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Colorectal cancer is the third most common cancer and the second leading cause of cancer-related deaths. Immune cells in the
tumor microenvironment play an important role in the development of tumors. In this study, CIBERSORT was used to
estimate the subset of the immune cells using bulk gene expression data (i.e., TCGA, GEO, and cBioPortal databases). 1,087
samples were included in the analysis. The results revealed that among the 22 immune cell subsets that were evaluated, resting
and activated NK cells, macrophage M1 and M2, and resting mast cells are associated with significant improvements in patient
survival of colorectal cancer. The 15-year survival rates for the training cohort showed 49.1% and 32.5%, respectively, for the
low- and high-risk groups. Likewise, the validation and entire cohorts showed 77.3% versus 47.2% and 65.3% versus 46.5%,
respectively, for the low- and high-risk groups. Also, the prognostic immune score in predicting the chemotherapy effects
showed that the low-risk group had a better survival superiority over the high-risk group, whether patients received
chemotherapy or not. The gene set enrichment analysis showed that the low-risk group was highly enriched in pathways or
processes related to immune response. The immune checkpoint assessment revealed significantly higher mRNA expressions of
CTLA4 in the lower risk group than in the higher risk group. Altogether, this study offers information that could improve the
prognosis of colorectal cancer.

1. Introduction

Colorectal cancer is one of the major forms of cancer in the
alimentary canal. It is the third most common form of
tumor and has high morbidity in the world today [1, 2]. It
has recently been reported that over a million people
develop colorectal cancer every year and mortality is high
in developed countries reaching about 45% in recent years
[3]. The high incidence of colorectal cancer has been attrib-

uted to the changes in people’s diet as well as their lifestyle
[4–6], but these also affect the prognosis of colorectal cancer.
For example, the correlation between obesity and the prog-
nosis of colorectal cancer has always been controversial [7].

The strength of the adaptive immune system has been
strongly linked with recurrence as well as survival in colon
cancer [8–11]. The role played by the adaptive immune
response at the tumor site is pivotal in the balance between
tumor invasion and defense against cancer. Many immune
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cells are associated with the prognosis of colorectal cancer
[12]. The presence of immune cells in the tumor microenvi-
ronment plays a role in the development of the tumor. It has
been reported that tumor-infiltrating immune cell (TIIC)
components (type, functional orientation, density, and loca-
tion) in the solid tumor can convincingly predict the clinical
outcome [13, 14]. These have been suspected to be a positive
indicator of patient outcomes for a long time [15].

The process of tumor progression demands some level of
interaction with tumor cells, microenvironment, and
immune system, which act to influence tumor occurrence
and development [16]. Research has recently suggested that
immune cells serve a momentous role in their function and
effect in clinical manifestations of tumors [13, 17]. Much
more research has demonstrated that high infiltration of
immune cells has been relevant to enhance clinical manifes-
tations and cure rates in colorectal cancer [18, 19].

Therefore, it is of great necessity to establish underlying
biomarkers that depend on the whole TIICs’ landscape to
improve prognosis and prediction and make a diagnosis
and give treatment in colorectal cancer patients. The cell
type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT), a new calculational method, is
used for estimating immune cell subgroups and uses a large
body of gene expression data [20]. Here, CIBERSORT is
used to quantify 22 TIICs in primary colorectal cancer in
patients’ data from the TGCA, GEO, and cBioPortal data-
bases. Using single and multiple factor regression analysis,
we have built a model based on immune correlation to sup-
plement other methods for forecasting the survival rates and
profits from adjuvant chemotherapy (ACT) in colorectal
cancer patients. Furthermore, gene set expression analysis
(GSEA) was performed to find the function and associated
processes of the gene sets.

