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Electroacupuncture ameliorates surgery-induced spatial memory 
deficits by promoting mitophagy in rats
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Background: This study sought to explore the mechanism underlying the therapeutic effects of 
electroacupuncture (EA) on spatial memory deficits caused by surgery.
Methods: Hepatic apex resection was performed under propofol-based total intravenous anesthesia. Male 
Sprague-Dawley rats were subjected to EA treatment or EA + mitochondrial division inhibitor-1 (mdivi-1) 
treatment once a day for three consecutive days after surgery. The Morris water maze test was used to 
evaluate the spatial memory of the rats after surgery. Tissue from the hippocampus of each rat was frozen 
and used for transcriptomic and proteomic analyses to identify potential targets for EA treatment. Western 
blotting was used to confirm the protein expression levels. The levels of reactive oxygen species (ROS) and 
adenosine triphosphate (ATP) were detected using commercial kits. The rat mitochondria were then isolated, 
and the activity of mitochondrial complex V was assessed.
Results: EA attenuated surgery-induced spatial memory deficits on postoperative day 3, while these 
effects were reversed by treatment with the mdivi-1 (P<0.05). Ribonucleic acid (RNA)-sequencing 
revealed that EA upregulated multiple metabolic pathways and the phosphatidylinositol 3‑kinas/protein 
kinase B signaling pathway. The proteomic and western blotting results suggested that the EA treatment 
substantially downregulated coiled-coil-helix-coiled-coil-helix domain containing 3 (ChChd3) expression in 
the hippocampus. The EA treatment significantly increased the autophagy-related protein levels, including 
phosphatase and tensin homolog-induced kinase 1, Parkin, MAP1LC3 (LC3), and Beclin1, and inhibited the 
production of ROS and inflammatory cytokine interleukin-1β in the hippocampus (P<0.05).
Conclusions: These results suggest that EA ameliorates postoperative spatial memory deficits and protects 
hippocampus from oxidative stress and inflammation through enhanced autophagy in an animal model of 
perioperative neurocognitive disorders (PNDs).
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Introduction

Perioperative neurocognitive disorder (PND) is a common 
complication after surgery, which manifests as an acute 
neuropsychiatric state with symptoms, including memory 
deficits, disorientation, and abnormal abstract thinking and 
social behaviors (1). The prevalence of PND in patients has 
been reported to be 29% at 3 months and 33.6% at 12 months 
after surgery (1). In addition to advanced age, the main risk 
factors for PND include a low education level, pre-existing 
cognitive impairment, several poor health conditions, and the 
duration of the surgery (2). Although multiple factors may 
contribute to the development of PND, surgery trauma but 
not anesthesia is a main factor to exacerbate the disease (3).  
PND results in increased morbidity and mortality, longer 
hospitalization, and increased health care costs (1). The 
pathogenesis of PND is not fully understood, but it has 
been shown to involve oxidative stress, neuroinflammation, 
mitochondrial dysfunction, blood-brain barrier damage, 
impaired synaptic function, and a lack of neuro-nutritional 
support (4). Currently, no effective measures for preventing 
and treating PND are available.

Mitophagy, a selective autophagy of mitochondria, is a 
key mechanism that mediates the removal of aged, damaged, 
or excessive mitochondria to maintain mitochondrial 
homeostasis for neuron survival (5,6). Reactive oxygen 
species (ROS) are mainly produced in the mitochondria, 
and mitochondrial dysfunction may lead to aberrant ROS 
production (7-9). Autophagy is widely present in eukaryotic 
cells (10). A number of neurological disorders were associated 
with autophagy (11). Neurons appear to be particularly 

dependent on autophagy, and the activation of autophagy 
ameliorates cortical and hippocampal neuron apoptosis (12). 
Autophagy dysfunction has been reported to be involved 
in anesthetic-induced cognitive deficits in aged rats (13). 
Autophagy has been shown to play a protective role in some 
neurodegenerative disorders, and the regulation of autophagy 
has been recognized as an important therapeutic strategy 
for the treatment of such diseases (14). Phosphatase and 
tensin homolog-induced kinase (PINK1)-Parkin-mediated 
mitochondrial autophagy is responsible for the deliberate 
segregation and removal of damaged mitochondria. Previous 
studies have shown that impaired autophagic flux in the 
hippocampus leads to cognitive impairment (15,16). To 
date, few studies have investigated the association between 
autophagy and the development of PND.

