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SUMMARY
PD-1 is an inhibitory receptor in T cells, and antibodies that block its interaction with ligands augment anti-
tumor immune responses. The clinical potential of these agents is limited by the fact that half of all patients
develop immune-related adverse events (irAEs). To generate insights into the cellular changes that occur dur-
ing anti-PD-1 treatment, we performed single-cell RNA sequencing of circulating T cells collected from
patients with cancer. Using the K-nearest-neighbor-based network graph-drawing layout, we show the
involvement of distinctive genes and subpopulations of T cells. We identify that at baseline, patients with
arthritis have fewer CD8 TCM cells, patients with pneumonitis have more CD4 TH2 cells, and patients with
thyroiditis havemoreCD4 TH17 cells when comparedwith patientswho do not develop irAEs. These data sup-
port the hypothesis that different populations of T cells are associated with different irAEs and that charac-
terization of these cells’ pre-treatment has the potential to serve as a toxicity-specific predictive biomarker.
INTRODUCTION

PD-1 is an inhibitory receptor expressed on T cells and ex-

ploited by tumor cells to evade immune detection. By overex-

pressing PD-L1, a PD-1 ligand, tumor cells engage PD-1 on

T cells, blocking its activation and function. This pathway

has been effectively thwarted by monoclonal antibodies

(Abs) targeting either PD-1 or PD-L1, with great success in un-

leashing an anti-tumor response.1–4 Despite this powerful

advance, there remain numerous challenges to immune

checkpoint inhibitor (ICI) use that must be met to best

advance the next generation of therapies. These challenges

include increasing responsiveness to PD-1 and CTLA-4

blockade, uncovering additional targets to optimize pathway

blockade, and, importantly, predicting and effectively manag-

ing immune-related adverse events (irAEs).5–9 Patients who

have a prior history of autoimmune disease are thought to

be at increased risk for developing irAEs, but aside from

this, no predictive factors have been identified to guide pa-

tients regarding their individual risk of toxicity with ICI treat-

ment, a major unmet need in clinical decision-making. One

of the ways to achieve these goals is better understanding
Cell Repo
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and characterization of T cell responses during treatment

with ICIs.

ICIs are associated with the development of irAEs that affect

various tissues and organ systems throughout the body.10

These acute and chronic inflammatory responses are thought

to emerge because of the loss of the physiologic role played

by immune checkpoints leading to unchecked T cell activation

and loss of tolerance. irAEs are associated with significant

morbidity and, in some cases, life-long disability. Some pa-

tients will require long-term immunosuppressive treatment,

and others will have to withdraw from lifesaving anti-cancer

therapy. Moreover, a particularly perplexing feature of irAEs is

that they are often organ specific, with different organ systems

being involved in different patients.11,12 Although the molecular

pathways that predispose to and trigger irAEs are incompletely

delineated, it is well established that irAEs are mediated by

T cell responses that drive tissue- and organ-specific inflamma-

tion and assist B cells in autoantibody production.13,14 Howev-

er, whether these T cell responses are similar in all irAEs, or

whether distinctive responses are associated with different pat-

terns of organ involvement, remains an unanswered question.

Similarly, a related question is whether any features of the
rts Medicine 4, 100868, January 17, 2023 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Dimensionality reduction approach to visualize single-cell RNA sequencing data of patients with immune-related adverse events

(A) Schematic workflow of study design.

(B) Clinical characterization of the patients.

(legend continued on next page)
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pre-treatment immune system might allow one to predict the

development of an irAEs.

To better understand the biology of T cell responses that

develop during the course of ICI treatment and through the onset

of irAEs, we applied a single-cell RNA sequencing (scRNA-seq)

methodology to peripheral blood T cells prior to and during

irAE development. We combined these analyses with a cellular

indexing of transcriptomes and epitopes sequencing (CITE-

seq) approach to stratify CD4 and CD8 T cells by naive and

effector phenotypes in order to increase the specificity and

sensitivity of our downstream analyses. Using this approach,

we defined the molecular and cellular changes associated with

T cell transition from self-tolerant to sensitized effector cells.

These data should provide the basis for additional mechanistic

studies of organ-specific irAEs.

RESULTS

Dimensionality reduction approach to visualize scRNA-
seq data of patients with irAEs
We enrolled 40 patients with cancer into this study. These pa-

tients were divided into a discovery cohort, from which T cells

were subjected to scRNA-seq, and a validation cohort, from

which T cells were studied by flow cytometry (Figure 1A). The

discovery group consisted of 24 patients from whom blood

was collected before treatment with ICIs (at baseline) (Figure 1A).

After 4–6 weeks of ICI treatment, 15 patients developed grade 2

or 3 irAEs, and from these patients, a second blood sample was

collected (on treatment). Of the nine patients who did not

develop AEs (no irAEs), the second matching blood sample

was also collected after 4–6 weeks of the ICI treatment (total of

48 samples). The patients with no irAEs continued to have with

no symptoms during the 12 month follow-up period. Out of the

24 patients, 18 had been diagnosed with lung adenocarcinoma,

and 22 were treated with anti-PD-1 Abs (Figure 1B; Table S1A).

Seven patients developed pneumonitis and were subsequently

treated with high-dose corticosteroids, four patients presented

with inflammatory polyarthritis, and four patients had thyroiditis,

requiring hormonal replacement therapy. From each sample, a

similar number of CD3 T cells were enriched using negative-se-

lection sorting (Figures 1B and S1B). Initially, cells were sub-

jected to CITE-seq with Abs tagged to CD4, CD8, CD27, and

CD45RA (Figure S1A). Out of the 360,000 cells that were labeled,

135,287 CD3 T cells passed quality control (Figure S1C). Of

these cells, 22,623 cells originated from patients with arthritis;

44,443 cells were collected from patients with pneumonitis;

12,913 cells came from patients with thyroiditis; and 51,177 cells

were derived from patients with no irAEs.

