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Abstract
Improving the capability of land-surface process models to simulate soil moisture assists in

better understanding the atmosphere-land interaction. In semi-arid regions, due to limited

near-surface observational data and large errors in large-scale parameters obtained by the

remote sensing method, there exist uncertainties in land surface parameters, which can

cause large offsets between the simulated results of land-surface process models and the

observational data for the soil moisture. In this study, observational data from the Semi-Arid

Climate Observatory and Laboratory (SACOL) station in the semi-arid loess plateau of

China were divided into three datasets: summer, autumn, and summer-autumn. By combing

the particle swarm optimization (PSO) algorithm and the land-surface process model

SHAW (Simultaneous Heat and Water), the soil and vegetation parameters that are related

to the soil moisture but difficult to obtain by observations are optimized using three datasets.

On this basis, the SHAWmodel was run with the optimized parameters to simulate the char-

acteristics of the land-surface process in the semi-arid loess plateau. Simultaneously, the

default SHAWmodel was run with the same atmospheric forcing as a comparison test. Sim-

ulation results revealed the following: parameters optimized by the particle swarm optimiza-

tion algorithm in all simulation tests improved simulations of the soil moisture and latent

heat flux; differences between simulated results and observational data are clearly reduced,

but simulation tests involving the adoption of optimized parameters cannot simultaneously

improve the simulation results for the net radiation, sensible heat flux, and soil temperature.

Optimized soil and vegetation parameters based on different datasets have the same order

of magnitude but are not identical; soil parameters only vary to a small degree, but the varia-

tion range of vegetation parameters is large.
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Introduction
Soil moisture is an important component of global energy and water circulation. The soil mois-
ture can directly affect meteorological and hydrological processes by affecting physical pro-
cesses such as surface evaporation, vegetation transpiration, and runoffs [1,2,3,4] and can
indirectly affect the global carbon circulation by affecting vegetation growth and plant photo-
synthesis [5,6,7,8,9]. Thus, accurately observing and simulating the soil moisture is critical for
studying global climate change [10,11]. However, the spatial and temporal inhomogeneity of
the soil moisture distribution causes great difficulties in its observation and simulation. On one
hand, although techniques such as time domain reflectometry (TDR) can be used to observe
the soil moisture at stations [12], it is difficult to obtain high-precision, large-scale, and long-
term observational data. On the other hand, although extant land-surface process models or
climate models can be used to simulate long-term variation trends of the soil moisture, there
exist large offsets between simulated results and observational data [13]. Furthermore, different
results are obtained by using different models [14,15,16]; consequently, it is difficult to estab-
lish reliable global soil moisture datasets through model simulations. Thus, it is of significant
importance to improve the capability of land-surface models to simulate the soil moisture and
thereby improve numerical weather forecast and climate predictions.

Generally, the simulation capability of a land-surface process model is closely related to the
parameterization schemes and input parameters of the model [14]. The parameterization
schemes adopted in a model is built based on field observational data; therefore, different mod-
els adopt different parameterization schemes for plants and soil. Comparisons of multiple
land-surface process models have indicated that different land-surface parameterization
schemes have a significant impact on the simulation results [15,17,18]. Based on the actual
land-surface condition, an appropriate parameterization schemes can improve the simulation
capability. In addition, land-surface process models require the input of multiple parameters
for simulation, including vegetation and soil parameters, terrain parameters, and the initial soil
hydrothermal conditions. These parameters significantly affect the simulation results
[19,20,21]. Some of these parameters can be obtained with high precisions by station or
remote-sensing observations. For instance, the soil content, vegetation root distribution, sur-
face aerodynamic roughness, and initial soil temperature can be obtained by station observa-
tion. By contrast, the vegetation leaf area index, vegetation height, and surface albedo can be
measured by large-scale remote sensing. However, it is difficult (if not impossible) to observe
some parameters for the following reasons: (1) Values obtained by station observation cannot
represent values on a large scale. Because certain parameters, such as the saturated soil water
conductivity, vary at different locations, the observed value at one point cannot be used for its
neighboring point; (2) Some parameters can be interactively connected, and it is difficult to
precisely measure all of them together, for example, the empirical parameter of vegetation tran-
spiration stomatal resistance; (3) Some parameters used in a model do not have definitive phys-
ical meaning and therefore cannot be observed, for example, the Clapp-Hornberger constant.
To overcome these difficulties, different combinations of land-surface parameters are used in a
model, and by comparing differences between simulation results and observational data, the
adaptability of model parameters can be evaluated, which is known as the parameter calibra-
tion process. Multiple studies have demonstrated that the simulation capability of land-surface
process models can be improved by calibrating adopted parameters [22,23].

In the past 20 years, intelligent or optimized algorithms have attracted wide interest with
respect to calibrating land-surface models. For instance, the SCE(Shuffled Complex Evolution)
global optimization method has been used to calibrate the hydrological model [24]; Gupta
et al. adopted multicriteria methods for parameter estimation, which (1) proves effective when
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only the range of parameter physical values is known and (2) can improve the simulation capa-
bility of the BATS(Biosphere-Atmosphere Transfer Scheme) model [25]. In addition, to assim-
ilate the soil moisture, Ines et al. also used the genetic algorithm to estimate hydrological
parameters [26]. In recent years, another optimization algorithm, particle swarm optimization,
has become popular [27] and has been widely applied in other research areas [28]. This algo-
rithm was built on the basis of animal behaviors, such as the process of searching for food by
fish or birds, which essentially is a particle constrained by a certain object function solving a
global (or approximately global) optimal solution. Calibrating parameters in land-surface pro-
cess models is a similar process, i.e., choosing different parameter combination methods to
reduce the difference between observational and simulation results during a certain period.
Thus, many researchers have used particle swarm optimization to optimize parameters for
hydrological models. For example, Gill et al. used the multiple-objective particle swarm optimi-
zation to estimate hydrological parameters [29]; Chaw et al. used the particle swarm optimiza-
tion method to predict the water level by combining ANNs(Artificial Neural Networks)[30];
Scheerlinck compared the similarity and difference in optimizing model parameters between
the MWAPRE(Multistart Weight-adaptive Recursive Parameter Estimation) and particle
swarm optimization algorithms and found that the particle swarm optimization algorithm is
more practical and more effective in utilizing observational data [31]; Zhang et al. evaluated
the pros and cons of five optimization methods in calibrating hydrological models [32] and
found that compared with other methods, particle swarm optimization can be used to obtain
the optimal parameter solution, which also takes less time.