Acupuncture is a traditional Chinese medical therapy that 
involves the insertion of needles into specific acupuncture 
points on the patient’s body. Electroacupuncture (EA) is 
a form of acupuncture therapy that combines traditional 
acupuncture with electrical stimulation. EA has been 
accepted by researchers as an effective treatment for various 
diseases, including cognitive dysfunction (17,18). A clinical 
study has shown that EA was effective at relieving cognitive 
impairment and related pathologies following surgery (19).  
A rodent study showed that EA improved cognitive 
performance in PND rats by reducing oxidative stress (20). 
Additionally, EA has been shown to protect against neuronal 
injury in cerebral ischemia-reperfusion by alleviating nitro/
oxidative stress-induced mitochondrial function damage and 
decreasing damaged mitochondria accumulation via PINK1/
Parkin-mediated mitophagy clearance (21). We hypothesized 
that EA would exert protective effects on spatial memory 
in a PND rat model by increasing mitophagy and reducing 
oxidative stress to reduce neuroinflammation. We present the 
following article in accordance with the ARRIVE reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6262/rc).

Methods

Ethical approval

This study was approved by the Ethical Committee of 
the Aviation General Hospital (No. HK-2019-12-17). A 
protocol was prepared before the study without registration. 
All the animal experiments were performed in accordance 
with the National Institutes of Health Guidelines for the 
Care and Use of Laboratory Animals. Efforts were made to 
minimize the number of animals used and their suffering.
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Key findings 
•	 Electroacupuncture (EA) ameliorates postoperative spatial memory 

deficits and protects hippocampus from oxidative stress and 
inflammation through enhanced autophagy in rats.
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Animals

Male Sprague-Dawley (SD) rats (aged 13–14 months 
and weighing 480–560 g) were provided by the Vital 
River Laboratory Animal Technology Co. Ltd. (Beijing, 
China) for this research. Based on our (22-24) and other 
published data (25,26), rats in this range are equivalent to 
a human aged greater than 45 years, which is considered 
one condition for the development of memory impairment 
following surgery. The rats were housed in cages (of 3–4 
rats per cage), kept under a constant temperature (21±1 ℃) 
and on a 12-h light/dark cycle and had free access to food 
and water. Food was withheld 18–24 h before surgery. The 
rats were acclimatized to the laboratory environment for 1 
week before the initiation of the experiments.

Experimental design

Experiment I
To verify the roles of EA in the PND rat model in addition 
to the specific signaling pathways and differentially expressed 
protein involved in EA, the 48 SD rats were randomly 
assigned to the following 4 groups using a random number 
table: (I) the control group (N=12); (II) the model group 
(N=12); (III) the EA group (N=12); and (IV) the sham EA 
group (N=12). The sample sizes were estimated empirically. 
The study investigators were aware of the treatment group 

allocation. The Morris water maze (MWM) was used to 
assess spatial memory. Ribonucleic acid (RNA) sequencing, 
proteomics, and western blot were employed to study the 
regulation mechanisms of EA. Figure 1A shows the design of 
the experiment schematically.

Experiment II
To study the effects of EA on PINK1/Parkin-mediated 
mitophagy clearance in a PND rat model, the 48 SD rats 
were randomly assigned into the following 4 groups using a 
random number table: (I) the control group (N=12); (II) the 
model group (N=12); (III) the EA group (N=12); and (IV) 
the mitochondrial division inhibitor-1 (mdivi-1) + EA group 
(N=12). The sample sizes were estimated empirically, and 
the study investigators were aware of the treatment group 
allocation. We measured the protein expression of the 
autophagic/mitophagy markers of LC3, Beclin1, PINK1, 
and Parkin (27). ROS levels and mitochondrial complex 
V activities were measured to assess oxidative stress and 
mitochondrial activity. Mdivi-1 was used to investigate 
whether mitophagy was involved in EA to improve 
cognition after abdominal surgery in the rats. Figure 1B 
shows the design of the experiment schematically.