Uniform manifold approximation and projection (UMAP) was

used to display the data (Figure 1C). A K-nearest-neighbor-

based network graph-drawing layout (KNetL) plot was generated

to increase the resolution of the data and to better separate and

characterize the 25 cellular clusters (Figure 1D). Overall, the dis-
(C and D) UMAP (C) and KNetL projection (D) of 135,287 T cells from patients w

(E) Percentage variation in T cells between the baseline and on treatment within

Statistical significance for paired comparisonswas performed by Student’s t test a

Data are presented as mean ± SD. p value, exact, two-tailed. *p < 0.05, **p < 0.
tribution of the cells into clusters across individual patients was

comparable, mitigating bias secondary to variation in the

numbers of the sequenced cells (Figures S1B and S1D). While

several populations of cells were enriched across all patients,

other clusters were dominant among the patients that developed

irAEs (Figures S1B and S1D). The relative distribution of some

populations of cells through the different clusters was similar in

samples collected at baseline and on treatment with ICIs (Fig-

ure 1E). However, few clusters showed statistically significant

changes in their relative percentages between baseline and on

treatment (Figure 1E). No major cluster distribution differences

were observed between cells collected frommale or from female

patients (Figures S1F and S1G).

Gene-marker-based cluster annotation identifies
effector, regulatory, and memory subsets of peripheral
T cells
Twenty-five clusters were annotated using the iCellR pipeline

(Figure S1E).15 Fourteen clusters expressed the gene CD3E, of

which six were dominated by CD8A and eight revealed high

levels of the CD4 transcript (Figures 2A, 2D, and S1E). Based

on reported gene markers (Table S2), within the CD8 T cells,

naive cells (cluster 21) were characterized by the expression of

CD45RA, CCR7, SELL (CD62L), and LEF1 (Figures 2A and

S2A). The cells with the features of central memory CD8 T cells

(cluster 4), beside containing CCR7, SELL, andCD27, expressed

CD44, CXCR3, FAS, and high levels of CD28 transcripts. A sub-

set of effector CD8 T cells (cluster 16) expressed TBX21 and

cytotoxic markers such as GZMB, KLRD1, and PRF1 mRNA,

along with the highest expression of CD3E. Complementary to

the central memory CD8 T cells, the cells with the features of

effector memory CD8 T cells (cluster 19) displayed EMOS,

GZMK, and IFNG, highlighting their dampened, yet potential,

cytotoxic activity. Interestingly, mucosal-associated invariant

T cells (cluster 18) were discovered in the blood of all patients

(Figure S2A). A cluster of cells expressing GATA3 suggested a

commitment to CD8 T helper cells (cluster 24).

Among the CD4 T cell lineages, 8 clusters were annotated

based on published markers (Table S2; Figure 2B). Three meta

clusters comprised of cells expressing genes associated with

TH1 and TH2 cells (cluster 25), TH17 cells (cluster 14), and naive

cells (cluster 22) occupied most of the CD4 projections. The

hybrid population of TH1 and TH2 cells was characterized by

the expression of AREG, GATA3, PTGDR2, and CXCR3, known

features of helper CD4 T cells (Figures 2A and S2A).16–19 Cluster

14 expressed genes that were mainly involved in TH17 responses

(further details in Figure 4). As expected, the majority of the pe-

ripheral CD4 T cells resembled naive cells (cluster 22), character-

ized also by the expression of the transcription factors TCF7 and

LEF1 and the chemokine receptor CCR7. Surprisingly, a cyto-

toxic CD4 cluster expressing GZMB, GZMH, PRF1, and TBX21

was noted (cluster 15). While the classic regulatory T cells (clus-

ters 17 and 11) showed high levels of FOXP3, IL2RA, and CTLA4,
ith and without irAEs.

the cohorts of patients with no irAEs and with irAEs (paired t test).

pplyingWilcoxonmatched-pairs signed rank test, p value reported, one-tailed.

01, ***p < 0.001.
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Figure 2. Gene-marker-based cluster annotation identifies effector, regulatory, and memory subsets of peripheral T cells

(A and B) KNetL plot schematic of clusters according to the expression levels of CD8Awith a corresponding heatmap showing the expression of selectedmarkers

in CD8A clusters (CD45RA in red fonts indicates the CITE-seq-based protein expression) (A) and CD4 clusters (B).

(C) Heatmap-dot plot indicating the association between T cell states and clusters based on the relative signature score variabilities.

(D) Dot plot showing the comparison of T cell states between the cohorts of patients with no irAEs and with irAEs based on the marker gene scores (unpaired

t test).

For unpaired comparisons, statistical significance was performed by Student’s t test applying Mann-Whitney test. Data are presented as mean ± SD. p value,

exact, two-tailed, the center lines denote the mean of SD. ****p < 0.0001.
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cluster 12 was described as regulatory-like cells based on the

expression of shared regulatory genes (Figure S2B) while having

relatively lower levels of FOXP3 and IL2RA expression.20 Minor

subsets of cells such as gamma delta and double-positive

T cells were detected as well (Figure S3D). To confirm the rigor

of our cluster annotations, we performed nearest-neighbor anal-

ysis for each cluster (Figure S2C). Through this analysis, we

calculated the distance between the clusters obtained by each

gene set used for cluster annotation and ranked the subsets

based on that score (Figure S2C).