The semi-arid region is approximately 40% of the global land surface [33]. Its surface types
are mainly composed of sparse vegetation, grassland, and desert, whose surface characteristics
significantly differ from that of the humid region [34]. In addition, the semi-arid region is sen-
sitive to climate change and has the highest variability in precipitation [35]. Therefore, the eco-
logical and water-resource systems in the semi-arid region are closely related to the soil
moisture [9,36]. Vegetation destruction and grassland desertification caused by human activi-
ties can further cause an anomalous change in the soil moisture, resulting in negative feedback
of the climate system and consequently threatening the human living environment
[9,36,37,38]. Due to the lack of knowledge regarding the specific characteristics of the land-sur-
face process in semi-arid regions, limited near-surface observational experiments, and large
offsets in large-scale parameters obtained by the remote-sensing method, land-surface process
models have a low simulation capability [39]. Thus, conducting comprehensive near-surface
observation experiments, accurately identifying land-surface parameters or parameter combi-
nations using optimized methods are critical for improving the soil moisture simulation capa-
bility in semi-arid regions. However, several limitations and difficulties still exist in former
studies. (1) A complete land surface process model contains the vegetation, soil, snow and
atmospheric boundary layer, involving many parameters which are dependent. But in the exist-
ing study, most of the optimization algorithms only used for simple or simplified hydrological
model [26,29,31], therefore, the optimized parameters can not be applied in complete models.
(2) In previous studies, the optimization parameters were selected arbitrarily and the related
physical processes were not considered [25]. The dimension of the optimization parameters
space was too high and the parameters combinations were too many. Hence, the optimized
parameters combinations cannot be used in models. For example, all the input parameters
were selected for optimization. (3) In previous studies, optimized parameters were usually
obtained by a single and short length dataset. Correspondingly, the optimized parameters are
not accurate for longtime simulation.

To address the aforementioned issues, this study utilizes the meteorological data from the
Semi-Arid Climate Observatory and Laboratory station in the semi-arid loess plateau region of
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China and divided the data into different datasets. By adopting the particle swarm optimization
method, this study optimizes soil and vegetation parameters related to soil moisture in the
land-surface process model, SHAW (Simultaneous Heat and Water). On this basis, the opti-
mized parameters are utilized in the SHAWmodel to improve the capability of the SHAW
model to simulate the soil moisture in the semi-arid region.

Methodology

SHAWModel
The SHAWmodel was developed by Flerchinger et al [40,41] and was initially used to simulate
the freezing and melting of soil. After continuous development and improvement, SHAW
gradually forms a comprehensive land-surface model, which includes interactions between
soil, the accumulated snow-residue layer, vegetation, and atmosphere. The SHAWmodel can
divide the vegetation and residue into less than 10 layers, the accumulated snow into less than
100 layers, and the soil into less than 50 layers. In addition, the model considers radiation
transfer, convective exchange, hydrothermal transport in soil, precipitation infiltration, and
soil freeze-up and melt between different physical layers. The SHAWmodel is a single-point
land surface model, most of the vegetation and soil parameters can be directly observed based
on the actual underlying conditions. Only a few of input parameters in the SHAWmodel
which need optimize are difficult to observe. The dimension of optimized parameters space is
low. Most of the input parameters in SHAWmodel can be easily transferred to other land sur-
face models. The model has been applied to simulation studies on different underlying surfaces.
A series of tests have been conducted for complicated underlying surfaces in the semi-arid
region [40,42].

The controlling equation of the soil moisture in the SHAWmodel can be expressed as [43]:
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in which, z represents the soil depth (m), t represents time (s), θl (θi) represents the soil volu-
metric water (ice) content (m3 m-3), ρl (ρi) represents the water (ice) density (kg m

-3), K repre-
sents the water conductivity (m s-1), ψ represents the soil water potential (m), qv represents the
soil water vapor density (kg m s-1) (which is determined by the soil volumetric water content),
and U represents the vegetation root water absorption (m3 m-3 s-1).

The soil water potential ψ and water conductivity can be calculated using the following
equation:
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in which ψe is the air entry potential (m), b is the Clapp-Hornberger constant, θs is the saturated
water content (m3 m-3), and Ks is the water conductivity when the soil is saturated (m s-1).

The vegetation root water absorption U depends mainly on the vegetation transpiration,
which is determined by the soil-vegetation-air water transport and can be expressed as:
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in which i is the canopy, j is the number of plant species, k is the soil layer, NC is the total num-
ber of the canopy layers, NS is the total number of the soil layers, Tj is the total transpiration
(kg m-2 s-1), Li,j is the leaf surface area index, ρvs,i,j and ρv,i are the water vapor densities of the
leaf surface and of the air inside the canopy, respectively (kg m-3), ψx,j and ψl,i,j are the water
potentials of the vegetation xylem and of the leaf, respectively (m), rh and rs are canopy air and
stomatal resistances, respectively, (s m-1), and rl and rr are leaf and root resistances, respectively
(m3s kg-1), which can be expressed as:

rh ¼ 307ðdl=uÞ1=2 ð5Þ

rs ¼ rso½1þ ðcl=ccÞ5� ð6Þ

rl ¼ rloðLi=LÞ ð7Þ

rr ¼ rroðDp;i=DpÞ ð8Þ

in which dl is the Characteristic dimension of the leaves(m), u is the wind speed within the can-
opy (m s-1), rso is the minimal stomatal resistance (s m-1), rlo and rro are the leaf and root resis-
tance constants, respectively (m3s kg-1), ψc is the critical leaf water potential, and L(Li) and
Dp(Dp,i) are the total leaf surface area (the leaf surface area of each layer) and total root ratio
(the root ratio of each layer), respectively.