Anesthesia and surgery
The PND model was established by resecting the hepatic 
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Figure 1 Experimental design. (A) Experiment I: 1 week before surgery, the rats were trained to find a hidden platform in the MWM test. 
The hepatic apex of the adult rats was then resected. After surgery, the rats were treated with EA daily for 3 consecutive days. Their memory 
ability was tested at 3 and 14 days postoperatively. The hippocampus tissue was subjected to Western blot and bioinformatics analyses. (B) 
Experiment II: the rats in the mdivi-1 + EA group were given mdivi-1 and EA therapy concurrently on days 1, 2, and 3. The rest of the 
method was identical to that of Experiment I. EA, electroacupuncture; MWM, Morris water maze.
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apex as previously described (28). Before surgery, each rat 
was weighed and rested for 30 minutes. The tail was then 
extended and a 26G-catheter (Covidien, Dublin, Ireland) was 
placed in the lateral tail vein, and 12.5 mg/kg of intravenous 
propofol (10 mg/mL, Xi’an Libang Pharmaceutical & 
Co., Ltd; Xi’an, Shanxi Province, China) was administered 
to induce anesthesia. The heart rate, respiratory rate 
and transcutaneous oxygen saturation was monitored. 
After the initial sedation, anesthesia was maintained in 
the spontaneously breathing rats during surgery via the 
continuous infusion of 0.625 mg/kg/min of propofol using 
a computer-assisted continuous infusion device (Kelly Med 
TM Syringe Pump, KL605T, Beijing, China). To produce 
analgesia, 0.1 mg/kg of buprenorphine (0.15 mg/mL, TIPR 
Pharmaceutical Responsible Co., Ltd., Tianjin, China) was 
subcutaneously administered immediately after the anesthetic 
induction. During surgery, a heat light was used to keep the 
rectal temperature at 37±0.5 ℃. After shaving the abdominal 
wall, each rat was placed in the supine position and had its 
abdominal cavity disinfected. The left hepatic duct and artery 
were ligated with a minor incision in the upper abdominal 
midline, and the median and left lateral lobes were excised. 
The procedure was concluded within 10 minutes. The 
peritoneum and skin were closed with sterile 4–0 chromic gut 
sutures. Wound infiltration with 0.1% ropivacaine 3 mg/kg  
(AstraZeneca, Sweden) was used for the postoperative 
analgesia. The rats in the control group were not given 
any treatment. The rats in the model group underwent 
resection of the hepatic apex under the same anesthesia and 
analgesia conditions as the control group. The rats in the EA 
group received EA therapy. The rats in the sham EA group 
were treated the same as the rats in EA group but without 
electricity. The rats in the mdivi-1 + EA group received both 
EA therapy and mdivi-1.

EA and mdivi-1 administration
The EA treatment was performed once a day (at 8.00 a.m.) 
for 3 days after surgery. Alcohol was used to disinfect the 
skin. As described by Yin et al. (29), the acupuncture needles 
(0.3×13 mm) were inserted horizontally at a depth of 3–4 mm  
at the following 2 points on the ankle: Sanyinjiao (SP6) and 
Zusanli (ST36). The location of the SP6 and ST36 was 
estimated based on the anatomy of the rat model (30). SP6 
was located 10 mm above the hindlimb medial malleolus 
front of the tibia and fibula. ST36 was located at the 
posterior and lateral side of the knee joint, 5 mm below the 
capitulum fibulae. An EA instrument (HANS 200A, Nanjing 
Jisheng Medical Technology Co., Ltd., Nanjing, China) 

was used to generate stimulation for 30 minutes each day at 
1.5 mA. The stimulation frequency of the EA ranged from  
2–100 Hz shifting automatically, frequency sweeping; pulse 
width of 0.6 ms at 2 Hz and 0.1 ms at 100 Hz, each lasting 
for 3 s) (31). The rats in the sham EA group were restrained 
in restrainers for 30 minutes with needles at acupoint ST36 
and acupoint SP6, but no electrical current was applied. On 
days 1, 2, and 3 following the surgery, the rats in the mdivi-1 
+ EA group received mdivi-1 in addition to the treatment 
received by the EA group. Mdivi-1 (SC8028, Beyotime, 
Shanghai, China) was dissolved in dimethyl sulfoxide and 
administered intraperitoneally at 3 mg/kg. It was applied to 
selectively inhibit mitophagy activation (32).

MWM
The MWM, which is a hippocampus-dependent test, was 
used to assess the spatial memory of the rats (33). A black 
metal pool (130 cm in diameter and 35 cm deep) was filled 
with water (23±2 ℃) to a depth of 25 cm, submerging the 
10-cm-diameter escape platform 2 cm below the surface. 
Non-toxic black ink was used to darken the water. The pool 
was split equally into the following 4 quadrants: northwest, 
northeast, southwest, and southeast. Visible cues were 
affixed to the 4 walls of the pool. The experimental sessions 
were recorded with a video camera positioned at the middle 
of the pool’s ceiling.

