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Abstract

Despite its high and direct impact on nearly all biological processes, the underlying structure

of gene-gene interaction networks is investigated so far according to pair connections. To

address this, we explore the gene interaction networks of the yeast Saccharomyces cerevi-

siae beyond pairwise interaction using the structural balance theory (SBT). Specifically, we

ask whether essential and nonessential gene interaction networks are structurally balanced.

We study triadic interactions in the weighted signed undirected gene networks and observe

that balanced and unbalanced triads are over and underrepresented in both networks, thus

beautifully in line with the strong notion of balance. Moreover, we note that the energy distri-

bution of triads is significantly different in both essential and nonessential networks com-

pared to the shuffled networks. Yet, this difference is greater in the essential network

regarding the frequency as well as the energy of triads. Additionally, results demonstrate

that triads in the essential gene network are more interconnected through sharing common

links, while in the nonessential network they tend to be isolated. Last but not least, we inves-

tigate the contribution of all-length signed walks and its impact on the degree of balance.

Our findings reveal that interestingly when considering longer cycles, not only, both essen-

tial and nonessential gene networks are more balanced compared to their corresponding

shuffled networks, but also, the nonessential gene network is more balanced compared to

the essential network.

Introduction

Today, various studies investigate genomic information based on pairwise connections in gene

interaction networks [1]. However, the interesting collective behaviors that emerge from these

interactions can not be described by simply considering pairs of genes. In other words, while

studying pair connections has well broadened our view on the functionality of genes, the

higher-order organizations are yet to be explored. To be specific, studies demonstrate that

genes are categorized into two main groups [2]. Functionally, essential genes play a more vital

role in the biological process, and locally they form a denser network compared to nonessential

genes. Yet the crucial question raised here is if there exists a structure beyond these pairwise

interactions in these two networks. If so, what is the difference in the underlying structure
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between essential and nonessential networks? Suppose in a signed interaction network genes

A, B, and C are connected, is it logical to consider the interaction AB detached from its context,

that is, triad ABC? What is the impact of interactions AC and BC on the interaction between

genes A and B? It is known that triadic interactions play a significant role in the construction

of real-world networks [3, 4], and structural balance theory (SBT) has well discussed these

interactions. In this work, we apply SBT to the gene interaction networks to answer the follow-

ing questions: Is there a structure beyond pairwise interaction in the gene interaction net-

works? Which types of triads, balanced or unbalanced, are over (under) represented in these

networks compared to the shuffled networks regarding both the frequency and the energy dis-

tributions? Is there a difference between essential and nonessential networks in the pattern of

connection between triads? In addition, when considering all lengths of cycles, which network

is more balanced? And do all genes have an equal impact on the final networks’ degree of bal-

ance? These questions are the basis of this study.

SBT was introduced in social psychology by Heider to investigate the structure of tension in

networks whose mutual relationships are explained in terms of friendship and hostility [5].

Later this theory has been generalized for graphs by Cartwright and Harary through consider-

ing the triads as low-dimensional motifs [6]. One of the standard applications provided by bal-

ance theory is to measure the degree of balance/ stability in networks [7–12]. On the other

hand, quantifying the degree of unbalancing/ frustration in a signed network was proposed as

well [13]. Similarly, in biological networks distance to the exact balance is computed [14–17].

Moreover, several researchers have studied the dynamics based on which an unbalanced net-

work achieves balance through reducing unbalanced triads [18–25]. Some studies provide fur-

ther theoretical expansion of balance theory employing methods from Boltzmann-Gibbs

statistical physics to unravel the dynamics behind the structural balance [4, 26, 27]. An appeal-

ing application of balance theory recently applied predicts which correlation matrix coeffi-

cients are likely to change their signs in the high-dimensional regime [28]. Consequently,

there have been two main trends in the literature of SBT: (1) Studying the analytical aspects

theoretically [19, 29–35], (2) Applying it to a wide variety of real-signed social, economic, eco-

logic, and political networks empirically to clarify their structures [36–43]. Among these appli-

cations, it should be mentioned that understanding the structure entirely, not partially, calls

for considering not only short-range interactions but also longer-range cycles [44–47].

Accordingly, we analyze the structural balance of gene interaction networks. We study the

genetic interaction profile similarity matrices of the yeast Saccharomyces cerevisiae [48, 49],

which has been categorized into two main classes, namely, essential and nonessential. Among

all 5500 genes, approximately 1000 genes are essential because of their vital functional role in

biological processes. According to the threshold taken by Costanzo and et al. in [48], essential

genes have higher degrees and are considered hubs in the global network. Thus, these genes

play a considerable role in the local structure of the network. On top of that, essential genes

have higher prediction power compared to nonessential genes [50, 51].