For the soil-moisture controlling equation described above, its upper boundary condition
can be expressed as:

qs ¼ P � Es � Rs ð9Þ
in which qs is the water flux that enters the soil (m s-1), P is the precipitation rate or melting
rate of accumulated snow (m s-1), Es is the evaporation of the soil surface (m s-1), and Rs repre-
sents surface runoffs (m s-1).

In the lower boundary condition of the soil moisture, the gradient of the soil moisture is set
at zero. Finally, land-surface process models must also satisfy the energy balance equation,
which is:

Rn ¼ H þ LvE þ G ð10Þ
in which G is the soil heat flux (Wm-2), Rn is the net radiation (Wm-2),H is the sensible heat
flux (Wm-2), E is the water vapor flux (kg m-2 s-1), and Lv is the potential evaporation coeffi-
cient. The method above used to parameterize factors related to the soil moisture shows that all
of the vegetation and soil parameters (including ψe, b, θs, Ks, rso, rlo, rro, ψc, dl, L, and Dp) can
affect simulations of the soil moisture.

PSO Algorithm
The PSO algorithm was first introduced by Kennedy et al.[44] to simulate the society physio-
logical behavior and was later expanded to other applications and became an optimization
method to solve the global optimal solution for large-scale non-linear problems. The principle
of PSO is to assign coordinates and initial velocities for a group of randomly chosen particles
and then search in the space within a defined region. By continuously updating the positions
and velocities of these particles, the algorithm compares the object function of each particle to
obtain the local optimal position and finally the global optimal position.
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If we want to optimize an n-dimensional problem form particles, the position and velocity
vector of the ith particle can be expressed as:

xi ¼ ðxi1; xi2; . . . ; xinÞ ð11Þ

vi ¼ ðvi1; vi2; . . . ; vinÞ ð12Þ

The updated position and velocity of the ith particle can be expressed as:

vNþ1
in ¼ ovN

in þ c1r1ðpN
in � xN

inÞ þ c2r2ðGN
n � xN

inÞ ð13Þ

xNþ1
in ¼ xN

in � vN
in ð14Þ

in which N represents the number of iterations; w represents the inertia weight; c1 and c2 are
the acceleration constants, which are the weight coefficients of the optimal value by tracking its
own history and therefore represent self-awareness of the particle; r1 and r2 are random num-
bers in [0,1]. pi and Gn represent the optimal value of the ith particle by searching its history
and the optimal position searched by all the particles, respectively, which can be expressed as:

pi ¼ ðpi1; pi2; . . . ; pinÞ ð15Þ

Gn ¼ ðpg1; pg2; . . . ; pgnÞ ð16Þ

g ¼ min
1�i�n

½fðpiÞ� ð17Þ

in which g represents the position when the value of the object function is the lowest and f is
the object function. The object function f in the PSO algorithm can be a single function or vec-
tor function. When f is a vector function, it should be the multiple object function; therefore,
one method is to solve for its Pareto front, and another method, proposed by Crow et al.[45], is
to standardize multiple variables with different orders of magnitude and then define a single
object function to solve for its minimum.

Data and Method

Data
Data used in this study is from the Semi-Arid Climate Observatory and Laboratory (SACOL)
station located in Yuzhong County in Gansu Province (35.946°N, 104.137°E). The SACOL sta-
tion is within the loess plateau region in China, which can represent the climate condition
within a few hundreds of kilometers in the semi-arid region [46]. Its altitude is 1,961 m, and
the underlying surface is flat with short grass growing. The SACOL station is equipped with a
micro meteorological tower, three dimension (3D) sonic anemographs, temperature and mois-
ture detector, and soil monitoring system et al. The details can be found at (http://climate.lzu.
edu.cn/english/index.asp). The observation data have been widely applied to studies on the
semi-arid climate and regional energy and water circulation. The SACOL station is included in
the CEOP (Coordinated Enhanced Observing Period), AERONET (Aerosol Robotic Network),
and MPLNET (Micro-Pulse Lidar Network) international meteorological observational web-
sites, and the observational data are opened for any researchers who were interested in climate
change in the semi-arid region in Northwest China. The filed area was not protected and filed
studies did not involve endangered or protected species.
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Model-optimization Method
To run land-surface process models, input variables include the atmospheric forcing condition,
the initial condition for the soil temperature and moisture, and surface vegetation and soil
parameters. In this study, the simulation period is set to the summer and fall seasons of 2007
(from 01/06 to 30/11) to avoid the effect of snow. According to the actual underlying surface
condition, we divide the vegetation into one layer and the soil into six layers of 5, 10, 20, 40, 80,
and 250 m, which is consistent with the observational depths. The atmospheric forcing variable
adopts the hourly wind speed, temperature, pressure, precipitation, relative humidity, down-
ward short-wavelength radiation, and downward long-wavelength radiation at the SACOL sta-
tion. The soil moisture is mainly affected by the precipitation; therefore precipitation during
the simulation period is show in Fig 1.