The rats were trained to use the MWM 1 week before 
the surgery. The MWM trials comprised 2 stages; that is, 
the spatial acquisition trial, and the probe trial. The spatial 
acquisition trial required 5 consecutive days for learning. 
For each training trial, each rat was carefully placed in the 
water near the pool’s edge with its head facing the wall. The 
rat had 60 seconds to find the platform in the southwest 
quadrant. Once on the platform, the rat was allowed to 
remain on it for 15 seconds. If the rat did not locate the 
platform within 60 seconds, it was led to it, and allowed to 
remain on it for 15 seconds. The rat was then taken from 
the water and placed in a holding cage for 60 seconds after 
each trial. Each of the 4 training trials had a different start 
quadrant location, and the sequence of the start quadrant 
positions changed each day. The rat was then towel-dried 
after testing and returned to its cage. The probe trial 
was performed the day before the surgery and 3 and 14 
days after the surgery. The hidden platform was removed 
before the probe trial, but the surrounding visual cues were 
preserved. Each rat was placed in a start quadrant position 
that was opposite to that of the previously trained position 
and permitted to swim for a full minute. The rat was towel-
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dried and returned to its cage after 60 seconds.

RNA-sequencing analysis
The rats were euthanized 3 and 14 days after surgery, their 
brain tissues were isolated, and hippocampal tissues were 
extracted. These sections were flash-frozen at −80 ℃ for 
further analysis. On postoperative day 3, the total RNA 
was isolated from the tissues using Trizol (Invitrogen, 
Carlsbad, CA, USA). For the library preparation, polyA was 
enriched from the total RNA as previously described (34). 
After the library preparation and sample pooling, Illumina 
sequencing was performed using Illumina HiSeq (Illumina, 
USA). Initially, in-house Perl scripts were used to handle the 
FASTQ-formatted raw data (raw reads). The clean data (clean 
reads) were acquired by deleting adapter reads, reads with 
>3 N and reads with > 20% nucleotides, and Qphred ≤5. All 
the downstream analyses used the ribosomal RNA-free data. 
Paired-end clean reads were used in the alignment process, 
and Hisat2 (35) and Feature count (36) were used to count 
the number of reads mapped to each gene. The differential 
expression analysis was performed with EdgeR (37). The 
P values were modified using Benjamini and Hochberg’s 
method to control the false discovery rate. Genes with a |log2 
(fold change)| value >1 and a q value <0.05 were considered 
DEGs. The top GO package and the KOBAS (38) package 
were used to implement the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses of the differentially expressed gene (DEG) sets.

Quantitative proteomics study and the trypsin digestive 
process
A proteomic analysis was performed using the tandem mass tag 
(TMT)-based labelling method as previously described (39).  
A high-intensity ultrasonic processor extracted the proteins 
from the hippocampus tissue samples in lysis solution (8M 
urea, 1% protease inhibitor) 3 days after the surgery. The 
residual debris was eliminated by 10 minutes of centrifugation 
at 12,000 g and 4 ℃. A bicinchoninic acid kit was used to 
measure the protein concentration.

For the trypsin digestion, the protein solution was 
diluted with dithiothreitol at 56 ℃ for 30 minutes before 
being treated with iodoacetamide at 37 ℃ for 15 minutes 
in the dark. The protein samples were then diluted with 
millimolar triethylammonium bicarbonate (TEAB) until the 
urea concentration was <2 M. Finally, trypsin was added at a 
mass ratio of 1:50 for the first digestion at 37 ℃ overnight, 
then 1:100 for the second digestion.

The TMT labeling process and the liquid 
chromatography-tandem mass spectrometry analysis
The peptides were then desalted and vacuum-dried on 
the Strata X C18 SPE column following the completion 
of the trypsin digestion process. After reconstituting in  
0.5 M of TEAB, the peptides were tagged according to the 
instructions of the TMT kit.

The sodium/iodide symporter sources were applied to 
the peptides after separation. Tandem mass spectrometry 
(MS/MS) was done on Q Exactive Plus (Thermo Fisher 
Scientific, Waltham, MA, USA) equipment connected online 
to an ultra-performance liquid chromatography system. At 
70,000 mass resolutions, complete peptides were identified 
using 2.0 kV electrospray (MS scan range, 350–1,600 m/z). 
The collected data were processed using a data-dependent 
scanning program. To minimize the repetitive scanning of the 
precursor ions, the automatic gain control was set to 50,000, 
with a signal threshold of 5,000 ions/second, a maximum of 
200 seconds, and a dynamic exclusion time of the tandem 
mass scan of 15 seconds.