Here, we investigate the weighted, signed, and undirected networks of genetic interaction

for essential and nonessential genes of the yeast Saccharomyces cerevisiae. Primarily, we are

interested in probing the existence of structure beyond the pairwise gene interactions in these

networks. To this aim as in our previous study [52], we compare the spectrum of eigenvalues

between genetic interaction matrices and their shuffled versions. The rest of the paper is orga-

nized as follows. First, we explore the frequency of triads in the gene networks according to the

notion of over and under-representation of different types of triad compared to the shuffled

networks. Afterward, we assign energy levels to unique configurations of triads and demon-

strate triads’ energy distributions. Then, the energy-energy mixing patterns between triads are

analyzed to systematically investigate how triads with different energies are connected in the
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networks. Additionally, we examine the balance of the gene interaction networks by consider-

ing all lengths of cycles. Last but not least, we propose a list of genes which have the highest

degree of balance.

Materials and methods

Data

Saccharomyces cerevisiae is a beneficial yeast to analyze eukaryotes. One of the outstanding

characteristics of it is that almost all bioprocesses in eukaryotes can exist in Saccharomyces cer-

evisiae [53]. In this study, we analyze the data of the gene interaction similarity networks of it.

Costanzo and his colleagues have provided the data [48]. They have published three gene inter-

action similarity matrices, for essential genes, nonessential genes, and the combination of

them in the global form [54, 55]. It can be helpful to perceive these two groups of genes catego-

rized as essential and nonessential more deeply. Here, we explain the discriminator features

that classify them into these two groups. First, it should be mentioned that the type of mutation

generating these mutants is different. Specifically, essential and nonessential genes are mutated

through temperature-sensitive and deletion mutations, respectively. Topologically, they are

connected denser compared to the nonessential ones. Thus, the essential genes are considered

network hubs. Moreover, in the network, essential genes show a stronger functional connec-

tion. Besides, by evaluating the predictive power, essential gene interaction profiles provide

higher-accuracy gene function predictions for biological processes. At last, the biological pro-

cesses specifically detected in the essential gene similarity network are cell polarity, protein

degradation, and ribosomal RNA processing. Whereas, in the nonessential gene similarity net-

work, mitochondrial and peroxisomal functions were identified [48].

The data file analyzed concerning these genes during the current study is available at http://

boonelab.ccbr.utoronto.ca/supplement/costanzo2016/. We have worked with data file S3 titled

“Genetic interaction profile similarity matrices”. The steps taken to produce this data are as

follows:

1. Based on the growth rate of the colony consisting of two specific mutated genes, the genetic

interaction score (epsilon) between them has been obtained.

2. A genetic interaction profile for each gene is constructed by considering the genetic interac-

tion score between that gene and a set of other genes in the colony.

3. The similarity between all two profiles is measured by calculating Pearson correlation coef-

ficient (PCC).

The positive value in the PCC matrix indicates how much those two genes are functionally

similar to each other, and vice versa. Moreover, zero elements show that those two genes are

not related functionally. The aforementioned procedure accomplished to obtain the PCC
matrices is presented in Fig 1.

For more detail, it should be pointed that the analyzed data is based on a subset of the com-

plete Synthetic Genetic Array analysis dataset (SGA) of the yeast Saccharomyces cerevisiae.

The SGA dataset is based on genetic interactions of nonessential deletion mutants and/or

essential temperature-sensitive mutants. To derive genetic interactions quantitatively, colony

size is modeled as a multiplicative combination of double mutant fitness, time, and experimen-

tal factors. Succinctly, for a double mutant, carrying mutations of genes 1 and 2, colony size c12

can be expressed as c12 = f12 × t × s12 × e, where f12 is the double mutant fitness, t is the incuba-

tion time, s12 is the combination of all systematic factors, and e is log-normally distributed ran-

dom noise. The f12 is denoted as f12 = f1 f2 + ε12, where f1 and f2 describe the fitness of the two
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single mutants, and ε12 (epsilon) is the quantitative measure of the genetic interaction between

them. The epsilon is either positive or negative. Negative ε between two mutated genes means

that the combination of those two mutants causes cell death. Conversely, positive ε implies

that the combination of two mutated genes results in a phenotype less severe than expected.

Through the ε, each gene has an interaction profile. In other words, that mutated gene (essen-

tial or nonessential) is crossed to a set of another mutated gene (essential or nonessential).