To further investigate the variability in the T cells between

the patients with and without irAEs, we performed gene set

signature analysis. Functional annotation (based on the T cell

states and gene signatures) revealed association of irAEs’

T cells with genes associated with T cell activation and cyto-

kine secretion compared with no irAEs’ T cells (Figure 2C).

Cluster 4 (central memory T [TCM] CXCR3+), 16 (effector T

[TE] TBX21
+), 15 (cytotoxic T [TC] PRF1

+), and 23 (helper T

[TH] JUND
+) had more cytotoxic and proinflammatory genes

in the patients with irAEs compared with patients with no irAEs,

while clusters 11 (regulatory T [TREG] SELL
+MKI67+), 12 (TREG

SELL+MKI67+), and 18 (mucosal-associated invariant T [TMAIT]

SLCA410+) showed higher expression of activation genes in

the patients with no irAEs compared with the irAE group.

Further, we show that genes associated with T cell states

(such as HLA-DRB1, TNF, IFNG, CCL4, CCL3, and PRF1)

were highly expressed in the patients with irAEs even after

normalization to baseline expression levels (Figure 2D). Alto-

gether, these findings suggest that the population of T cells

in the irAE groups were more likely to be associated with

effector functions, while the cells of the no irAE groups were

more likely to be associated with regulatory functions second-

ary to PD-1 blockade.

Patients with immune-related arthritis have higher
percentages of CD4 TH cells at baseline
Among the eight CD4 clusters previously annotated (Figure 3A),

no major differences in the total percentages of CD4 T cells were

noted (Figure S3Ai). The patients in the irAE-negative groups

were selected to match the cancer types to patients in the

arthritis, pneumonitis, and thyroiditis groups (Figure S3Aii).

Although patients with thyroiditis had higher levels of CD4

T cells compared with patients with pneumonitis and arthritis,

these differences were not significant (Figure S3Aii). Interest-

ingly, patients with multiple organs afflicted by irAEs had lower

levels of CD4 T cells than patients with no clinical toxicities (Fig-

ure S3Aiii), and by multiple comparison analysis, we show that
Figure 3. Patients with immune-related arthritis have higher TH1/2 cells

(A) Representative KNetL plot of annotated CD4 T cell clusters.

(B) Mean percentage of cells in six CD4 T cell subsets across the different clinica

(C) Volcano plot highlighting the up-regulated and down-regulated genes in cl

expression of upregulated genes between no-irAE and arthritis groups.

(D and E) Gene Ontology (GO) analysis for differential genes present in cluster 25 fr

the GWAS Catalog 2019 (E).

(F) Pathway analysis of differentially expressed genes in cluster 25 from patients

Statistical significance for unpaired comparisons was performed by Student’s t t

exact, two-tailed, the center lines denote the mean of SEM. *p < 0.05, ****p < 0.0

6 Cell Reports Medicine 4, 100868, January 17, 2023
this was statistically significant in one of the comparative com-

ponents (Figure S3Aiv).

Analyzing the distribution of T cells in the different CD4 clus-

ters revealed no differences at baseline between patients with

irAEs and no irAEs (Figure S3B). However, stratifying the data

by organ-specific irAEs, it became clear that patients with

arthritis had significantly more TH1/2 CXCR3
+GATA3+ cells (clus-

ter 25), more TREG SELL+ cells (cluster 11), fewer TH JUND+ cells

(cluster 23), and fewer naive T (TN) TCF7
+LEF1+ cells (cluster 22)

at baseline than patients from the corresponding irAE-negative

group (Figure 3B). Differences in the percentages of these clus-

ters did not hold for patients with pneumonitis and thyroiditis.

These differences in subset percentages were not due to the

gender or type of ICIs used (Figure S3C). These data suggest

that enhanced T cell subset transition from naive to effector cells,

specifically in patients who developed arthritis, can serve as ev-

idence of pervasive immune responsiveness, as reflected by the

predominance of later developmental stages.

The most significant baseline cluster that differentiated pa-

tients with arthritis from patients that did not develop irAEs

was 25, TH1/2 CXCR3+GATA3+. Further analysis of the genes

that defined this specific cluster revealed significant upregula-

tion of inflammatory genes such as IL32, IL2RG, and AIRE (Fig-

ure 3C). Performing ontology analysis on upregulated genes in

TH1/2 CXCR3
+ GATA3+ of patients with arthritis revealed a signif-

icant overlap with genes related to autoimmune and other acti-

vated CD4 T cell conditions (Figure 3D). Moreover, through

browsing a genome-wide association study (GWAS) catalog,

we discovered that the same upregulated genes that character-

ized cluster 25 were overrepresented also in T cells from patients

with other autoimmune diseases (Figure 3E), suggesting a po-

tential mechanistic role in the pathogenesis of irAEs. Finally,

through KEGG-Strings network analysis, we discovered that

most the genes that defined cluster 25were associatedwith spe-

cific signaling pathways that were previously shown to be

involved in inflammatory arthritis (Figure 3F).