Bioinformatics analysis
The “limma” package was used to conduct the differential 
expression analysis of the proteomics. The P values were 
modified using Benjamini and Hochberg’s method to 
control the false discovery rate. A fold change value >1 
and a P value <0.05 were used to identify the differentially 
expressed proteins. Both Hemel 1.0 and GraphPad9.0 were 
used to analyze the heat map.

Western blot
Proteins (30 μg) from samples were boiled in Laemmli 
loading buffer for 5 minutes before being transferred to 
0.2-m polyvinylidene-fluoride membranes (Millipore 
Corporation, Burlington, MA, USA) using 10% SDS-
polyacrylamide gels.  The blots were then treated 
overnight with the following antisera: β-actin (1:2,000; 
GB11001, Servicebio, Wuhan, China), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH; 1:3,000; AB-
M-M001 Good Here Biotech, Hangzhou, China), coiled-
coil-helix-coiled-coil-helix domain containing 3 (ChChd3; 
1:1,000; 68259-1-Ig, Proteintech, Wuhan, China), PTEN 
induced putative kinase 1 (PINK1; 1:1,000; 23274-1-
AP, Proteintech, Wuhan, China), Parkin (GB113802, 
Servicebio, Wuhan, China), Beclin 1 (1:1,000; GB112053, 
Servicebio, Wuhan, China), p62 (1:1,000; GB11239-1, 
Servicebio, Wuhan, China), interleukin (IL)-1β (1:1,000) 
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(66737-1-Ig, Proteintech, Wuhan, China) antibodies 
at 4 ℃. The blots were visualized using a horseradish 
peroxidase-conjugated goat anti-rabbit immunoglobulin 
G (1:3,000) (GB23303, Servicebio, Wuhan, China) and an 
enhanced chemiluminescence detection system, (Millipore 
Corporation).

Biochemical investigation
The ROS levels were evaluated using H2DCFDA (DCFH-
DA) fluorescent probes in a ROS Assay Kit (S0033S, 
Beyotime, Shanghai, China). The adenosine triphosphate 
(ATP) levels were measured according to the instructions 
of the kit (S0026, Beyotime, Shanghai, China). To analyze 
the activity of mitochondrial complex V, the mitochondria 
were extracted from the tissue using a Tissue Mitochondria 
Isolation Kit (C3606, Beyotime, Shanghai, China). The 
complex V activity of the mitochondria was quantified 
spectrophotometrically in accordance with the instructions 
of the detection kit (G0849W, Grace Biotechnology, 
Suzhou, China) and standardized to the protein content 
(nmol/min/mg protein).

Statistical analysis

SPSS software, version 18.0, was used to analyze all the data 
(SPSS, Inc., Chicago, IL, USA). The quantitative data are 
presented as the mean ± standard deviation. The cognitive 
performances of the rats in the MWM training phases 
were analyzed using a 2-way analysis of variance (ANOVA) 
(repeated measure). The experimental group and training 
day were taken as sources of variance of spatial memory, and 
the Bonferroni test was used for the post-hoc comparisons. 
One-way ANOVAs were performed for the probe test, 
biochemical index, and western immunoblots, and 
Newman-Keul’s test was used for the post-hoc comparisons. 
A P value <0.05 was set as the accepted level of significance.

Results

The effect of EA on the spatial memory of the PND rats

In Experiment I, compared to the control group, the number of 
platform crossings in the model group and the sham EA group 
decreased significantly 3 days after surgery (P<0.01, Figure 2A).  
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On postoperative day 3, the model group spent significantly 
less time in the target quadrant than the control group (P<0.01, 
Figure 2B). EA improved the decrease in the number of 
surgery-induced platform crossings (P<0.05, Figure 2A) and 
the time spent in the target quadrant (P<0.05, Figure 2B). As 
Figure 2C,2D show, the rats in all the groups did not differ 
significantly in terms of the platform location or swimming 
speed during the platform training. In Experiment II, the EA-
induced protective effect on spatial memory was reversed by 
mdivi-1 (see Figure 3A,3B). There were no differences among 
the groups in terms of the platform location and swimming 
speed during the platform training (Figure 3C,3D). In both the 
experimental I and experimental II, there were no significant 
differences among the groups on postoperative day 14 (P>0.05). 
No rats died in any of the groups.