The initial conditions of the soil temperature and moisture are taken from the actual obser-
vational data on 01/06/2007. If a surface parameter can be directly observed, then the observa-
tional value is adopted in the model; if a parameter is difficult to observe, it is then solved for
its optimal value or parameter combination using the particle swarm algorithm. According to
the parameterization schemes for the soil moisture in the SHAWmodel discussed above, we
chose ψe, b, θs, Ks, rso, rlo, rro, and ψc as the parameters for optimization. Because the soil layer is
divided into six layers, there are 16 parameters in total by assuming that the ψe, b, θs, Ks values
of adjacent layers are the same.

When utilizing the PSO algorithm to optimize parameters, an object function must be
defined. In this study, the Kling-Gupta efficiency (KGE) function proposed by Gupta et al is
used as the object function, which is defined as [47]:

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � 1Þ2 þ ða� 1Þ2 þ ðb� 1Þ2

q
ð18Þ

Fig 1. Precipitation during the simulation period.

doi:10.1371/journal.pone.0151576.g001
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in which r represents the correlation coefficient between the observational and simulation
value, α represents the ratio of the standard deviation of the observational value to that of the
simulation value, and β represents the ratio of the mean observational value to the mean simu-
lation value. KGE is used to evaluate the quality of the fit for the simulation result with the
observation, whose range varies from -1 to 1; the closer the value is to 1, the better the simula-
tion capability. Corresponding KGEj (j represents the corresponding soil moisture, tempera-
ture, etc.) values are calculated using the soil moisture, surface temperature, sensible heat flux,
latent heat flux, net radiation, and corresponding observational values of the five-layers soil
simulated by the SHAWmodel. The final KGE is the average of all KGEj values. Because all
these variables have different orders of magnitude, they are standardized during the calculation
of both simulation and observation, i.e., the corresponding average value is subtracted from
each observational or simulation value, which is then divided by the corresponding standard
deviation [31].

The PSO algorithm also depends on parameters of the model itself, specifically, the number
of particle swarm, N, c1, c2, w, and the position and velocity variation range of each particle.
According to multiple simulation tests and previous studies [29,31], (1) n = 20; (2) N = 300; (3)
the variation range of w is from 0.2 to 0.5; (4) c1 = 1.7, and c2 = 2; (5) the variation range of the
particle position is from -1 to 1, and that of the particle velocity is from -0.01 to 0.01. For all
parameters that must be optimized, their variation ranges become [–1,1] by the following
method:

x ¼ 2y� ðRmax þ RminÞ
ðRmax � RminÞ

ð19Þ

in which y is the actual value of a parameter for optimization and Rmax and Rmin represent the
range of the parameter for optimization. Based on the process described above, the combina-
tion of the SHAWmodel and the PSO algorithm is called the SHAW_PSO method. The
detailed realization method is depicted in the following flow chart (Fig 2).

To optimize parameters, the datasets are divided into three groups: the first group consists of
summer (June-August) data, the second group consists of autumn (September-November) data,
and the third group consists of data from the summer-autumn (June-November) period, which
are used for separate parameter optimization. The results of the SHAWmodel obtained by
adopting the optimized parameters are tested against all the summer and autumn data, which
are recorded as “SHAW_PSO_SU”, “SHAW_PSO_AU”, and “SHAW_PSO_SA”. As a control
test, the model was also run with the same atmospheric forcing variables, the initial condition,
and the default parameters of the model given in Table 1, named “SHAW_DEFAULT”. In
Table 1, the leaf area index is evaluated by the NDVI (Normalised Difference Vegetation Index)
which is measured by MODIS (Moderate Resolution Imaging Spectroradiometer) satellite. The
retrieval method given by reference is employed to calculate the leaf area index [48]. The plant
height, Characteristic dimension of the leaves and effective rooting depth is measured by ruler,
and the mean value is used. The percent of sand, silt, and clay is measured in soil laboratory.
Dry soil albedo is evaluated by the downward and upward shortwave radiation. The aerody-
namic roughness is estimated by wind speed at different height. For all parameters that must be
optimized, the thresholds of these parameters are also listed in Table 1. The thresholds of soil
parameters are primarily based on previous studies [49]. The thresholds of vegetation parame-
ters are difficult to evaluate, hence 0.1 or 10 times of the model suggest values are set as the
range.
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Results
Fig 3a–3e shows the comparison of soil moisture (SM) values simulated by the four sets of sim-
ulation tests with the observational data. As presented in the Fig 3, all the simulation results
after parameter optimization can reasonably reproduce the variation trend of the soil moisture,
but the SHAW_DEFAULT test cannot predict the variation trend below 40 cm, indicating that
the soil and vegetation parameters suggested by the model differ from the actual underlying
surface. Table 2 lists the root-mean-square deviation and the KGE value of the simulated
results with respect to the measured data, which clearly illustrate that offsets of the simulation
tests are all reduced after parameter optimization relative to that of the SHAW_DEFAULT
test; their corresponding KGE values are also increased, which demonstrates that parameter
optimization significantly improves the model’s simulation capability. By comparing the three
sets of simulation tests after parameter optimization, we can observe that the soil moistures of
all the layers above 80 cm simulated by SHAW_PSO_SU are closer to the measured data than
are the values from the other two simulation tests. The deep soil moisture is related to the
underground water. The SHAWmodel does not contain the underground water parameteriza-
tion scheme. Hence, the absence of the underground water parameterization may also affect
the soil moisture simulation.