Selected subsets of CD4 TH cells are associated with
organ-specific irAEs
The analysis of cluster 14 (Figure S4A) revealed that in patients

with thyroiditis, a higher percentage of CD4 TH cells expressed

high levels of RORC and interleukin-21 (IL-21) (Figure 4A). This

expression pattern suggested that cluster 14 was ameta-cluster

that contained cells with interesting features other than RORC

expression (Figure S4B). To gain a better insight into this popu-

lation, we subclustered the cells of cluster 14 into 6 additional

subclusters (Figure 4B). Subclusters sC3, sC4, sC5, and sC6
and lower percentages of naive CD4 T cells at baseline

l outcomes: arthritis, pneumonitis, and thyroiditis at baseline (unpaired t test).

uster 25 of patients with arthritis, with paired-dot plots comparing the RNA

om patients with arthritis for enriched terms from Immune.MSigDB (D) and from

with arthritis using integrative KEGG-String platform.

est applying Mann-Whitney test. Data are presented as mean ± SEM. p value,

001.
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expressed genes that were strongly associated with TH2
cells (Figures 4B and 4C). Likewise, subclusters sC1 and sC2

conveyed genes correlated with TH17 cells and genes associated

with pathogenic features highlighted by the expression of IL-23R

and CSF2 (Figures 4B and 4C).21,22 Most striking was the fact

that while patients with arthritis had low sC3 cells (TH2 TCF7+)

at baseline, patients with pneumonitis collectively had more

sC4 T cells (TH2 CCR7
+), and patients with thyroiditis had more

sC1 T (TH17 SLAMF8+) and sC2 T cells (TH17 KRT27
+), suggesting

that different cellular subclusters are associated with distinct or-

gan-specific irAEs (Figure 4D, S4A, and S4B). In terms of marker

gene association, KLF6, a gene distinctive to the TH2 JUN
+ cells,

correlated to some degree with the canonical TH2 signature

score (CD4, GATA3, CXCR4, and AREG). The correlation coeffi-

cient was not strong, but nevertheless, higher mRNA expression

KLF6 was noted in patients with pneumonitis (Figure 4E). Simi-

larly, S100B and SIGLEC14, marker genes characteristic of

TH17 KRT27+ cells in the thyroiditis group, correlated with the

TH17 signature score (CD4, RORC, and IL-23R) (Figure 4F). The

ability to genetically differentiate between the types of irAEs is

demonstrated through a heatmap and a Venn diagram showing

1,011, 1,162, and 628 genes distinctive to thyroiditis, pneumo-

nitis, and arthritis, respectively (Figure S5A) This finding is also

validated through principal-component analysis (PCA). Further,

the set of differentially expressed genes between the three clin-

ical groups was found to collectively enrich for CD4 subsets

associated with activation phenotype (Figure S5B).

Patients with inflammatory arthritis have lower levels of
CD8 TCM cells at baseline
Six CD8 T cell clusters were annotated using the KNetL plot (Fig-

ure 5A). There were no differences in the proportion of total CD8

T cells between the baseline and the on-treatment groups (Fig-

ure S6Ai). The patients in the irAE-negative group were selected

to match cancer types with the arthritis, pneumonitis, and

thyroiditis groups (Figure S6Aii). Patients with pneumonitis and

thyroiditis had lower, but not significant, levels of CD8 T cells

at baseline and on treatment compared with patients with

arthritis (Figure S6Aii). When analyzing patients with multi-organ

irAEs, the levels of CD8 T cells were higher both at baseline and

on treatment with ICIs compared with patients with single-organ

irAEs (Figures S6Aiii and S6Aiv).

To better identify CD8 T cell clusters that could differentiate

between patients with or without irAEs, we analyzed the distribu-

tion of cells within each cluster compared with the recruitment
Figure 4. Selected subsets of CD4 helper T cells are associated with o

(A) Representative KNetL plot of cluster 14 and mean percentage differences i

pneumonitis, and thyroiditis.

(B) Subclustering of C14 cells into 6 sub clusters: sC1–sC6. Representative gene

(C) Heatmap showing the expression of markers associated with different subcl

defining markers.

(D) Differential clustering among the clinical irAE groups at baseline. Quantificatio

and no-irAE groups. The patients elected for each of the no-irAE groups were se

(E) Correlation and RNA expression plots highlighting the association of candid

Representative KNetL plots showing the expression of candidate genemarkers KL

pneumonitis and thyroiditis.

Statistical significance for unpaired comparisons was performed by Student’s t t

exact, two-tailed, the center lines denote the mean of SEM. *p < 0.05, **p < 0.01
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parameters. Patients with irAEs had less CXCR3-expressing

central memory-like T cells (cluster 4) at baseline and on treat-

ment (Figure S6B). No major differences in the cluster distribu-

tion were observed with the other population of cells. However,

patients with arthritis had extremely low levels of TCM cells (clus-

ter 4) at baseline, suggesting that the evaluation of this cluster

could serve as a clinical predictive biomarker (Figure 5B). Inter-

estingly, the same patients had more effector (cluster 16) and

effector memory (cluster 19) T cells at baseline. The patients

with pneumonitis had fewer cells with features of effector mem-

ory T cells (cluster 19) than the patients who did not develop

toxicity. The patients who developed thyroiditis had non-signifi-

cant lower levels of effector cells (cluster 16) at baseline (Fig-

ure 5B). No other differences in the distribution of the CD8

T cell clusters were observed in the on-treatment group (Fig-

ure S6B). There were no differences in cluster C16 and cluster

C4 based on the type of drug given or the gender of the patients

(Figure S6C).

To better understand cluster 4, we show by volcano plot that

most of the differentially expressed genes derived from patients

did not developed arthritis (Figure 5C). These genes were sub-

jected to Gene Ontology analysis and, interestingly, were asso-

ciated with regulatory functions (Figure 5D). The contribution of

this cluster to overall T cell suppression phenotype is further

demonstrated through comparison of T cell suppressor signa-

ture scores between patients with arthritis and no irAEs (Fig-

ure 5E). Like other central memory populations, the genes in

this cluster were associated with IL-3 and IL-5 secretion24 and

class I signaling25 (Figure 5F).