Then, PCC between every two interaction profiles of genes is calculated. Indeed, each element

of the PCC matrix, which shows the amount of similarity between every two profile interac-

tions of genes, is between −1 and +1 [48].

Network analysis

Prior to our main analysis, as has been carried out in the literature [1] and based on our

research aims, we calculated six standard network’s topological and statistical measurements,

namely, mean degree (k), the ratio between mean of squared degrees and squared of mean

degree
hk2i

hki2

� �
, modularity, assortativity coefficient, average path length (L), and clustering coef-

ficient (C). In detail, the most elementary characteristic of a network is its k, which tells us how

many links each node has to other nodes on average. Besides, the coefficient hk2i holds infor-

mation about the values around mean degree. However, hki2 includes information about the

Fig 1. Graphical abstract for the procedure of obtaining the genetic interaction similarity matrices.

https://doi.org/10.1371/journal.pone.0258596.g001
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tail of degree distribution. Hence, low
hk2i

hki2
indicates that the tail carries a higher share in the

couplings. Regarding modularity, it measures the strength of a network in division into mod-

ules. Concerning assortativity (disassortativity), positive (negative) coefficient means that

high-degree components often tend to be connected with similar (different) counterparts [56].

Also, L declares the minimum number of edges that must be traversed to get from one node to

the other [57]. Finally, the value of C states the extent to which the neighbors of a node are also

interconnected [58].

To compare networks with different sizes (N) and mean degrees (k) through the N, k-

dependent graph measures like C and L, a normalization technique is needed to be applied to

correct the effect of N and k. It should be highlighted while each normalization method has its

advantages and disadvantages, the network type plays a key role in selecting a suitable method

to mitigate the N, k-dependence of graph measures. It is worth mentioning that many empiri-

cal networks appear to have small-world characteristics [59]. To investigate if a real-world net-

work is considered as a small-world network or not, small world index (SW) is utilized [59,

60]. The SW is defined as the ratio between normalized C and L. Also, Crand and Lrand are

those of the random network with the same number of nodes and connectivity density. Specif-

ically, small-world networks are characterized by C> Crand and L� Lrand. Thus, a network

can be a small-world network if its SW index is greater than one.

SW ¼

C
Crand
L

Lrand

ð1Þ

Since the values of the aforementioned indicators in a small-world network are between

those of a lattice and a random network, one may express the normalized indicators as a frac-

tion of the range of the possible obtainable values. In other words, representing normalized

indicator like ~C ð~LÞ as a ratio of the range of possible obtainable values declines the sensitivity

to differences in N and k [59]. Through this normalization, C (L) is considered as the observed

indicator, Crand (Lrand) is the value of that in the corresponding random network, and Clatt

(Llatt) shows the value of that indicator in the lattice. Specifically, the random network is con-

structed by shuffling the links without any changes in the number of nodes or connectivity

density. Also, the ring lattice is created by the same number of nodes with the k for each node

while preserving the edge densities.

~C ¼
C � Crand

Clatt � Crand
; ~L ¼

L � Lrand

Llatt � Lrand
ð2Þ

Finally, it should be noted that comparing the small-worldness of two networks with differ-

ent N and k leads to misleading results. On the one hand, the value of L in small-world net-

works is close to that of random networks. On the other hand, the value of C is contrastingly

close to that of lattice networks. Thus, normalization implies a bias, i.e. the normalized SW is

larger than its non-normalized one. Because of this, the SW is also significantly affected by N
and k. Altogether, quantifying the extent to which networks display a small-world structure is

a standard way to compare their small-worldness. To this aim, as Muldoon has proposed [61]

the small-world propensity (ϕ) is calculated to reflect the deviation of a network’s C and L,

from both lattice and random networks constructed with the same N and k. In the following

equation, ΔC and ΔL show the deviation of C and L, that are calculated as DC ¼
Clatt � C

Clatt � Crand
and

DL ¼
L� Lrand

Llatt � Lrand
, respectively. The value of ϕ which is between zero and one, is close to one for
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networks with high small-world characteristics, while the lower value of ϕ represents less

small-world structure.

� ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2

C þ D
2

L

2

r

ð3Þ

Besides graph measures, further investigations regarding the existence of structure based

on spectral analysis can sure be insightful. When there is no structure beyond pairwise interac-

tions, that network can be known as a random one. In a random network, the distribution of

the spectrum of eigenvalues has a semi-circular form with a body-centered around zero [62].

In a nonrandom network, there are some eigenvalues out of the bulk [63]. Also, one large

eigenvalue exists that mostly has a value far from the bulk of the eigenvalues [64, 65]. This

eigenvalue plays a significant role and addresses the global trend of the system.