Fig 4 shows the scatter plots of the net radiation, sensible heat and latent heat fluxes, and
soil temperature at 5 cm calculated by different sets of simulation tests, compared with the cor-
responding observational data. Table 3 lists the corresponding offsets, average values, and KGE
values of different simulation tests. As shown in the figure, the simulations of net radiation(Fig
4a1–4a4) produced by different sets of model tests are all close to the observational data, which

Fig 2. SHAW-PSOmethod flow chart.

doi:10.1371/journal.pone.0151576.g002
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can be demonstrated by the close to 1:1 linear fit lines with correlation coefficients all above
0.99. The offsets given in Table 3 indicate that the net radiation simulated by SHAW_PSO_AU
is the closest to the observational data with the highest KGE. The correlation coefficients
between the simulated sensible heat flux values (Fig 4b1–4b4) and the observational data are all
high (> 0.85), but all of the simulated values are higher than the observational data. Table 4
shows that the offset between the sensible heat flux and the observational data is the smallest
for the simulation by SHAW_DEFAULT. The correlation coefficients of the latent heat flux
(Fig 4c1–4c4) values simulated by different sets of simulation tests and the observational value
are all above 0.75, and the model tests with optimized parameters all have improved simulation
results for the latent heat flux relative to SHAW_DEFAULT. In particular, the latent heat flux
simulated by SHAW_PSO_SA agrees the best with observation and has the highest KGE. The
correlation coefficients between the simulation results of different model tests and the observa-
tional data for the soil temperature (Fig 4d1–4d4) are all above 0.94, and the linear fit lines are
close to the 1:1 line; the soil temperature simulated by SHAW_PSO_SU is most consistent with
the observation. Based on analysis of the net flux, sensible heat and latent heat fluxes, and soil
temperature, we can observe that the simulation capabilities for the latent heat flux in different
tests are all improved, but the simulation results for all of the subcomponents cannot be
improved simultaneously. This finding is similar to the Pareto front yielded by the multiple
object function method [22]. Previous studies by Gupta et al have also indicated that the adop-
tion of optimized parameters cannot improve the simulation capabilities for all the variables in

Table 1. Input parameters for the SHAW-PSOmodel.

Variable Symbol Default Unit Range

Vegetation parameters
Plant albedo αc 0.23 - - - -

Transpiration temperature Tc 7 K - -

Minimum stomatal resistance rso 100 m s-1 [10,1000]

Critical leaf water potential ψc -100 m [-10,-1000]

Leaf resistance rlo 1e5 m3 s kg-1 [1e4,1e6]

Root resistance rro 2e5 m3 s kg-1 [2e4,2e6]

Plant height H 0.15 m - -

Characteristic dimension of the leaves dl 5e-3 m - -

Dry biomass Wg 0.5 kg m-2 - -

Leaf area index L 1.5 - - - -

Effective rooting depth Dp 0.15 m - -

Soil parameters

Air-entry potential ψe -0.31 m [-1.0,-0.1]

Campbell’s pore-size index b 4.5 - - [3,10]

Saturated conductivity Ks 2e-6 m s-1 [5e-5,5e-7]

Saturated volumetric moisture content θs 0.43 - - [0.3,0.6]

Bulk density ρb 1020 kg m-3 - -

Sand percent sand% 38 % - -

Silt percent silt% 26 % - -

Clay percent clay% 22 % - -

Organic percent om% 14 % - -

Dry soil albedo αs 0.30 - - - -

Exponent for the calculated albedo a -2 - - - -

Aerodynamic roughness zom 0.46 - - - -

doi:10.1371/journal.pone.0151576.t001
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Fig 3. Comparison of the soil moistures calculated by different sets of simulation tests with the
observational values. (a) 5cm (b) 10cm (c)20cm (d)40cm (e)80cm.

doi:10.1371/journal.pone.0151576.g003
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land-surface process models [25]. In addition, the large offsets of simulation results for the sen-
sible and latent heat fluxes are perhaps related to the energy closure degree in this region. Previ-
ous relevant studies have demonstrated that the average energy closure degree in this region is
approximately 0.75 [50]. In this study, the energy closure in summer and autumn is 0.78 and
0.77. Because the SHAWmodel is built on the basis of the energy closure, it necessarily results
in offsets in the simulation results relative to the observational data, thereby revealing that the
simulation capability of a model is related to the model structure, the parameterization
schemes adopted in the model, and the energy closure degree during observation.

Table 4 summarizes parameters optimized based upon different datasets. The table reveals
that the different sets of parameters are not identical, whereas they all have the same order of
magnitude. The parameters related to soil (ψe, b, θs, and Ks) optimized by using different data-
sets are consistent with small variation ranges, whereas the parameters related to vegetation
(rso, rlo, rro and ψc) all vary to large degrees, which might be related to the underlying surface
condition: the soil parameters only slightly vary with changing seasons, whereas the vegetation
parameters are strongly dependent on seasons. Thus, in land-surface process models, it is more
appropriate to set the vegetation parameters as time-dependent variables.

Conclusions and Discussion
Soil moisture is an important component in energy and water circulations. For simulation
studies on climate, it is crucial to accurately simulate soil moisture. However, there still exist
large offsets in current land-surface process models, which are coupled with climate models via
land-surface process models and therefore cause uncertainties in the simulation results of
weather and climate models. Thus, it is critical to accurately observe and simulate soil moisture.
The semi-arid region is a belt that is sensitive to climate change, and variation in the soil mois-
ture is of great importance to the regional climate. Because of the lack of knowledge regarding
the specialty of the land-surface process in semi-arid regions, limited near-surface observa-
tional experiments, and large offsets in large-scale parameters obtained by the remote sensing
method, there are large deviations of the simulated soil moisture from the observational data.
To improve the capability of land-surface process models to simulate soil moisture in semi-
arid regions, we adopted the PSO algorithm and data from the SACOL station in the semi-arid
loess plateau to be used for comparison with the simulation results of the SHAWmodel with
optimized soil and vegetation parameters and obtained following conclusions:

1. Different simulation tests of the SHAWmodel optimized by the PSO algorithm based on
different datasets can all significantly improve simulations for the soil moisture and latent
heat flux. In particular, the SHAW_PSO_SU model results agree the best with the observa-
tional data for soil moisture above 80 cm (with the highest KGE value), whereas the latent

Table 2. Root mean square error and the KGE value of the simulated soil moisture at different depths.