To validate the observation that patients with arthritis had low

CD8 TCM cells at baseline at the protein level, we analyzed by

flow cytometry T cells collected for a second cohort of 16

patients treated with PD-1 blockade (Figures 1A and 5G).

Consistent with the analysis based on gene transcription, pa-

tients who developed arthritis had less naive and CD8 TCM cells

and more effector memory and terminally differentiated CD8

T cells, suggesting an enhanced CD8 maturation in patients

who developed this toxicity (Figure 5G).

Patients with immune-related pneumonitis have
distinctive distributions of T cell populations
Because pneumonitis is one of themostmorbid complications of

ICI treatment and our cohort included a relatively high proportion

of patients who went on to develop this AE, we wondered

whether distinct baseline T cell features might associate with
rgan-specific irAEs

n TH RORC+ IL21+ cells per patient and across the disease groups: arthritis,

s are shown separately.

usters among TH2 and TH17 families of cells. Black arrows indicate the subset

n of the percentages of cells in three clusters (sC3, sC4, and sC2) among irAE

lected to match the type of underlying tumor.

ate gene markers with TH2 and TH17
23 clusters based on enrichment score.

F6, S100B, and SIGLEC14 specifying the predictive cell populations present in

est applying Mann-Whitney test. Data are presented as mean ± SEM. p value,

, ***p < 0.001.
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distinct subtypes of pneumonitis. Careful radiological analysis of

serial chest computed tomography (CT) scans performed on the

nine patients with pneumonitis (Figures S7A and S7B) revealed

two clear subtypes: chronic hyperintensity pneumonitis (CHP),

characterized by traction bronchiectasis and honeycombing,

and organized pneumonia (OP), defined by patchy consolidation

with a predominantly subpleural and peri-bronchial distribution

(Figure 6A).26 Moreover, the T cell cluster distribution (Figure 6B)

of patients with CHP (Figure 6C) was distinct from that of patients

with OP (Figure 6D). At baseline, unlike the patients with OP, pa-

tients with CHP had low levels of cells in clusters 4 (characterized

by features of CD8 TCM CXCR3+ cells), 3 (double-positive

T cells), and 10 (gamma delta T cells) and high levels of cells in

clusters 22 (naı̈ve-like CD4 TN TCF7+LEF1+) and 25 (CD4 TH1/2
CXCR3+GATA3+) (Figure 6E). Evaluation of the expression levels

of genes exclusive to patients with CHP versusOPover the same

subset of cells further supports the ability of this signature to

differentiate between the two clinical presentations (Figure 6F).

These findings suggest that the two types of pneumonitis were

likely mediated by different populations of T cells. Moreover,

this strong radiographical-immunological correlation supports

the ability of scRNA-seq approach not just to annotate different

subsets of T cells among patients with irAEs but also to uncover

the potential contribution of specific T cell populations to clinical

pathogenesis.

DISCUSSION

Immune checkpoints are T cell-surface-expressed inhibitory re-

ceptors that prevent excessive T cell responses. Tumor cells

have evolved to usurp those inhibitory mechanisms to prevent

T cell mediated tumor killing. Initially, the immune system recog-

nizes and eliminates transformed cancerous cells prior to their

development into tumors. However, during the process of carci-

nogenesis, tumor cells progressively express multiple inhibitory

receptor ligands that will prevent T cell recognition. Conse-

quently, therapeutic blockade of these checkpoints or their

ligands with ICIs helps recover anti-tumor immunity. Since

2013, ICIs have been increasingly considered as targets for can-

cer immunotherapies due to the effectiveness of drugs blocking

the inhibitory receptors CTLA-4, PD-1, and PD-L1.27–30 The PD-

1-PD-L1 interaction directly inhibits anti-tumor T cells, promotes

peripheral TE cell exhaustion, and supports the conversion of TE
cells into suppressive TREG cells. Based on prolonged overall

survival in clinical trials, Abs inhibiting PD-1 and PD-L1 have

been approved for multiple clinical indications, including mela-
Figure 5. Patients with inflammatory arthritis have lower levels of cent

(A) Representative KNetL plot of annotated CD8 T cell clusters.

(B) Mean percentage of cells in six CD8 T cell subsets across the different clinica

(C) Volcano plot highlighting the up-regulated and down-regulated genes in TCM
(D) GO analysis for differential genes present in TCM CXCR3+ cells from patients

(E) Line graph showing the comparison of T cell states between cohorts of patie

(F) Pathway analysis of differentially expressed genes in TCM CXCR3+ cells from

(G) Quantification of flow cytometry data of 19 patients, showing percentages of na

(TEMRA) cells at baseline.

Statistical significance for unpaired comparisons was performed by Student’s t t

exact, two-tailed, the center lines denote the mean of SEM. *p < 0.05, **p < 0.01
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noma, non-small cell lung cancer, head and neck squamous

cell carcinoma, urothelial carcinoma, renal cell carcinoma,

Hodgkin’s lymphoma, and other adult and pediatric solid

tumors.