2. Methods

2.1. Gene Expression Profiles of Colorectal Cancer. The work-
flow of this study is summarized in Figure 1. The following
databases were selected to obtain the gene expression pro-
files of colorectal cancer tissue: (1) The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/), (2) Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/), and (3) cBioPortal for Cancer Genomics (https://
www.cbioportal.org/); and these databases were searched
using the keyword “colon cancer”, “colorectal cancer”, or
“rectal cancer”. Particularly in GEO, we selected “Homo
sapiens” in the Top Organisms filter, “Series” in Entry type
filter, and “Expression profiling by array” in the Study type
filter. As indicated in Figure 1, 466 series, 1 dataset, and 5
series were identified from GEO, TCGA, and cBioPortal
database, respectively. 458 and 4 series were, respectively,
excluded from GEO and cBioPortal databases according to
the following exclusion criteria: (1) the sample sizes of the
series were 30 or fewer; (2) data were obtained from cells,
not colorectal tumor tissues; (3) the data were related to
microRNA, lncRNA, or DNA, not mRNA; and (4) series
for which the survival information of the patients was
unavailable. Apart from these criteria for inclusion or exclu-

sion of the series of the databases, the inclusion and exclu-
sion criteria for the patients are as follows: (1) inclusion
criteria: all the patients in silico cohort were confirmed as
primary CRC and complete clinical records and follow-up
information are available and (2) exclusion criteria: CIBER-
SORT algorithmpvalue > 0.05.

2.2. Estimation of Immune Cell Type Fractions. Raw micro-
array or raw RNA sequencing data which were downloaded
from public databases were processed using the MAS5.0
algorithm and normalized using the limma package in R
software (version 3.5.2) [21]. To quantify the abundance of
22 TIICs in colorectal tumor specimens, we subsequently
performed the CIBERSORT method, an analytical tool, to
provide an estimation of the proportions of member cell
types in a mixed cell population, using normalized data
[20]. The CIBERSORT algorithm was performed online
from CIBERSORT web (https://cibersort.stanford.edu/).
The following files were required in the website: (1)
“LM22.txt” which contains a “signature matrix” of 547 genes
(obtained under Menu > Download from CIBERSORT web:
https://cibersort.stanford.edu/download.php) [22] and (2) a
file containing the normalized mRNA expression data of
each sample. The 22 types of infiltration of immune cells
inferred by CIBERSORT include B cells, T cells, natural
killer cells, macrophages, dendritic cells, eosinophils, and
neutrophils. CIBERSORT derives a p value for the deconvo-
lution of each sample using Monte Carlo sampling, provid-
ing a measure of confidence in the results. At a threshold
of p < 0:05, 1,087 samples of the inferred fractions of
immune cell populations produced by CIBERSORT were
considered accurate [23]. The proportions of immune cells
were predicted in each dataset separately.

2.3. Sampling Method. To improve the precision and accu-
racy of the prognostic model, 1,087 samples were separated
into training and validation sets in a ratio of 9 : 1 using 10-
fold CV [24], which was performed using “caret” and “ran-
domForest” packages in R. With a 10-fold CV, a dataset of
1,087 samples was divided into 10 subsets each having
1,087/10 samples. Each of these 10 subsets served in turn
as a validation set. A classifier was trained on the remaining
9 × 1, 087/10 samples (the training set), and the trained clas-
sifier was then used to classify the 1,087/10 samples in the
validation set, generating the prediction error and accuracy.
The cross-validation was performed 10 times, and the
trained classifier with the highest accuracy score was used
to train an ideal prognostic model.

2.4. GSEA. The transcriptome data of 170 colorectal tumor
samples in GSE17536 from the GEO database were selected
for GSEA analysis. GSEA 4.0.3 software (downloaded from
https://www.gsea-msigdb.org/gsea/downlodas.jsp) was used
to identify GO terms that were enriched between the low-
and high-risk groups in the GO database of c5 (c5.all.v6.2.-
symbols). The significance threshold was set at p < 0:05.