Depth (cm) MEAN OBS SHAW_DEFAULT SHAW_PSO_SU SHAW_PSO_AU SHAW_PSO_SA

MEAN RMBE KGE MEAN RMBE KGE MEAN RMBE KGE MEAN RMBE KGE

5cm 0.179 0.221 0.067 0.48 0.181 0.022 0.89 0.201 0.031 0.84 0.169 0.024 0.86

10cm 0.211 0.233 0.049 0.58 0.196 0.023 0.89 0.191 0.032 0.83 0.187 0.035 0.71

20cm 0.196 0.260 0.075 0.55 0.198 0.021 0.90 0.199 0.025 0.79 0.189 0.026 0.70

40cm 0.191 0.286 0.104 0.50 0.199 0.023 0.88 0.200 0.026 0.82 0.191 0.024 0.77

60cm 0.185 0.178 0.078 0.12 0.193 0.028 0.80 0.206 0.038 0.69 0.181 0.028 0.65

80cm 0.157 0.085 0.079 -15.4 0.164 0.054 0.22 0.189 0.057 0.25 0.169 0.035 0.52

doi:10.1371/journal.pone.0151576.t002
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heat flux simulated by the SHAW_PSO_SA model shows minimal deviation from the
observational data (with the highest KGE value). These improvements indicate that after
optimization of parameters related to soil moisture, the simulation capability of the SHAW
model for soil moisture and latent heat flux is improved.

2. The optimized SHAWmodel cannot well simulate the net radiation, sensible heat flux, and soil
temperature simultaneously. In particular, the net radiation simulated by SHAW_PSO_AU
shows the smallest offset from the observational data, which also has the highest KGE value. In

Fig 4. Scatter plots of the net radiation, sensible and latent heat fluxes, and soil temperature relative to the corresponding observational data in
different sets of simulation tests. (a1-a4) Radiation (b1-b4) Sensible heat flux (c1-c4) Latent heat flux (d1-d4) Soil temperature at 5cm depth.

doi:10.1371/journal.pone.0151576.g004
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addition, the sensible heat flux calculated by SHAW_DEFAULT agrees the best with observa-
tion and has the highest KGE value. Finally, the soil temperature simulated by SHAW_P-
SO_SU is most consistent with observation and has the highest KGE value. These results
indicate that the simulation capability of a model is not only related to input parameters but
also depends strongly on the model structure, the parameterization schemes, and the energy
closure degree during observation.

3. The soil and vegetation parameters are not identical among optimizations based on differ-
ent datasets, but all have the same order of magnitude. The varying range of parameters
related to soil is limited, whereas that related to vegetation is large, which might be associ-
ated with the characteristics of the underlying surface. For instance, soil parameters vary
with the season to a small degree, whereas vegetation parameters significantly change with
seasons. Thus, it is more appropriate to set vegetation parameters as time-dependent vari-
ables in land-surface process models.

Our study showed that the SHAWmodel, by adopting parameters related to the soil mois-
ture optimized by the PSO algorithm, can improve the simulation capability for soil moisture.
In simulation studies, there still exist a few problems in using the PSO algorithm or other opti-
mization algorithms, which must be addressed in future studies, as follows: (1) Parameters
obtained by an optimization algorithm should be further tested against observations. Although
optimized parameters or parameter combinations can improve the simulation capability of
land-surface process models, some of these parameters have specific physical meanings. Thus,
optimized parameters must satisfy their corresponding physical variation ranges and therefore
cannot be only mathematically treated as the optimal solutions; (2) The dimension of a param-
eter for optimization cannot be too high. There is a limit; in fact, the higher the dimension is,
the more corresponding combination methods for the parameters and, in turn, the larger the
variation ranges of the optimized parameters. Thus, in practice, observation and optimization
algorithms should be complementarily combined: if a parameter can be observed, the observa-
tional value should be used; for parameters that are difficult to observe, an optimization algo-
rithm should be adopted; (3) The simulation test results in this study showed that soil moisture

Table 3. Root mean square error and the KGE value of the simulated net radiation, sensible, latent heat flux and soil temperature.

Variable MEAN OBS SHAW_DEFAULT SHAW_PSO_SU SHAW_PSO_AU SHAW_PSO_SA

MEAN RMBE KGE MEAN RMBE KGE MEAN RMBE KGE MEAN RMBE KGE

Rn 99.17 108.35 25.11 0.89 108.47 25.51 0.89 105.65 21.43 0.92 106.37 22.25 0.91

Sen 22.63 38.44 59.39 0.36 41.92 63.26 0.32 47.34 70.28 0.25 45.26 68.52 0.27

Lat 41.49 47.01 51.38 0.65 46.27 47.61 0.71 34.62 47.78 0.67 39.52 46.11 0.75

Tg 15.27 16.36 3.37 0.84 15.44 3.00 0.89 16.62 3.58 0.82 15.96 3.15 0.86

doi:10.1371/journal.pone.0151576.t003

Table 4. Parameters optimized based upon different datasets.

variables rso ψc rlo rro ψe,1 ψe,2 ψe,3 θs,1 θs,2 θs,3 Ks,1 Ks,2 Ks,3 b1 b2 b3

m s-1 m m3 s kg-1 m3 s kg-1 m m m m3 m-3 m3 m-3 m3 m-3 m s-1 m s-1 m s-1 - - - - - -

SHAW_PSO_SU 205 -365 6.85e5 1.49e6 -0.58 -0.49 -0.15 0.37 0.35 0.43 2.86e-6 3.63e-6 2.68e-6 4.82 4.72 6.22

SHAW_PSO_AU 401 -268 3.45e5 1.64e6 -0.92 -0.68 -0.62 0.40 0.39 0.37 2.50e-6 3.43e-6 4.08e-6 6.31 7.92 5.98