One in every two patients with cancer treated with ICIs target-

ing PD-1 will develop a side effect fitting within a spectrum

termed irAEs. This broad array of inflammatory AEs affects

different organ systems, including the skin, gastrointestinal tract,

liver, endocrine organs, lungs, and joints. irAEs can develop at

any time during the treatment, even months after discontinuing

the treatment with the checkpoint blockade. The absence of pre-

dictive factors makes pre-treatment risk stratification extremely

challenging on an individual patient level, as scant information

exists to inform the type and severity of toxicity he or she may

experience with treatment. Additionally, since the onset of irAEs

is often sudden, and even fatal toxicitiesmay occur, it is essential

that clinicians recognize and manage the events early. The fre-

quency of irAEs can be broken down by the type of ICIs received.

A recent meta-analysis of irAE frequencies over multiple trials re-

vealed that irAEs occurred in 74%of patients with cancer treated

with anti-PD-1 or PD-L1 Abs; 89% of patients treated with anti-

CTLA-4; 90%of patients receiving ICI combinations; and 89%of

patients receiving ICIs with chemotherapy.30 irAEs with grade 3

(severe) or grade 4 (life threatening) were reported in 14% of

patients treated with PD-1 or PD-L1 inhibitors; 34% of patients

treated with anti-CTLA-4 Abs; 55% of patients treated with ICI

combinations; and 46% of patients treated with ICIs + chemo-

therapy agents. The rates of irAEs leading to treatment with-

drawal were 6% after using the PD-1 or PD-L1 inhibitors; 21%

for anti-CTLA-4 Abs; 38% for ICI combinations; and 13% for

combinations with chemotherapy.

We identified that at baseline, patients with arthritis had signif-

icantly less cells with features of CD8 TCM cells, patients with

pneumonitis had more CD4 TH2 cells, and patients with thyroid-

itis had more CD4 TH17 cells when compared with patients who

did not develop irAEs. These data support our hypothesis that

different populations of T cells are associated with different irAEs

and that quantification and characterization of these populations

of T cell pre-treatment could serve as a toxicity-specific predic-

tive biomarker. Quantification of these population of cells by

means of larger studies using flow cytometry and RT-PCR are

needed to further validate and translate our exploratory findings

to the clinic.

In a previous study, gene expression profiling was performed

on whole-blood samples from patients with melanoma to

discover gene expression differences at baseline between
ral memory CD8 T cells at baseline

l outcomes: arthritis, pneumonitis, and thyroiditis at baseline (unpaired t test).

CXCR3+ cells in patients with no irAEs.

with no irAEs for enriched terms from Immune.MSigDB.

nts with no irAEs and arthritis based on the T suppressor cell signature score.

patients with no irAEs using integrative KEGG-String platform.

ive, central memory (CM), effector memory (EM), and terminally differentiated T

est applying Mann-Whitney test. Data are presented as mean ± SEM. p value,

, ***p < 0.001.



A

E

F

B

C D

Figure 6. Patients with immune-related pneumonitis have distinctive distributions of T cell populations

(A) Representative chest CT scans of patients with chronic hypersensitive pneumonitis (CHP) and organized pneumonia (OP) at baseline and on treatment.

(B) Representative KNetL plot indicating key clusters to be used to distinguish the pneumonitis groups.

(C) Cells of patients with CHP are enriched in clusters C10, C3, and C4.

(D) Cells of patients with OP are depleted in clusters of C22 and C25.

(E) Quantification of the mean percentage differences in CD3 T cell subsets among the different pneumonitis groups.

(F) Heatmap showing the RNA expression of differentially expressed genes between CHP and OP groups within the clusters C10, C22, and C25.

Statistical significance for unpaired comparisons was performed by Student’s t test applying Mann-Whitney test. Data are presented as mean ± SEM. p value,

exact, two-tailed, the center lines denote the mean of SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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patients who developed gastrointestinal toxicity following anti-

CTLA-4 Ab treatment.31 A more recent study documented

T cell characteristics associated with irAEs in patients with mel-

anoma using variety of single-cell technologies.32 This study

found that the pre-treatment levels of activated CD4 memory

T cell and TCR diversity were associated with irAE development

regardless of organ system involvement. This study comple-

ments our data and further support the concept that pre-treat-

ment T cell characterization should predict irAE onset. This could

be cancer-type dependent, where memory CD4 T cells are pre-

dictive in patients with melanoma while CD8 effecter T cells are

associated with a lung cancer population. A recent work applied

scRNA-seq to study peripheral blood samples from patients with
melanoma treated with ICIs and discovered that pre-treatment-

activated memory CD4 T cell abundance was associated with

severe irAEs.32 Another, more recent study analyzed peripheral

blood from patients with arthritis irAEs and uncovered a correla-

tion between the arthritis and a population of CD8 CX3CR1hi

T cells. Furthermore, and like our study, a subset of patients

with irAEs had enhanced TH1 and TH17 gene signatures.33 These

studies, as well as our own work, support the concept that circu-

lating T cells are associated with ICI-induced toxicity, with

potential implications for improved diagnostics and clinical

management.

To summarize, we discovered correlations between the

presence of specific subsets of T cells at baseline and the
Cell Reports Medicine 4, 100868, January 17, 2023 11
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development of arthritis, pneumonitis, and thyroiditis AEs. These

exciting findings suggest that quantification of these populations

of T cells before the treatment has the potential to predict who

will develop irAEs and position the clinical team to initiate earlier

immunomodulatory therapy. The ability to predict irAEs is criti-

cally important to improve the effectiveness and the usability of

cancer immunotherapies. Through our ongoing efforts, we will

translate our findings to the clinic by developing a personalized

flow cytometry- and RT-PCR-based tool to prove the premise

that quantification of these population of cells could accurately

predict irAEs, altogether enabling many more patients with can-

cer to safely receive immunotherapies.