2.5. Statistical Analysis. The Mann-Whitney U test was uti-
lized to compare two groups. The Kruskal-Wallis test was
used to compare multiple groups. The univariate and
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multivariate Cox regression analyses were applied to identify
the most significant immune cells to build a prognostic
model. The immune cell was considered significant when
the p value was < 0.05 in the univariate Cox regression anal-
ysis. Subsequently, a multivariate Cox regression analysis
was applied to optimize the model. The optimal cutoff values
were calculated based on the association between survival
and cell fraction in the training cohort using the survminer
package in R. The Kaplan-Meier analysis and the log-rank
test was used to evaluate the correlation between the propor-
tion of immune cells and OS. The prognostic value of the
nomogram for 5-, 10-, and 20-year was evaluated by c-
index [25]. Results with two-sided p < 0:05 were considered
to be statistically significant. Statistical analyses were con-
ducted using SPSS version 25 (IBM, New York, USA) and
R software (3.5.2).

3. Results

3.1. The Study Workflow Was Designed. The experiment
workflow was first designed as shown in Figure 1. The data-
bases which were selected to acquire the gene expression
profiles of the colon or colorectal cancer tissues are as fol-
lows: (1) The Cancer Genome Atlas (TCGA, https://portal
.gdc.cancer.gov/), (2) Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/), and (3) cBioPortal for
Cancer Genomics (https://http://www.cbioportal.org/). The
terms “Colon cancer”, “colorectal cancer”, or “rectal cancer”
were systematically searched in these databases. The entry
criteria for the prognostic model were as follows: databases
including more than 30 human primary colorectal cancer
samples, series provided with overall survival time and sur-
vival condition, and the study type being transcriptome

Prognostic immune
model with 3 markers

Normalized transcriptional gene expression data of 1,739
samples from 10 series for CIBERSORT estimation 

652 samples excluded: 
CIBERSORT p ≥ 0.05

1,127 samples were included to 
evaluate the expression of mRNA

458 series

510 samples were included to 
evaluate the expression of mRNA

102 samples were included to 
evaluate the expression of mRNA

4 series

GEO, TCGA, cBioportal1 

466 series were
identified from GEO

1 dataset was
identified from TCGA

5 series were identified
from cBioportal

1,087 colorectal cancer tissues screened
for prognostic model

978 training
cohort samples

109 validation
cohort samples

Univariate Cox regression

Multivariate Cox model

Figure 1: Flow chart of the study design. 1,087 colorectal cancer samples from 466 series, 1 cohort, and 5 series were used to perform
CIBERSORT. 652 samples were excluded due to CIBERSORT p ≥ 0:05. Three markers were eventually screened to construct a prognostic
immune model. The training set (N = 978) and the validation set (N = 109) were from these public datasets.
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profiling. As Figure 1 indicated, 10 studies (1,087 colorectal
cancer samples in total) were eventually used to construct
the prognostic model.

3.2. The Prognostic Immune Score Model Was Established.
To estimate the prognostic value of these TIICs, 1,087
samples were randomly divided into the training cohort
(N = 978) and the validation cohort (N = 109) in a ratio of
9 : 1 using the 10-fold cross-validation (10-fold CV) tech-
nique. The demographic characteristics of patients can be
found in Supplementary Table 1 (Table S1). Figure 2(a)
shows a forest diagram of the relationships between each
of the immune cell subgroups and OS in the training
cohort. Based on the result of the single factor Cox risk
model, resting NK cells (p = 0:025), M1 macrophages
(p = 0:036), resting mast cells (p = 0:038), M2 macrophages
(p = 0:017), and activated NK cells (p = 0:028) were
significantly correlated to the OS of colon cancer patients.
To move forward to identify independent risk factors and
compute the prognostic indices, the multiple Cox regression
was done (Figure 2(b)). This formula was established by this
study for the prognostic immune score model based on the
multiple factor Cox regression (risk score = 2:399 ×M2
macrophages − 3:660 ×M1macrophages + 5:838 × activated
NK cells) (Table S2). The immune score of each sample from
the training cohort was computed on the basis of this model.
Subsequently, all the samples from the training cohort were
divided into the high- or low- risk groups by the cutoff
(-0.313), which was acquired by the Optimum Cut points
package in R. To assess the OS of the low- and high-risk
patients, the Kaplan-Meier curves were performed and
significant differences were found in the training cohort
(Figure 3(a)). The 15-year survival rates were 49.1% and
32.5%, respectively, for the low- and high-risk groups
(hazard ratio (HR) 2.87, 95% confidence interval (95% CI)
(1.74-4.73), p < 0:0001) (Table 1).