SHAW_PSO_SA 328 -368 1.62e5 1.30e6 -0.56 -0.55 -0.51 0.37 0.41 0.40 4.04e-6 4.17e-6 2.77e-6 5.18 4.85 5.85

doi:10.1371/journal.pone.0151576.t004
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simulated by adopting the summer dataset is optimal, whereas the results based on the sum-
mer-autumn datasets is not the optimal. Thus, it appears that parameter optimization is irrele-
vant to the length of the dataset. Further studies on how to appropriately choose a dataset for
parameter optimization are therefore required. In summary, it is of equal importance to con-
duct comprehensive near-surface observational experiments, develop appropriate parameteri-
zation methods, and combine optimization algorithms to accurately identify surface
parameters or parameter combinations, which can eventually improve the simulation capabil-
ity of land-surface process models for soil moisture.

Acknowledgments
We thank the SACOL station for providing the observation data.

Author Contributions
Conceived and designed the experiments: QY. Performed the experiments: QY. Analyzed the
data: HZ. Contributed reagents/materials/analysis tools: WL. Wrote the paper: QY.

References
1. Jones AR, Brunsell NA (2009) Energy balance partitioning and net radiation controls on soil moisture-

precipitation feedbacks. Earth Interactions 13: 1–25.

2. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, et al. (2004) Regions of strong coupling
between soil moisture and precipitation. Science 305: 1138–1140. PMID: 15326351

3. Liu Z (2010) Bimodality in a monostable climate-ecosystem: The role of climate variability and soil mois-
ture memory. Journal of Climate 23: 1447–1455.

4. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, et al. (2010) Investigating soil mois-
ture—climate interactions in a changing climate: A review. Earth-Science Reviews 99: 125–161.

5. Koster R, Walker G (2015) Interactive vegetation phenology, soil moisture, and monthly temperature
forecasts. Journal of Hydrometeorology.

6. Mitchell SR, Emanuel RE, McGlynn BL (2015) Land—atmosphere carbon and water flux relationships
to vapor pressure deficit, soil moisture, and stream flow. Agricultural and Forest Meteorology 208:
108–117.

7. Pastor J, Post W (1986) Influence of climate, soil moisture, and succession on forest carbon and nitro-
gen cycles. Biogeochemistry 2: 3–27.

8. Li C, Zhang C, Luo G, Chen X, Maisupova B, Madaminov AA, et al. (2015) Carbon stock and its
responses to climate change in Central Asia. Global Change Biology 21: 1951–1967. doi: 10.1111/
gcb.12846 PMID: 25626071

9. Zhang C, Li C, Luo G, Chen X (2013) Modeling plant structure and its impacts on carbon and water
cycles of the Central Asian arid ecosystem in the context of climate change. Ecological Modelling 267:
158–179.

10. Dirmeyer PA (2000) Using a global soil wetness dataset to improve seasonal climate simulation. Jour-
nal of Climate 13: 2900–2922.

11. Gedney N, Cox PM (2003) The sensitivity of global climate model simulations to the representation of
soil moisture heterogeneity. Journal of Hydrometeorology 4: 1265–1275.

12. Roth C, Malicki M, Plagge R (1992) Empirical evaluation of the relationship between soil dielectric con-
stant and volumetric water content as the basis for calibrating soil moisture measurements by TDR.
Journal of Soil Science 43: 1–13.

13. Nijssen B, Schnur R, Lettenmaier DP (2001) Global retrospective estimation of soil moisture using the
variable infiltration capacity land surface model, 1980–93. Journal of Climate 14: 1790–1808.

14. Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) GSWP-2: Multimodel analysis and
implications for our perception of the land surface. Bulletin of the American Meteorological Society 87:
1381–1397.

15. Henderson-Sellers A, Pitman A, Love P, Irannejad P, Chen T (1995) The project for intercomparison of
land surface parameterization schemes (PILPS): Phases 2 and 3. Bulletin of the American Meteorologi-
cal Society 76: 489–503.

LSM and PSO Based Model-Optimization Method for Improving Soil Moisture Simulation

PLOS ONE | DOI:10.1371/journal.pone.0151576 March 18, 2016 15 / 17

http://www.ncbi.nlm.nih.gov/pubmed/15326351
http://dx.doi.org/10.1111/gcb.12846
http://dx.doi.org/10.1111/gcb.12846
http://www.ncbi.nlm.nih.gov/pubmed/25626071


16. Koster RD, Guo Z, Yang R, Dirmeyer PA, Mitchell K, PumaMJ (2009) On the nature of soil moisture in
land surface models. Journal of Climate 22: 4322–4335.

17. Liang X, Wood EF, Lettenmaier DP (1996) Surface soil moisture parameterization of the VIC-2L model:
Evaluation and modification. Global and Planetary Change 13: 195–206.

18. Shao Y, Henderson-Sellers A (1996) Validation of soil moisture simulation in landsurface parameterisa-
tion schemes with HAPEX data. Global and Planetary Change 13: 11–46.

19. Jhorar RK, van Dam JC, BastiaanssenWGM, Feddes RA (2004) Calibration of effective soil hydraulic
parameters of heterogeneous soil profiles. Journal of Hydrology 285: 233–247.

20. Veihe A, Quinton J (2000) Sensitivity analysis of EUROSEM using Monte Carlo simulation I: hydrologi-
cal, soil and vegetation parameters. Hydrological Processes 14: 915–926.

21. Xue Y, Bastable H, Dirmeyer P, Sellers P (1996) Sensitivity of simulated surface fluxes to changes in
land surface parameterization—a study using ABRACOS data.

22. Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models.
Journal of Hydrology 204: 83–97.