Limitations of the study
Our study is not free of limitations.34 One limitation is the fact that

this was a single-center, retrospective, case control study of 40

patients, and the incidence and types of irAEs in our institute

might be different from other locations. Another limitation is the

relatively small number of patients with each type of irAE. With

these numbers, we discovered T cell populations and subsets

that were associated with specific irAEs. In order to validate

these subsets of T cells as a biomarker to predict irAEs, addi-

tional patients must be recruited. One of the interesting findings

of our study was the lack of differences in naive, TH, or TE cell

population percentages between the patients that were treated

with anti-PD-1 or anti-PD-L1. On the one hand, this is not unex-

pected since the type, incidence, and severity of irAEs are similar

between these groups. On the other hand, it is unlikely that these

drugs utilize the same molecular mechanism to trigger irAEs.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

APC/Cyanine7 anti-human CD3 (clone HIT3A) BioLegend Cat# 300318; RRID: AB_314054

Alexa Fluor� 700 anti-human CD4 (clone RPA-T4) BioLegend Cat# 300526; RRID: AB_493743

PE/Cyanine7 anti-human CD8a (clone RPA-T8) BioLegend Cat# 301012; RRID: AB_314130

Brilliant Violet 605TM anti-human CD45RA (clone HI100) BioLegend Cat# 304134; RRID: AB_11126164

Alexa Fluor� 488 anti-human

CD27 Recombinant antibody

BioLegend Cat# 393204; RRID: AB_2750088

BD HorizonTM BUV496 Mouse Anti-Human CD8 BD Biosciences Cat# 612942; RRID: AB_2870223

BD HorizonTM BUV805 Mouse Anti-Human CD3 BD Biosciences Cat# 612895; RRID: AB_2870183

BD HorizonTM BV750 Mouse Anti-Human CD4 BD Biosciences Cat# 566355; RRID: AB_2744426

BD OptiBuildTM BUV395 Mouse Anti-Human CD45RA BD Biosciences Cat# 740298; RRID: AB_2740037

BD HorizonTM BV786 Rat Anti-Human CCR7 (CD197) BD Biosciences Cat# 563710; RRID: AB_2738384

CITEseq antibodies

TotalSeqTM-C0072 anti-human CD4 Antibody BioLegend Cat# 300567; RRID: AB_2800725

TotalSeqTM-C0046 anti-human CD8 Antibody BioLegend Cat# 344753; RRID: AB_2800922

TotalSeqTM-C0154 anti-human CD27 Antibody BioLegend Cat# 302853; RRID: AB_2800747

TotalSeqTM-C0063 anti-human CD45RA Antibody BioLegend Cat# 304163; RRID: AB_2800747

Chemicals, peptides, and recombinant proteins

DNase I STEMCELL Technologies Cat# 7470

Zombie UVTM Fixable Viability Kit BioLegend Cat# 423107

Critical commercial assays

Chromium Single Cell 50 Library & Gel Bead Kit 10x Genomics Cat# 1000006

RNA Isolation Kit Qiagen Cat# 74104

Software and algorithms

FlowJo 10.1r7 https://www.flowjo.com SCR_008520

Single cell RNAseq analysis https://github.com/rezakj/iCellR N/A

GraphPad Prism 9 https://www.graphpad.com SCR_002798

InnateDB https://www.innatedb.com SCR_006714

ShinyGO v0.76 http://bioinformatics.sdstate.edu/go SCR_019213

Enrichr https://maayanlab.cloud/Enrichr SCR_001575

Cell Ranger https://support.10xgenomics.com/

single-cell-vdj/software/pipelines/

latest/what-is-cell-ranger

SCR_017344

Deposited data

RNA sequencing data https://www.ncbi.nlm.nih.gov/geo GSE159774
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be direct to and will be fulfilled by the lead contact, Adam Mor,

M.D., Ph.D. (am5121@cumc.columbia.edu).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
Datasets generated in this study have been uploaded to GEO database: accession number GSE216329. This study reports original

code: https://github.com/rezakj/iCellR. Any additional information required to reanalyze the data reported in this study is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The expedient model in this work was limited to human subjects. The average age of the patients was 70 years old, 45%were males

and 55%were females. All the patients were diagnosed with solid malignancies and were treated with immune checkpoint inhibits in

our institute. This study protocol was approved and oversighted by our institute (IRB protocol IRB#AAA-O5706).

METHOD DETAILS

Patient recruitment
We collected blood from cancer patients prior to anti-PD-1 therapy (Nivolumab or Pembrolizumab), anti-PD-L1 (Atezolizumab), and

anti-CTLA-4 (Ipilimumab) initiation and at the time of irAEs onset according to our experimental workflow (Figure 1). Twenty-four

immunotherapy-naı̈ve cancer patients were consented according to IRB protocol IRB#AAA-O5706/L5871. We collected information

about treatment regimens, duration of therapy, progression-free survival, and overall survival for all patients. We additionally

collected information on documented irAE emergence and treatment. Inclusion criteria included histologically confirmed cancer,

immunotherapy-naı̈ve, and planned initiation of immunotherapy as an immediate next step in therapy. Major exclusion criteria

were active infection, history of autoimmune disease, immune suppressive therapy, active pneumonitis or pulmonary fibrosis, or

recent administration of live-virus vaccines. We collected 10 mL of blood from each patient in EDTA vacutainers prior to initiation

of the treatment. Additional 10mL peripheral bloodwere collected at the time of first irAEs presentation. For our control group, cancer

patients who did not develop irAEs, the timing of the second blood collection wasmatched to the number of weeks following anti-PD-

1 therapy initiation at which blood was collected from the irAEs patients.