Structural balance theory

To go beyond the assumption that pair interactions are independent and look for triads as the

shortest motif, structural balance theory (SBT) is applied [29]. To consider the local triads, we

focus on groups with three interacting nodes in the network. There are four types of triads,

including two balanced and two unbalanced ones. The idea of “The friend of my friend is also

my friend [+ + +] refers to strongly balanced triad (T3)”. Also, the idea of “The enemy of my

enemy is my friend [− − +] points to weakly balanced triad (T1)”. Regarding the two other

types of signed triads, [+ + −] is strongly unbalanced triad (T2), and [− − −] is weakly unbal-

anced triad (T0), which give rise to frustration in the network [44]. In other words, the triad is

recognized as a balanced one if the sign of the product of its links is positive; otherwise, the

triad is considered as an unbalanced or frustrated one.

As counting the number of balanced and unbalanced triads prepares informative informa-

tion, significant computational methods are applied to speed up accounting for the number of

triads in signed and large networks [66]. Here, we mention one of them which works based on

unsigned (A(|S|)) and signed (A(S)) adjacency matrices. In the unsigned adjacency matrix, if

the nodes i and j are connected then A(|S|)(i, j) = 1, otherwise A(|S|)(i, j) = 0. In the signed

adjacency matrix, if the link’s sign connecting those nodes is positive then A(S)(i, j) = 1, and if

the link’s sign connecting those nodes is negative then A(S)(i, j) = −1. As follows, the two

equations count the number of balanced (b) and unbalanced (u) triads, respectively:

b ¼
1

12
½traceðAðjSjÞ3Þ þ traceðAðSÞ3Þ�; ð4Þ

u ¼
1

12
½traceðAðjSjÞ3Þ � traceðAðSÞ3Þ�: ð5Þ

As Leskovec has proposed [3], we have created a null model to compare the empirical fre-

quencies of triads. It is important for generating a null model to keep the exact fraction of posi-

tive (negative) signs. Specifically, each randomly chosen link connecting the two existing

nodes is shuffled. Thus, the created null model represents no organization in the structure.

Then, the fraction of each type of triad in the shuffled network (p0(Ti)) is calculated. The triad

i is overrepresented if the related fraction in the original network (p(Ti)) be more than that of

in the shuffled one; otherwise, it is underrepresented. Next, the value of surprise (s(Ti)) is cal-

culated which is the number of standard deviations by which the actual number of triad i dif-

fers from its expected number under the null model. Within the function of (s(Ti)), Ti is the

number of triad i, E[Ti] is the expected number of triad i calculated as E[Ti] = Δp0(Ti), and Δ is
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the total number of triads calculated as Δ = trace(A(|S|)3. To eliminate the effect of size in both

networks, after calculating the s(Ti) function, it is divided into
ffiffiffiffi
D
p

.

sðTiÞ ¼
Ti � E½Ti�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dp0ðTiÞð1 � p0ðTiÞÞ
p ð6Þ

It has been stated that a balanced network is a network consisting of all positive triads [8].

While the possibility of possessing a real-world network containing all positive signed triads

(positive product of their sides) is close to zero. Thus, a common approach is to measure the

degree of balance of a signed network. To this aim, the concept of balance enables us to deter-

mine an energy landscape for such networks. Energy describes how much a network is struc-

turally balanced [21, 67]. In a weighted network, the network energy (E) is obtained by the

negative summation of the products of the triads’ links (wij wjk wki) divided by weighted sum

of all triads’ energies (Δw) which is calculated as Dw ¼
PN

i<j<k jwijwjkwkij. For a balanced triad,

the product of its weighted links is a positive number, whereas for an unbalanced one this

product is negative. If E = −1, then we have a fully balanced network. But if it equals +1, then

we have an unbalanced network. Consequently, in real-world networks, the energy of triads is

between −1 and +1. According to SBT’s suggestion, a network evolves towards the minimum

level of tension [67].

E ¼ �
1

Dw

XN

i<j<k

wijwjkwki ð7Þ

The energy landscape introduced above considers the triads individually and does not des-

ignate how they are organized in the network globally. Put differently, after calculating the

energy of each triad, we aim to investigate how they are connected through one shared link.

