  
in adipose tissue with obesity and contribute to IR. Adipose  
tissue ECM expansion is attenuated by the anti-diabetic drug  
metformin71, a drug that is also known to reduce mitochondrial 
ROS production39. Whether metformin improves metabolic health 
by mitigating mitochondrial ROS production or ECM accumulation 
or both remains to be addressed directly.

Obesity induces SkM ECM expansion55,72,73 that would be expected 
to increase the resistance to glucose delivery, an essential controller  
of glucose uptake74. Even short-term (28 days) high-fat feeding75  
is sufficient to induce SkM ECM expansion. This appears to be 
reversible as SkM collagen accumulation is ameliorated in obese 
mice following exercise training73 and preventable in mice with 
genetic enhancement of SkM mitochondrial ROS scavenging55.  
A genetic knockout of matrix metalloprotease-9 (MMP-9), a 
key ECM-degrading enzyme, in obese mice causes increased  
collagen and a further deterioration of SkM insulin action76.  
Treatment with pegylated hyaluronidase causes degradation 
of hyaluronan and rescues IR in obese mice77. These studies  
demonstrate a direct link between ECM accumulation and insulin 
action in SkM.

In the setting of obesity, circulating lipids are incompletely  
sequestered in adipose tissue and consequently accumulate in SkM 
and liver and lead to IR. NAFLD is a primary risk factor for the  
development of IR and diabetes via liver fibrosis78,79. Mice fed a  
high-fat high-fructose diet exhibit liver fibrosis that accompanies 
lipid accumulation and IR80,81. The extent and scope to which  
overnutrition alters liver ECM are not completely known,  
highlighting a need for future studies.

ECM accumulation is recognized as a structural barrier  
between cells and the vascular space that restricts molecular  
transport82. More recently, a body of evidence has emerged  
indicating that cellular changes that accompany ECM accumula-
tion are receptor-mediated. As such, the ECM is a biomolecular  
“motherboard” that determines the physical and metabolic  
properties of the tissue and the cells that they envelope. A greater 
understanding of how the ECM changes in obesity and the  
contribution of individual ECM proteins will be necessary in  
defining extracellular processes impacting metabolic health.

Extracellular matrix expansion and integrins in the 
setting of obesity
Integrins are a class of receptors that bind ECM proteins and have 
numerous overlapping functions, including cell adhesion, mechan-
otransduction, and differentiation83,84. ECM receptors are involved 
in a myriad of receptor signaling events through physical and 
functional interactions with growth factor receptors, including the 
insulin receptor85. In this way, ECM receptors orchestrate dynamic 
and specific signaling responses to diverse physiological and  
pathophysiological conditions. Integrins functionally link ECM 
changes to a multitude of conditions, including IR86 (summarized 
in Figure 2).

Integrins are heterodimers consisting of α and β subunits with  
varying ligand specificities and expression in different tissues.  
Differentiated insulin-sensitive cells from SkM, adipose tissue, 
and liver express a variety of α subunit isoforms but express only a 
single β integrin isoform (β1)87–89. Whole-body loss of the integrin 
α1 subunit, a pro-fibrotic integrin receptor subunit that exclusively 
binds to β1, fails to protect against diet-induced SkM IR in mice; 
however, loss of the anti-fibrotic α2 isoform that also binds to β1 
is protective55. It is interesting to note that combined SkM and  
myocardial loss of the integrin β1 subunit results in IR in lean 
mice90. Integrin-linked kinase (ILK) is a protein that physically 
associates with the intracellular tail of the β integrin subunit90. In 
contrast to the IR caused by knockout of the integrin β1 subunit 
in both SkM and myocardium of lean mice90, SkM-specific loss 
of ILK (mILK-KO mice) results in improved SkM insulin action 
in DIO mice91. Liver-specific deletion of ILK also protects against 
IR in DIO mice92. Whether adipocyte ILK deletion has effects on  
nutrient metabolism remains to be determined.