General reagents
RPMI 1640 medium, Dulbecco’s PBS, and FBS were purchased from Life Technologies.

Cell isolation and preparation for sequencing
Red blood cells were lysed by resuspending cell pellets in ACK Lysis Buffer (Gibco) for 2 min, followed by washing with cold PBS.We

used RosetteSep T cell enrichment kit (StemCell) to isolate untouched CD3 T cells. Each sample was washed once with RPMI and 3

times with PBS +2% BSA before labeling and pooling. Specimens were then filtered through 70 um strainers (Fisher). Cell concen-

tration, singularity, and viability were confirmed with a hematocytometer before submission for scRNA-Seq (10X Genomics). Cells

were processed for scRNAseq by employing CITEseq methodology using multiplexed cell surface markers using labeled with a

cocktail of oligonucleotide tagged Total-Seq anti-human antibodies (BioLegend) against CD4, CD8, CD45RA and CD27. 17,000 anti-

body labeled cells, from each sample, were loaded on Chromiummicrofluidics chip for single cell/gel bead encapsulation, barcoding

and reverse transcription according to the manufacturer’s recommendations. After cDNA amplification, <180bp nucleotide frag-

ments containing antibody-derived tags (ADTs) and >300bp nucleotide fragments containingmRNA-derived cDNAwill be size sepa-

rated as previously described. 50 single cell sequencing library was generated using a tagmentation-based approach and according

to manufacturer’s recommendations. ADTs and cDNA libraries were merged and subjected to Illumina 150bp paired-end

sequencing.

Data analysis
Quality controls included calculation of the number of genes, UMIs, and the proportion of mitochondrial genes for each cell. Cells

with a low number of covered genes (gene-count <500) or high mitochondrial counts (mt-genes >0.2) were filtered out, and the

matrix was normalized based on library size. A general statistical test was performed to calculate gene dispersion, base mean,

and cell coverage. iCellR, an R package (v1.5.5) (https://CRAN.R-project.org/package=iCellR) and genes with high dispersion

and coverage (2000 genes) were used to perform Principal Component Analysis (PCA) and batch alignment. Uniform Manifold

Approximation and Projection (UMAP) and K-nearest-neighbor-based Network graph drawing Layout (KNetL) were then per-

formed. KNetL map has a zoom option which allowed us to see variable levels of detail (more or fewer sub-populations in cell

communities). In the study, we used a zoom of 500. The network layout used in KNetL map was force-based, and the zoom option

changed the force in the system. Force-directed graph drawing algorithms assign attractive (analogous to spring force) and repul-

sive forces (usually described as analogous to the forces in atomic particles) to separate all pairs of nodes. PhenoGraph clustering

was then performed on the KNetL map results, and marker genes were found for each cluster and visualized on heatmaps, bar

plots, and boxplots as indicate. Marker genes were then used to assign cell types. Imputation was used for data visualizations only

and not for the analysis. Signature enrichment scoring was generated by calculating z-scores relative to naive T cells or by the

scoring method described by Tirosh et al.,32 using i.score function on the main data. Gene Ontology analysis of immune cell
Cell Reports Medicine 4, 100868, January 17, 2023 e2
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signatures and disease catalogs were collectively performed using innateDB (https://www.innatedb.com), ShinyGO v0.76 (http://

bioinformatics.sdstate.edu/go) and Enrichr (https://maayanlab.cloud/Enrichr). Overlayed network analysis and pathway analysis

was performed by innateDB (https://www.innatedb.com).

Flow cytometry
For protein expression analysis following isolation cells were collected and stained with the following antibodies for surface protein

expression: CD3 APC-Cy7 (BioLegend), CD4 AF-700 (BioLegend), CD8 PE-Cy7 (BioLegend), CD45RA BV-605 (BioLegend), CD27

AF-488 (BioLegend), CD8 BUV-496 (BD Biosciences), CD3 BUV-805 (BD Biosciences), CD4 BV-750 (BD Biosciences), CD45RA

BUV-395 (BD Biosciences), and CCR7 BV-786 (BD Biosciences). Dead cells were excluded from the analysis by using Zombie-

UV (Biolegend). Doublets and double-positive CD4/CD8 cells were removed through sequential gating. Flow cytometry acquisition

was done using the BD LSRII with BD FACSDiva. Data was analyzed by FlowJo 10.1r7 and GraphPad Prism 9.

CT scan
Computed-tomography scans were performed per standard of care before and during immunotherapy administration. Scans from

patients who experienced pneumonitis were reviewed and annotated by an experienced thoracic radiologist.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise specified, the data are presented as mean ± standard error of the mean. Statistical significance was determined

using Student’s t test, 1-way ANOVA, or log rank test, as indicated. Statistical analyses were performed using Prism 9 (GraphPad

Software). Significance was set at p = 0.05. To measure the variance between each patient at baseline to on treatment condition,

un-paired non-parametric test was applied wherever indicated. To compute the correlation between signature enrichment scores,

a non-parametric spearman correlation was applied choosing two-tailed p value with a confidence interval of 95%, where indicated.

For this observational study, our sample size calculation of n = 24 subjects per time point was based on published RNA-seq data

assuming that the average read count among the prognostic genes in the control group is 100, the maximum dispersion is 0.15,

and the ratio of the geometric mean of normalization factors is 1. Our minimum effect size was 2 and we were able to reject the

null hypothesis that the population means of the two groups are equal with an estimated power of 0.98. The FDR associated with

this test is 0.01.
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