The following questions are our concerns in this regard: Do triads form a module, or are iso-

lated? Does a triad with a high (low) energy value tend to be connected with triads of different

energies? What types of triads a specific triad with a defined energy value is connected to, and

with what energy value? To answer these questions, the energy-energy mixing pattern is plot-

ted. To be more specific, through moving on sorted spectrums of energy of two specific types

of triads, the number of triads that have a common link is counted. This calculation is repeated

for all pair types of triads. Indeed, this pattern shows if particular types of triads are packed

together and form a kind of module. Also, it figures out if triads represent a heterogeneous

(homogeneous) form of connections. Moreover, it clarifies if a triad with a high (low) energy

value tends to be connected with triads of different (similar) energies.

Walk-based measure of balance and detecting lack of balance

SBT gives specific information to understand the structural balance of signed networks but is

biased. Through triads, our analysis recognizes the frustration on the shortest possible cycle,

but it overlooks to consider the unbalancing correlated with longer-range cycles [33]. To

extend our analysis by considering cycles with all possible lengths, it should be mentioned that

the balance or unbalancing of each cycle is related to the multiplication of the signs of its links.

If the sign of the product is positive, or the number of negative links in the cycle is even, it is a

balanced cycle. Therefore, if all cycles in a network have a positive sign, we can consider the

signed network as a balanced one [44–46]. But the fact is that the probability of having a real-

world network containing all cycles with a positive sign is close to zero. As Estrada proposed

in [47], the walk-balance index (K) is used to quantify how close to balance an unbalanced net-

work is. Specifically, walks with all lengths are considered concerning assigning more weights
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to the shorter ones, which is logical [47]. This method relates a hypothetical equilibrium

between the real-world signed network and its underlying unsigned version. In K, A(S) and A
(|S|) are signed and unsigned adjacency matrices, respectively. Elements in A(S) are + 1 when

the interaction matrix values are more than zero. Also, if the interaction matrix values are less

than zero the elements in A(S) are −1. In the unsigned adjacency matrix A(|S|), if the elements

in the interaction matrix are nonzero, the elements of A(|S|) are 1. Another index proposed by

Estrada measures the extent of the lack of balance in the network (U), as follows [47]:

K ¼
traceðexpðAðSÞÞÞ
traceðexpðAðjSjÞÞÞ

; ð8Þ

U ¼
1 � K
1þ K

: ð9Þ

The value of K as the density of the balanced walks with all lengths in the network is

between zero and one. To be specific, when the expansion of the exp(A(S)) in K is opened,

among walks with all possible lengths, there can be some negative terms in the nominator,

although, in the denominator, all terms of expansion of the exp(A(|S|)) are positive. Thus, if all

present walks are positive (a balanced network), then this index calculating the amount of bal-

ance of the network meets its maximum value, which is one. Additionally, U calculating the

amount of unbalance would have its minimum value, which is zero. At last, the participation

of each node in the balance of the network can be calculated by the degree of balance of a

given node i as Ki [47]. According to the following equation, Ki flows between zero and one.

Thus, the term “highest degree balance” is assigned to the nodes with Ki = 1 that participate

only in the walks with an even number of negative links. That is, all walks they are joining in

are balanced.

Ki ¼
expðAðSÞÞii
expðAðjSjÞÞii

ð10Þ

Results

Based on our main research questions, six standard, and informative network’s indicators, i.e.,

mean degree (k), the ratio between mean of squared degrees and squared of mean degree

hk2i

hki2

� �
, modularity, assortativity coefficient, average path length (L), and clustering coefficient

(C) are calculated. Specifically, through computing C we observe networks’ tendency to form

triads, which are the basic building blocks in the balance theory framework. As well, modular-

ity provides information on the networks’ communities, which is a very crucial feature in gene

network studies. Also, if k of networks, besides their sizes (N), be different, to compare those

networks, a normalization technique which is related to the topology of networks should be

selected to normalize N, k-dependent network’s indicators like C and L. Since most real-world

networks have small-world topology, according to Eq (1), the small-world index (SW) in our

networks is calculated. The result indicates that the SW in both essential and nonessential gene

networks as the same as in small-world networks is greater than one, which is 1.0866 and

1.2402, respectively. Thus, according to what small-world structure implies (the values of C
and L are between their values of lattice and random versions), C and L through Eq (2) within

a range of possible values are normalized.

Indicators in both essential and nonessential gene networks are compared in Fig 2. Despite

the segregation among the measurements, there exist some similarities. As shown in Fig 2, the k
in the nonessential gene network is higher compared to the essential network. Besides, in both
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networks, the ratio between mean squared degrees and squared of mean degree is close to one.