The effect of EA on the transcriptome profiles in the 
hippocampus of the PND rats

To investigate gene expression changes in the hippocampus 

underlying the spatial memory deficits and the effect of the 
EA treatment, we performed RNA-sequencing and screened 
the DEGs between the control, model, and EA groups 
(which comprised 3 rats per group). The edgeR package was 
used for the differential expression analysis. The resulting 
P values were adjusted using the Benjamini and Hochberg’s 
approach to control the false discovery rate. Genes with 
a |log2 (fold change)| value >1 and a q value <0.05 were 
considered DEGs. According to the above-mentioned cut-
off criteria, the expression levels of 563 DEGs in the model 
group were significantly altered compared to the control 
group (Figure 4A); and the expression levels of 431 DEGs 
in the EA group were significantly altered compared to 
the model group (Figure 4B). After parallel clustering the 
DEGs in the 3 groups, we found that the expression levels 
of 177 DEGs changed in the model group relative to the 
control group, but these genes tended toward normal in 
the EA group (Figure 4C). The GO analysis revealed that 
these 177 DEGs (Figure 4D) were significantly enriched in 
the developmental process, localization, cellular response to 

Control

Model

EA

EA + mdivi-1

Control

Model

EA

EA + mdivi-1

Control

Model

EA

EA + mdivi-1

Control

Model

EA

EA + mdivi-1

day 3day 3

**

* #

#

#

#

day 14day 14 prepre

80

60

40

20

0

80

60

40

20

0

Time, dayTime, day

Ti
m

e 
sp

en
t i

n 
ta

rg
et

 q
ua

dr
an

t, 
%

C
ro

ss
in

gs

D1 D2 D3 D4 D5D1 D2 D3 D4 D5
Acquisition, daysAcquisition, days

25

20

15

10

5

0

60

40

20

0

S
w

im
m

in
g 

sp
ee

d,
 c

m
/s

E
sc

ap
e 

la
te

nc
y,

 s
A B

C D

Figure 3 The protective effect of EA was reversed by the mitophagy inhibitor mdivi-1 in the MWM. The rats in the EA group made 
more platform crossings (A) and spent less time in the target quadrant (B) at 3 days, but not 14 days after surgery than the rats in the model 
group. The protective effect of EA was reversed by mdivi-1 (A,B). Surgery and mdivi-1 administration did not significantly affect the escape 
latency (C) or swimming speed (D) of the rats. The data were analyzed using a 2-way ANOVA (repeated measure) with Tukey’s multiple 
comparisons test, with N=12 per group. The box plots depict the median (line) and the 25th and 75th percentiles. The whiskers extend 
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a stimulus, extracellular region, and protein binding. The 
KEGG analysis showed that these genes were abundant in 
the metabolic and phosphatidylinositol 3‑kinase (PI3K)/
protein kinase B (AKT) signaling pathways (Figure 4E).

The effect of EA on the hippocampal proteomes of the PND 
rats

The hippocampal samples were also tested for overall 

protein identification using a TMT-based proteomic 
analysis to understand the mechanisms of EA therapy 
in cognitive function (3 rats per group). A total of  
4,108 proteins were identified based on the data from 
individual replicates (Figure 5A,5B). The filter criteria were 
as follows: a fold change value >1, and a P value <0.05. A 
total of 280 proteins differed between the model and control 
groups. In addition, 48 proteins differed significantly 
between the EA and model groups. When parallel 
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clustering the differential expressed proteins in the three 
groups, we found the expression levels of 10 differential 
expressed proteins changed in the model group relative to 
the control group, while these genes tended toward normal 
in the EA group (Figure 5C). Of the 10 proteins identified, 5 
were upregulated in the model group, while 2 proteins were 
downregulated (the criteria were set as a fold change value 

>1, and a P value<0.05) (Table 1).

Identifying and verifying differentially expressed proteins

We then screened the proteins using the unique screening 
methods described above. ChChd3 showed the most 
significant difference among the 7 proteins (model vs. 
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Table 1 Differential expression analysis of the proteins in the hippocampus associated with the EA intervention

Protein Description
Fold change P value

Gene name
Model EA Model EA

MICOS complex subunit Mic19 Component of the MICOS complex 1.0929 0.93628 0.002356 0.0044035 CHCHD3

ESCRT-II complex subunit VPS36 Component of the ESCRT-II 0.84761 1.1036 0.0036446 0.026593 VPS36

Core protein II Mitochondrion inner membrane 
protein

1.0508 0.98032 0.0041064 0.019692 UQCRC2

ATP-sensitive inward rectifier 
potassium channel 10

Potassium buffering action of glial 
cells in the brain

1.1921 0.88489 0.013655 0.028859 KCNJ10

Paralemmin-1 Plasma membrane dynamics and 
cell process formation

1.0767 0.94295 0.0203 0.03939 PALM

Arginine and glutamate-rich protein 1 Post-translational modification 0.91774 1.0889 0.030367 0.021076 ARGLU1