3.3. The Prognostic Immune Score Model Was Validated. In
order to assess the effect of this prognostic model, the same
formula and prognostic immune score model were applied
to the validation cohort and the entire cohort. The patients
from the validation and entire cohorts were grouped by the
cutoff value obtained from the corresponding cohort (valida-
tion, -0.086; entire, -0.080). Meanwhile, the Kaplan-Meier
curves were performed in the validation cohort (Figure 3(b))
and the entire cohort (Figure S1). The 15-year survival rates
were 77.3% and 47.2%, respectively, for the low- and high-
risk groups (HR 9.30, 95% CI (1.04-82.86), p = 0:046) in the
validation cohort (Table 2) and 65.3% and 46.5%,
respectively, for the low- and high-risk groups (HR 3.01,
95% CI (1.86-4.89), p < 0:0001) in the entire cohort (Table 1).

3.4. Chemotherapy Response Was Predicted by the Prognostic
Immune Score Model. Neoadjuvant chemotherapy (neo-
ACT), as well as adjuvant chemotherapy (ACT), has been
reported to be related to immune infiltration [26]. Further
evaluation was done to find whether the application of che-
motherapy (CT) would influence the prognosis of colorectal
cancer. The information regarding the administration of

neo-ACT or ACT was collected from the GEO database.
The detailed information on adjuvant chemotherapy was
documented in the GSE39582 dataset. In order to evaluate
the relationship between the immune score and response
to chemotherapy, the formula was applied. The patients
from the GSE39582 cohort were divided into the low- and
high-risk groups by the cutoff value (0.037). The survival
advantage for the low-risk group was evident, regardless of
whether they received chemotherapy or not (Figures 3(c)
and 3(d)). More importantly, the effect of 5-FU as a single
agent, combined chemotherapy, and any adjuvant chemo-
therapy (ACT) was determined. The hazard ratio for
patients in the low-risk group was significantly lower in
patients who underwent ACT except for the 5-FU chemo-
therapy regime (Figure 3(e), p < 0:01).

3.5. The Prognostic Immune Score Model Was Improved by
Nomogram. To select independent clinicopathological prog-
nostic factors for the OS, the univariable Cox regression
analysis was performed, and the results showed that age,
tumor grade, tumor-node-metastasis (TNM) stage, and the
risk score were significantly related to the OS (Table 1).
Subsequently, the multivariable Cox regression analysis
was performed, and it showed that risk score, age, and
TNM stage were the independent prognostic factors for
the OS (Table 2). In order to create a quantitative method
to predict the probability of OS, we integrated the immune
score and independent clinicopathological prognostic fac-
tors including age and TNM stage to construct a nomogram
(Figure 4(a)).

To evaluate the predictive value of the nomogram, we
compared Harrell’s concordance index (C-index) of the
nomogram with standard TNM staging in the training
cohort, the validation cohort, and the entire set. As shown
in Table 3, the nomogram system improved the prognostic
model of colorectal cancer in the training, validation, and
entire set. The calibration plots showed that the predicted
5-, 10-, and 15-year survival probabilities of the nomogram
performed well in the training cohort (Figure 4(b)).