This implies that neither nodes with high degrees nor those with a medium degree are signifi-

cantly dominant over the other one. In addition, the value of the modularity in the essential net-

work is more than that of in the nonessential network. The higher value of this indicator in the

essential gene network than the nonessential one indicates the higher tendency to be clustered

into multiple sets of strongly interacting parts. Moreover, as it has been illustrated in Table 1,

the assortativity coefficient in both networks is negative but so close to zero, i.e., both networks

show weak disassortative behavior. However, the magnitude of disassortativity is one order

Fig 2. The radar plot shows six standard network’s indicators in both essential and nonessential gene networks. Mean degree,

the ratio between mean of squared degrees and squared of mean degree, modularity, assortativity coefficient, normalized clustering

coefficient, and small-world propensity. The radar plot for the essential gene network is plotted in blue and for the nonessential gene

network in yellow.

https://doi.org/10.1371/journal.pone.0258596.g002

Table 1. Network’s indicators.

Essential Nonessential

Mean degree (k) 478.890 718.957

hk2i
hki2

1.0278 1.0560

Modularity 0.033 0.018

Assortativity −0.017 −0.002

Normalized clustering:coef ~ðCÞ 0.139 0.067

Small world propensity (ϕ) 0.391 0.340

Mean degree, the ratio between mean of squared degrees and squared of mean degree, modularity, assortativity coefficient, normalized clustering coefficient, and small-

world propensity for both essential and nonessential gene networks.

https://doi.org/10.1371/journal.pone.0258596.t001
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higher in the essential network. In the radar plot (Fig 2), the absolute values of assortativity coef-

ficients are demonstrated. Additionally, the values of normalized L, in both networks are close

to zero, which shows that these networks are densely connected, and there is a very small differ-

ence between values of observed L with those of shuffled versions. As well, the tendency in

forming clusters is defined by the normalized C which is higher in the essential network. At last,

because of the size dependence of SW, through Eq (3) the small-worldness propensity (ϕ) of

networks is calculated to understand the extent of this characteristic in our networks. The value

of ϕ, for the essential gene network, is larger compared to the nonessential network.

Then, we have investigated the existence of clusters in the construction of the essential and

nonessential gene networks. Within groups, genes cooperate to annotate a common bioprocess

efficiently. Clusters in both essential and nonessential gene networks are illustrated through

cluster maps (Fig 3). It can be seen that the essential network has stronger structural modules

which are in line with the previous result which stated that the essential network is more modu-

lar than the nonessential network. In other words, although the clusters exist in both networks,

the structure in the essential gene network (Fig 3A) is highly stronger than the nonessential

network (Fig 3B). This also confirmes our previous study, where we observed a significant dif-

ference between the distributions of eigenvalues in the original matrices and those of the shuf-

fled networks [52]. To be specific, some of the eigenvalues in the original networks are not

limited to the narrow bulk of the eigenvalues in the shuffled matrices. Thus, it can be confi-

dently concluded that the structure of the gene interaction networks is far from random.

After studying the clusters, the structural balance in gene interaction networks to study the

structure beyond pairwise interactions is analyzed. To this aim, as the first step, the size, the

percentage of positive and negative links, and the total number of triads in both networks are

prepared (Table 2). In the following, the two equations Eqs (4) and (5) are utilized to count

balanced (b) and unbalanced (u) triads. Then, to compare the dominance of balanced or

unbalanced triads in our networks, we have applied the method proposed by Leskovec et al.

[3]. According to this method, if the fraction of balanced (unbalanced) triads in the original

network is higher than the shuffled one, it will overrepresent, and vise versa. Through this

method, the fraction of the triad Ti in the original network is considered as p(Ti) and in the

shuffled network as p0(Ti). Moreover, they have proposed the concept of surprise as Eq (6), s

Fig 3. The cluster map of two essential and nonessential gene networks. A: Cluster map of essential gene network,

B: Cluster map of nonessential gene network.

https://doi.org/10.1371/journal.pone.0258596.g003
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(Ti), to understand how significant these over (under) representations are. Due to the size of

the networks, s(Ti) has a significant order of tens. The results indicate that balanced triads are

overrepresented in both essential and nonessential gene interaction networks. On the contrary,

unbalanced triads are underrepresented compared to their shuffled versions. These results are

presented in Table 3.