Probable ATP-dependent RNA  
helicase DDX46

Plays an essential role in splicing 1.0575 0.93803 0.04819 0.0074238 DDX46

EA, electroacupuncture; ATP, adenosine triphosphate; MICOS, mitochondrial contact site and cristae organizing system; ESCRT, 
endosomal sorting complex required for transport.
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control, P=0.002356; EA vs. model, P=0.0044035; Table 1).  
In addition, the ChChd3 level in the hippocampus was 
quantified by Western blotting from 3 biological replicates. 
The expression of ChChd3 was lower in the control and EA 
groups than the model group (Figure 6).

EA treatment reduced hippocampal oxidative stress

On postoperative day 3, the amount of ATP did not 
differ significantly among the 4 groups (Figure 7A). 
The ROS levels in the model group and the mdivi-1 
+ EA group were significantly elevated compared to 
the control and EA groups (Figure 7B). The amount of 
mitochondrial respiratory chain complex V activity did not 
differ significantly among the 4 groups (Figure 7C). On 
postoperative day 14, the amount of ATP (Figure 7D), the 
ROS levels (Figure 7E) and the amount of mitochondrial 
respiratory chain complex V activity (Figure 7F) did not 
differ significantly among the 4 groups. 

EA treatment enhanced autophagy/mitophagy

As Figure 8 shows, compared to the control group, the 
expression of the autophagy/mitophagy markers PINK1, 
Parkin, LC3, and Beclin1 was significantly decreased in 
the hippocampus, and IL-1β expression was significantly 
increased in the model group on postoperative day 3. These 
abnormal changes were reversed by the EA treatment. 
However, mdivi-1 significantly blocked the effect of 
EA (Figure 8A). At postoperative day 14, there were no 
significant differences between the groups (Figure 8B). These 
results indicated that improvements in spatial memory 
resulting from EA treatment might have been partly related 
to the regulation of mitophagy marker expression in the rat 
PND model.

Discussion

We established a PND rat model using surgical resection of 
the hepatic apex to explore the role of EA in the treatment 
of spatial memory deficits. Our results suggested that EA 
ameliorates the postoperative spatial memory deficits of 
the rats. This effect may be correlated with enhancing 
the autophagy and downregulating the level of ROS and 
the inflammatory marker IL-1β in the hippocampus after 
surgery.

Consistent with previous studies (20,40-42), we found that 
the EA group was quite similar to the control group in terms 
of postoperative spatial memory, which suggests that the EA 
treatment improved surgery-induced spatial memory loss 
significantly on postoperative day 3 (Figures 2,3). To further 
examine the molecular mechanisms of a suggested EA-
induced protective effect on spatial memory, we analyzed the 
hippocampus transcriptomic and proteomic changes among 
the 3 groups after surgery. A total of 119 genes and 7 proteins 
were identified and screened. The KEGG pathway analysis 
revealed that these genes were related to the metabolic and 
PI3K-AKT signaling pathways. Based on these findings, 
ChChd3 related to mitochondrial morphology was screened. 
ChChd3 is an abundant protein and essential for maintaining 
the mitochondrial cristae structure (43). The loss of ChChd3 
leads to crystal remodeling, perinuclear clustering, and 
mitochondrial fragmentation, and alterations to the cristae 
and an increase in mitophagy (44). The current western blot 
results indicated that the expression level of ChChd3 was 
significantly more upregulated in the model group than the 
control group, and the trend was reversed in the EA group.

The  PI3K/AKT s igna l ing  pa thway  r eg u l a t e s 
proliferation, apoptosis, and autophagy during oxidative 
stress (45). The process of mitophagy, which is a form 
of selective autophagy, is necessary for the maintenance 
of healthy mitochondria (46). Defective or damaged 
mitochondria will contribute to ROS formation and release 
pro-apoptotic proteins into the cytoplasm if not removed, 
leading to cell death (47). Mitophagy might selectively 
remove ROS-impaired mitochondria, lowering ROS levels 
while maintaining normal function (48).