23. Sellers PJ, Shuttleworth WJ, Dorman JL, Dalcher A, Roberts JM (1989) Calibrating the Simple Bio-
sphere Model for Amazonian tropical forest using field and remote sensing data. Part I: Average calibra-
tion with field data. Journal of Applied Meteorology 28: 727–759.

24. Duan Q, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for
calibrating watershed models. Journal of hydrology 158: 265–284.

25. Gupta H, Bastidas L, Sorooshian S, Shuttleworth W, Yang Z (1999) Parameter estimation of a land sur-
face scheme using multicriteria methods. Journal of Geophysical Research 104: 19491–19503.

26. Ines AV, Mohanty BP (2008) Near‐surface soil moisture assimilation for quantifying effective soil
hydraulic properties using genetic algorithm: 1. Conceptual modeling. Water resources research 44.

27. Kennedy J (2010) Particle swarm optimization. Encyclopedia of Machine Learning: Springer. pp. 760–
766.

28. Eberhart RC, Shi Y. Particle swarm optimization: developments, applications and resources; 2001.
IEEE. pp. 81–86.

29. Gill MK, Kaheil YH, Khalil A, McKee M, Bastidas L (2006) Multiobjective particle swarm optimization for
parameter estimation in hydrology. Water Resources Research 42.

30. Chau KW (2006) Particle swarm optimization training algorithm for ANNs in stage prediction of Shing
Mun River. Journal of Hydrology 329: 363–367.

31. Scheerlinck K, Pauwels V, Vernieuwe H, De Baets B (2009) Calibration of a water and energy balance
model: Recursive parameter estimation versus particle swarm optimization. Water resources research
45.

32. Zhang X, Srinivasan R, Zhao K, Liew MV (2009) Evaluation of global optimization algorithms for param-
eter calibration of a computationally intensive hydrologic model. Hydrological Processes 23: 430–441.

33. Verhoef A, Allen SJ, Lloyd CR (1999) Seasonal variation of surface energy balance over two Sahelian
surfaces. International Journal of Climatology 19: 1267–1277.

34. Zhang C, Lu D, Chen X, Zhang Y, Maisupova B, Tao Y (2016) The spatiotemporal patterns of vegeta-
tion coverage and biomass of the temperate deserts in Central Asia and their relationships with climate
controls. Remote Sensing of Environment 175: 271–281.

35. Narisma GT, Foley JA, Licker R, Ramankutty N (2007) Abrupt changes in rainfall during the twentieth
century. Washington, DC, ETATS-UNIS: American Geophysical Union.

36. Zhang C, Li C, Chen X, Luo G, Li L, Li X, et al. (2012) A spatial-explicit dynamic vegetation model that
couples carbon, water, and nitrogen processes for arid and semiarid ecosystems. Journal of Arid Land
5: 102–117.

37. Fu C (2003) Potential impacts of human-induced land cover change on East Asia monsoon. Global and
Planetary Change 37: 219–229.

38. Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, et al. (2007) Global
desertification: Building a science for dryland development. Science 316: 847–851. PMID: 17495163

39. Hu Z, Zhang C, Hu Q, Tian H (2014) Temperature Changes in Central Asia from 1979 to 2011 Based
on Multiple Datasets. Journal of Climate 27: 1143–1167.

40. Flerchinger GN, Hardegree SP (2004) Modelling near-surface soil temperature and moisture for germi-
nation response predictions of post-wildfire seedbeds. Journal of Arid Environments 59: 369–385.

41. Flerchinger GN, Saxton KE (1989) Simultaneous heat and water model of a freezing snow-residue-soil
system I. Theory and development. Trans of ASAE 32: 565–571.

LSM and PSO Based Model-Optimization Method for Improving Soil Moisture Simulation

PLOS ONE | DOI:10.1371/journal.pone.0151576 March 18, 2016 16 / 17

http://www.ncbi.nlm.nih.gov/pubmed/17495163


42. Flerchinger GN, KustasWP,Weltz MA (1998) Simulating surface energy fluxes and radiometric surface
temperatures for two arid vegetation communities using the SHAWmodel. Journal of Applied Meteorol-
ogy 37: 449–460.

43. Flerchinger GN, Saxton KE (2000) The Simultaneous Heat andWater (SHAW) Model:Technical Docu-
mentation: Technical Report NWRC.

44. Kennedy J, Eberhart R. Particle swarm optimization; 1995 Nov/Dec 1995. pp. 1942–1948 vol.1944.

45. CrowWT, Wood EF, Pan M (2003) Multiobjective calibration of land surface model evapotranspiration
predictions using streamflow observations and spaceborne surface radiometric temperature retrievals.
Journal of Geophysical research 108.

46. Huang J, ZhangW, Zuo J, Bi J, Shi J, Wang X, et al. (2008) An overview of the Semi-arid Climate and
Environment Research Observatory over the Loess Plateau. Advances in Atmospheric Sciences 25:
906–921.

47. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE
performance criteria: Implications for improving hydrological modelling. Journal of Hydrology 377: 80–
91.

48. Sun P, Liu S, Liu J, Li C, Lin Y, Jiang H (2006) Derivation and validation of leaf area index maps using
NDVI data of different resolution satellite imageries. Acta Ecologica Sinica. 26 3826–3834.

49. Li Q, Sun S, Xue Y (2010) Analyses and development of a hierarchy of frozen soil models for cold
region study. Journal of Geophysical Research: Atmospheres 115: D03107.

50. Xiao X, Zuo HC, Yang QD, Wang SJ (2011) On the factors influencing surface-layer energy balance
closure and their seasonal variability over semi-arid Loess Plateau of northwest China. Hydrology
Earth System Sciences 8: 555–584.

LSM and PSO Based Model-Optimization Method for Improving Soil Moisture Simulation

PLOS ONE | DOI:10.1371/journal.pone.0151576 March 18, 2016 17 / 17