3.6. The Clinical Covariates of Patients Correlated with the
Prognostic Immune Score. The correlation between the
prognostic immune score with clinical covariates was fur-
ther analyzed in the training and validation sets. The
TNM stage (p < 0:05) and M category (p < 0:05) were sig-
nificantly related to the immune score (Figure 4(c)) in the
training set. In the validation cohort, only the M category
(p < 0:05) was significantly related to the immune score
(Figure S2).

3.7. Differential Expression of the Genes Associated with
Immune Checkpoint Was Predicted by the Prognostic
Immune Score Model. The immune score of 170 colorectal
tumor samples from GSE17536 was determined by the prog-
nostic immune formula. All the samples were classified into
the low-risk and high-risk groups by the cutoff (0.063). The
gene set enrichment analysis (GSEA) showed that the low-
risk group was highly enriched with activation of T cell-
mediated cytotoxicity, positive T cell selection, antigen
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Figure 2: Construction of prognostic immune model in the training cohort. (a) Forest plot of the univariate Cox hazard model for overall
survival. Unadjusted HRs were shown with 95% confidence intervals. (b) Optimized model using a multivariate Cox regression analysis
which was calculated based on the association between survival and immune cell fraction. This model depicts the specificity and
sensitivity of OS prediction based on the immune score of immune cell type: (1) NK cells resting, (2) NK cells activated, (3) macrophage
M1, (4) macrophage M2, and (5) mast cells resting. ∗Represents p < 0:05. ∗∗Represents p < 0:01.
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Figure 3: Continued.
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Figure 3: Kaplan-Meier curves of overall survival(OS)of the low- and high-risk patients. (a) Training cohort. (b) Validation cohort. Survival
analysis of (c) adjuvant chemotherapy (ACT) and (d) no adjuvant chemotherapy (no-ACT) response among patients with different risk
stratification (high or low). (e) Forest plot of the univariate Cox hazard model for OS of the low- and high-risk colorectal cancer patients
undergoing different chemotherapy regimens. Unadjusted HRs were shown with 95% confidence intervals.

Table 1: Results of the univariable Cox regression analysis.

Variables
Training cohort Validation cohort

HR (95% CI) p value HR (95% CI) p value

Risk score 2.87 (1.74-4.73) <0.0001 9.30 (1.04-82.86) 0.046

Age (>60 vs. ≤60) 1.54 (1.22-1.95) 0.0003 1 (0.48-2.09) 0.992

Gender (male vs. female) 1.26 (1-1.59) 0.052 0.90 (0.43-1.89) 0.780

Differentiation (vs. high)

Middle 2.45 (0.9-6.71) 0.081 / 0.25

Low 4.28 (1.46-12.62) 0.008 3.26 (1.08-3.26) 0.035

Stage (vs. stage I)

II 1.54 (0.86-2.74) 0.146 1.96 (0.25-15.50) 0.523

III 2.13 (1.19-3.80) 0.010 3.42 (0.44-26.50) 0.239

IV 9.57 (5.31-17.23) <0.0001 10.04 (1.26-79.70) 0.029

Table 2: Multivariable Cox regression analysis.

Multivariable cox regression analysis
Variables Training cohort Validation cohort

HR (95% CI) p value HR (95% CI) p value

Risk score 8.80 (2.30-33.72) 0.002 18.86 (1.37-260.40) 0.03

Age (>60 vs. ≤60) 1.89 (1.16-3.06) 0.01 0.93 (0.40-2.16) 0.87

Gender (male vs. female) 1.16 (0.72-1.86) 0.55 0.62 (0.27-1.43) 0.26

Differentiation (vs. high)

Middle 0.98 (0.34-2.79) 0.97 1.07 (0.60-1.91) NA

Low 2.64 (0.84-8.26) 0.10 1.26 (0.88-1.81) NA

Stage (vs. stage I)

II 4.29 (0.55-33.18) 0.16 1.72 (0.21-14.18) 0.62

III 8.35 (1.10-63.37) 0.04 2.24 (0.26-19.23) 0.46

IV 40.58 (5.35-307.72) 0.0003 18.86 (1.37-260.40) 0.04
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processing, and regulation of antigen processing and presen-
tation (Figure 5(a)). These four had normalized enrichment
scores (NES) of 1.986, 1.902, 1.830, and 1.809, respectively,
and showed their significant enrichment in the low-risk
group.