PINK1/Parkin signaling pathway plays an important 
role in autophagy activation and the formation of early 
autophagosome precursor structures (21). PINK1 acts a 
molecular sensor of mitochondrial physiology, and triggers 
the signal of mitophagy initiation, recruitment of Parkin 
to damaged mitochondria. Parkin acts an enhancer of 

Control
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β-actin

28 kD

42 kD

Model EA

Figure 6 Western blot analysis of ChChd3 expression in each 
group. The ChChd3 levels were lower in the control and EA 
groups than the model group on postoperative day 3 (N=3 per 
group). EA, electroacupuncture.
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Figure 7 EA alleviated oxidative stress in the hippocampus. The biochemical investigation showed the expression of ATP content (A,D), 
ROS content (B,E), and the activities of mitochondrial respiratory chain complex V (C,F) in the hippocampus 3 and 14 days after surgery. 
The data were analyzed using a 1-way ANOVA and Tukey’s test. The data are expressed as mean ± SEM (N=6, *, P<0.01). ATP, adenosine 
triphosphate; EA, electroacupuncture; ROS, reactive oxygen species; ANOVA, analysis of variance; SEM, standard error of the mean.
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the mitophagy signal, and amplify the ubiquitin signal 
of mitochondrial proteins (49). Mdivi-1 is a mitophagy 
inhibitor. A recent study demonstrated that the levels of 
mitophagy-related protein PINK1 and Parkin were reduced 
by Mdivi-1 treatment in neural mitochondria (50). In our 
study, we found that EA treatment not only improved 
surgery-induced spatial memory deficits but also reversed 
the expression of ROS and IL-1β levels in the hippocampus 
of the PND rats. However, these responses were inhibited 
by the mitophagy inhibitor Mdivi-1, which suggests that 
autophagy-related proteins could be key targets for reducing 
the incidence of PND. Decreased autophagic function 
leads to an accumulation of ROS, which is the activator of 
the Nod-like receptor protein 3 (NLRP3) inflammasome 
(51,52). NLRP3 catalyzes the activation of caspase-1, 
thereby promoting the maturation of pro-IL-1β (53). 
Suppressing the production of IL-1β alleviates cognitive 
impairment after surgery (54). Our findings are in line with 
those of other studies. For example, Hsu et al. reported 
that EA reduced Parkinson’s disease motor symptoms 
and promoted autophagy and mitophagy in the substantia 
nigra, striatum, hippocampus, and cortical neurons 
of mice (55). Zhong et al. reported that EA treatment 
protected rats from cognitive impairment caused by stroke 
by enhancing mitophagy and inhibiting ROS-induced 
NLRP3 inflammasome activation (56). Collectively, our 
study indicated that surgery trauma inhibited mitophagy 
activation in rat hippocampus, and the neuroprotection 
provided by mitophagy may result from the removal of 
damaged mitochondria.

Mitochondria are the prime source for the production of 
reactive species (9), and the mitochondrial ATP synthase is 
a multiprotein complex that generates ATP from adenosine 
diphosphate and phosphate ion (57). Thus, the respiratory 
chain complex is most susceptible to free radical damage, 
and the activity of ATP synthase is reduced as a consequence 
of oxidative damage (58). Defective mitochondria can be 
hazardous, as they produce excess ROS, which weakens the 
assembly of ATP with ATP synthase, and interfere with 
metabolic processes (16). Mitochondrial energy deficit 
and reduced enzyme activity contribute to aging and 
neurological diseases (59). However, we did not replicate 
these findings in this study. The ATP levels and the 
activities of the mitochondrial respiratory chain complex 
V did not differ significantly between the 4 groups at each 
time point. This may be because the degree of oxidative 
stress was not severe enough to alter ATP production (60). 

We thus speculate that a significant increase in oxidative 
stress is only relevant when the damage is severe enough to 
have an effect on mitochondrial ATP synthase.

This study had several limitations. First, we only 
relied on concomitant changes of EA rather than precise 
mechanisms. Second, quantitative polymerase chain 
reaction should have been conducted on day 3 to verify the 
RNA-sequencing data. Third, no gene knockout was used, 
so we do not know whether the expression of ChChd3 in 
our model is directly associated with memory impairment or 
whether EA treatment can improve the surgical phenotype 
by regulating the ChChd3 protein. Finally, we did not 
evaluate the extent of mitophagy (e.g., autophagosome) with 
imaging techniques, such as cellular immunofluorescence 
labelling. Thus, further research needs to be conducted to 
answer such questions.

Conclusions

Our findings indicated that the surgery-induced spatial 
memory deficits in rats could be effectively alleviated by the 
treatment with EA. The underlying mechanism may involve 
the inhibition of ROS and IL-1β expression by modulating 
the PINK1/Parkin-mediated mitophagy pathway in the 
hippocampus.
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