After analyzing the frequency of triads, we have examined the energy distribution of differ-

ent types of triads. Thus, we have calculated the energy of triads by Eq (7). Then, the energy

distributions of strongly balanced triads (T3) in Fig 4A, weakly balanced triads (T1) in Fig 4B,

strongly unbalanced triads (T2) in Fig 4C, and weakly unbalanced triads (T0) in Fig 4D for

both original networks, in comparison with their shuffled versions, are presented. Results indi-

cate: (1) All types of triads, in both essential and nonessential networks, have many triads with

small values of energies. (2) In the essential gene network, the largest amount of triads’ energy

is for the T1 triads, and in the nonessential gene network, the T3 triads have the largest value of

energy (Fig 4E). (3) In both gene networks, the bar levels of the average energy of balanced tri-

ads are higher than those of shuffled ones. However, on the contrary, the bar levels of the aver-

age energy of unbalanced triads are lower than those of shuffled ones. (4) As Fig 4F, in the

essential gene network, the relative frequency of the balanced triad T1 is individually equal to

the relative frequency of the other three types of triads.

Table 2. Dataset statistics.

Essential Nonessential

Nodes 1, 040 4, 430

Edges 249, 023 1, 592, 490

+Edges 50.1% 63.5%

−Edges 49.9% 36.4%

Edges�
N
2

� 0.461 0.162

Triads 20, 310, 741 81, 470, 554

Triads�
N
3

� 0.109 0.006

Number of nodes, edges, triads in both essential and nonessential gene networks with threshold wij < |0.05|.

https://doi.org/10.1371/journal.pone.0258596.t002

Table 3. Number and probability of balanced and unbalanced triads in the original networks compared to the null model.

Essential gene network |Ti| p(Ti) p0(T) s(Ti)
sðTiÞffiffi
D
p

Strongly balanced (T3) 3, 670, 948 0.180 0.124 764.0 0.2

Weakly balanced (T1) 10, 362, 180 0.510 0.375 1, 255.1 0.3

Strongly unbalanced (T2) 4, 421, 666 0.217 0.374 −1, 461.1 −0.3

Weakly unbalanced (T0) 1, 855, 947 0.091 0.125 −462.0 −0.1

Nonessential gene network |Ti| p(Ti) p0(T) s(Ti)
sðTiÞffiffi
D
p

Strongly balanced (T3) 30, 868, 604 0.378 0.256 2, 531.1 0.3

Weakly balanced (T1) 32, 704, 022 0.401 0.253 3, 071.6 0.3

Strongly unbalanced (T2) 16, 028, 365 0.196 0.441 −4, 452.8 −0.5

Weakly unbalanced (T0) 1, 869, 563 0.022 0.048 −1, 071.7 −0.1

|Ti| = the total number of triads of type i; p(Ti) = the fraction of Ti; p0(Ti) = the fraction of Ti in the null model; s(Ti) = the amount of surprise, i.e., the number of

standard deviations by which the actual number of Ti differs from its expected number under the null model; and Δ = the total number of triads.

https://doi.org/10.1371/journal.pone.0258596.t003
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Here, we intend to understand how triads are globally organized in the network. To address

this aim, the energy-energy mixing pattern in the logarithmic scale has been plotted in Fig 5.

By using the logarithmic scale, there is a magnification between the elements with small

amounts. Specifically, our goal is to enrich our analysis by studying patterns of the connection

between triads. Results reveal that there are fewer connected triads compared to isolated ones

overall. Moreover, T1 triads are more connected to each other compared to other types. Fur-

thermore, triads with low absolute energy values have more tendency to be connected

Fig 4. Energy distributions, average energy, relative frequency for all four types of triads. A: Energy distribution

for strongly balanced triads, B: Energy distribution for weakly balanced triads, C: Energy distribution for strongly

unbalanced triads, D: Energy distribution for weakly unbalanced triads. (The energy distribution of triads for original

essential gene network and its shuffled network are plotted in blue and red, respectively. The energy distribution of

triads for original nonessential gene network and its shuffled network are plotted in yellow and gray, respectively). E:

From left to right, the average energy for essential gene network and nonessential gene network. F: From left to right,

the relative frequency for essential gene network and nonessential gene network (Green bars for original networks and

purple ones for shuffled networks).

https://doi.org/10.1371/journal.pone.0258596.g004
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compared to high energy triads. While this pattern holds for both essential and nonessential

gene networks, the essential network has more triads with the shared link. To clarify Fig 5A

more clearly, the following steps are taken to plot each square in Fig 5B:

1. The spectrums of energy of two specific types of triads are sorted.

2. Through moving on the energy axes, the number of triads that have a common link is

counted and saved in a matrix in the Log scale.

Fig 5. The pattern of connection between triads through one shared link in Log scale. A: All types of pair connected

triads (From left to right, essential gene network and nonessential gene network), B: An overview of creating

connection between triads for one square (T3 [+ + +] and T2 [+ - +] triads).

https://doi.org/10.1371/journal.pone.0258596.g005
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3. The previous steps are repeated for all pair types of triads.