Despite its name, ILK lacks a functional kinase domain but 
rather functions as a scaffold for at least 26 high-fidelity binding  
partners93. Most notable among these binding proteins are PINCH 
and parvin, which, together with ILK, form an ILK/PINCH/Parvin  
(IPP) complex. PINCH consists of two isoforms (PINCH1 and  
PINCH2) that have both distinct and overlapping cellular  
functions94. In the context of glucose homeostasis, PINCH can bind 
to Nck2, which in turn interacts with insulin receptor substrate-1 
(IRS-1)95, a requisite for insulin signaling. Nck2 is highly expressed 
in epididymal adipose tissue and its genetic deletion in mice causes 
IR and increased lipolysis96. PINCH has also been implicated in 
the phosphorylation of Akt via interactions with ILK97. Three  
ubiquitously expressed isoforms of parvin exist (α, β, and γ). 
α- and β-parvin both can bind directly to f-actin and in this way 
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Figure 2. Putative mechanisms for the role of integrins in the development of insulin resistance. Extracellular matrix (ECM) proteins 
are ligands for integrins, a family of cell surface receptors. Integrins are linked to the regulation of glucose metabolism through numerous 
mechanisms. Integrins can co-localize with transforming growth factor beta (TGFβ) and insulin receptors that are key regulators of glucose 
uptake into tissues. Integrins are also involved in intracellular signaling through the integrin-linked kinase (ILK)/PINCH/Parvin (IPP) complex. 
PINCH is characterized as a modulator of kinase signaling pathways as it regulates Nck2 and Akt, requisite proteins for insulin signaling. 
Parvin is involved in the regulation of cytoskeletal dynamics that permit remodeling and translocation of mitochondria and various intracellular 
proteins (that is, glucose transporters). The integration of integrins with regulatory nodes for glucose metabolism highlights the potential 
significance of ECM-integrin signaling in the etiology of insulin resistance.

regulate cytoskeletal dynamics98. Parvin-mediated regulation of 
actin cytoskeletal dynamics is thought to occur, at least in part, 
via interactions between parvin and the Rho GTPase Rac199,100  
and actin depolymerizing factor protein cofilin101. Rac1 is required 
for insulin-stimulated glucose uptake and is impaired during IR102, 
representing a potential link between integrins and insulin action. 
A potential role for γ-parvin in the context of insulin action has 
not been elucidated. Rac1 and cofilin are also involved in the  
regulation of numerous mitochondrial processes, including  
fission103, apoptosis104, and translocation105, demonstrating a link 
between integrins and the regulation of oxidative metabolism. 
Whether integrins and the IPP complex directly regulate Rac1 or 
cofilin in obesity is not yet known, nor is it known what role the 
IPP complex may play in obesity through its other binding partners.  
A recent report shows that focal adhesion kinase (FAK), an  
alternative downstream target of integrin activation, can modulate  
insulin sensitivity through regulation of adipocyte survival106.  
In light of the complexities of the ECM, integrins, and  

intracellular signaling pathways, much remains to be learned about 
ECM-integrin interactions in IR.

Summary and future directions
The etiology of IR involves both cell-intrinsic regulation of  
nutrient metabolism and integrated systems pathophysiology. 
The established paradigm of meta-inflammation coupled with the 
emerging concept of meta-fibrosis illustrates the complex nature of 
IR; however, several major questions remain to be addressed. For 
example, the composition and organization of the ECM must be 
elucidated so that the contribution of individual proteins or com-
plexes or both can be mechanistically understood. Additionally, 
the role of downstream intracellular substrates of integrin signal-
ing must be defined in the context of IR and cellular metabolism. 
The complex nature and broad importance of ECM/integrin func-
tion will be better understood through interdisciplinary studies  
that draw expertise from numerous fields (such as mechanobiol-
ogy, biophysics, endocrinology, and molecular metabolism).  
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It is anticipated that future studies will provide a more  
complete understanding of how the ECM functions as a  
biophysical regulator of whole-body function and support the 
development of novel therapeutics aimed at treating IR by  
mitigating meta-fibrosis.
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