4. All 16 squares in 4 rows and 4 columns are merged.

Now, by considering walks with all possible lengths, we extend our analysis. To this aim,

the quantity of balance or unbalancing through these walks is measured. Indeed, we employed

two indices introduced in [47] by Estrada not to limit ourselves only to triads as the shortest

cycle. One of the two indices is the walk-balance index (K) which calculates by Eq (8) the

amount of how close to balance an unbalanced network is. Another index represents the extent

of the shortage of balance (U) in a given signed interaction network by Eq (9). In Table 4, the

values of the K in both essential and nonessential gene networks have been presented. For each

index in both networks, there is a leading difference between the value of the original and that

of the shuffled matrix. The fact is that in an unbalanced network, for example, a random net-

work that holds no structural information, the K would have the lowest possible value i.e., a

value close to zero. Also, U would have the highest possible value, that is, a value close to one.

As the result indicates, by considering all walks, both essential and nonessential gene networks

are more close to balance rather than their corresponding shuffled versions. Besides, in the

nonessential gene network, K is higher than the essential gene network. Moreover, the U in the

essential gene network is much more than the nonessential gene network. Furthermore, there

is an index that characterizes the degree of balance for a given node i as (Ki) by Eq (10). In sup-

plementary, a table is prepared to represent the classification of genes with the highest degree

of balance (Ki = 1) in terms of biological processes they annotate.

Discussion

We analyzed gene interactions in the weighted, undirected, and signed networks of yeast Sac-

charomyces cerevisiae. The pre-processed dataset used includes two matrices, namely, essen-

tial and nonessential gene interaction networks. Here, we explored these two gene networks

beyond pairwise interactions in the context of structural balance theory (SBT). The following

results have been concluded accordingly: We have discovered that in both essential and nones-

sential gene networks balanced triads are overrepresented while unbalanced triads are under-

represented. Interestingly, this finding is in agreement with Heider’s balance theory. To be

specific, our results empirically support the strong notion of structural balance theory

(Table 2). This is while in some social networks, the weak formulation of structural balance

has been reported as well.

Additionally, we have observed T1 and T0 triads in both gene networks with more average

energy and higher relative frequency in the essential network. This can be interpreted from the

perspective of SBT in which the presence of T1 and T0 triads in the organization of a network is

related to having a higher degree of modularity. In other words, to have T1 or T0 triads in the

Table 4. Walk-balance index for all cycles (K), percentage of the lack of balance (U).

Essential Nonessential

Koriginal network 0.195 0.988

Kshuffled 0.000 0.131

Uoriginal network(%) 67.238 0.575

Ushuffled(%) 99.999 76.749

For the original and shuffled of essential and nonessential gene networks with threshold wij < |0.2|.

https://doi.org/10.1371/journal.pone.0258596.t004
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stable state of a network indicates that densely connected modules are also connected to others

through negative links. This result corresponds to the presence of specialized clusters in the

gene interaction network which has also been reflected in the energy-energy mixing pattern

between the triads with one common link. It is worth mentioning that this pattern is more sig-

nificant in the essential network as genes in this network are more densely interconnected.

Moreover, we have noted that although energies of the essential and nonessential networks

are not significantly different from each other, the underlying triads’ distributions that led to

these final energies are not similar. As mentioned earlier, the average energy and the relative

frequency of unbalanced triads T0 are higher in the essential gene network compared to the

nonessential network. Thus, they are more likely to experience different possible states. There-

fore, it can be concluded that unbalanced triads T0 are providing the essential gene networks

with the necessary structure that is needed to contain dynamism which is crucial for vital bio-

logical mechanisms. This is while for nonessential genes with less unbalanced triads T0, the

likelihood of being trapped in a local minimum is higher.

Finally, to extend our analysis we have calculated two indices by considering the walks with

all possible lengths. Namely, the quantification of how close to balance an unbalanced network

is, and the extent to which a given signed network lacks balance by considering longer-range

cycles. Results surprisingly suggest that when all length walks are taken into account, both

essential and nonessential gene networks are more balanced than expected from a random

allocation of the signs to the links. In other words, both essential and nonessential gene net-

works, besides balanced triads, respect balanced long-range interactions. Moreover, the nones-

sential gene network is more balanced and stable than the essential network. As mentioned

earlier, the combination of both essential and nonessential interactions constructs the global

gene network as a whole. For this network, we have proposed a list of genes in terms of biologi-

cal processes they annotate in the S1 File that have the highest degree of balance. Thus, our

finding highlights the genes that are structural of note, regarding which further biological anal-

ysis seems to be very much valuable.
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