Immune checkpoint blockade with immunotherapies,
such as CTLA-4, has been thought to be promising
approaches to treat a variety of malignancies. Thus, the

expression of several key immune checkpoint regulators, as
well as inflammatory mediators, was determined. As shown
in Figure 5(b), CTLA-4 and LAG3 were significantly higher
in the low-risk groups with p < 0:0001 and p < 0:001, respec-
tively, for colorectal cancer patients in GSE17536 from the
GEO database.

4. Discussion

The tumor microenvironment is very critical in determining
the progression of cancer and has been widely related to can-
cer diagnosis and prognosis. The tumor microenvironment
is usually composed of stroma cells, cytokines, chemokines,
and the cancer cells themselves [27].

Many different types of cancer are infiltrated with TIICs
which could be of different subpopulations in various
patients. Many immune-related molecules have also been
implicated in the progression of various cancers. A study
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Figure 4: Construction of the nomogram system. (a) Nomogram predicting 5-, 10-, and 15-year overall survival for colorectal cancer
patients in the training cohort based on immune score and other clinicopathological parameters such as age and stage. (b) The
calibration curves of nomograms between predicted and observed 5-, 10-, and 15-year OS in the training cohort. The dashed line at an
angle of 45° represents the perfect prediction of the nomogram. (c) Stratified analysis of clinical characteristics for the immune score of
the immune prognostic model for the training cohort.

Table 3: C-index of TNM stage and nomogram model.

Cohort
C-index (95% CI)

TNM stage Nomogram

Training 0.663 (0.643-0.684) 0.683 (0.667-0.670)

Validation 0.676 (0.629-0.723) 0.736 (0.690-0.782)

Entire 0.682 (0.667-0.697) 0.750 (0.736-0.765)
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has shown that Cytokeratin 18 has a certain correlation with
tumor progression in neoadjuvant chemotherapy for breast
cancer [28]. Low molecular weight heparin has been shown
to exert antitumor properties by modulating immunity in
patients with esophageal cancer [29]. At the same time, some
literature has confirmed that Phosphatidylinositol 3-kinase/
AKT/Mammalian Target of Rapamycin (PI3K/AKT/mTOR)
can be used as an immunotherapy target for esophageal can-
cer by affecting the expression of microRNA [30]. Fanipak-
del et al. have identified melanoma-associated antigen A1
in lung cancer patients as a new immunotherapy target
[31]. The Wnt/β-catenin pathway has also been demon-
strated as an immune target for pancreatic cancer therapy
[32]. Our earlier studies have found that the immune scoring

model based on immune infiltrating cells has a good predic-
tive effect in evaluating the prognosis and chemotherapy
effect of patients with breast cancer [33]. However, there
are few studies on the diagnosis and prognosis evaluation
of patients with colorectal cancer, which has a good clinical
research value. In this research, the assessment of the TIICs
using CIBERSORT on the 1087 samples showed that resting
and activated NK cells, M1 and M2 macrophages, and acti-
vated mast cells were significantly related to the OS of colon
cancer patients. Independent studies have found infiltration
of macrophages and NK cells in patients with colon cancer
[34, 35]. Some of these immune cells have been related to
early colon cancer promotion and have contributed to the
resistance to chemotherapy for colon cancer patients.
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Figure 5: Bioinformatics analysis of the characteristics and signal pathways among patients with different risk groups. (a) Gene set
enrichment analysis (GSEA) for immune system pathways and processes correlated with immune score values in the GSE17536 from the
GEO database. NES: normalized enrichment score; NOM p: nominal p value. (b) CTLA4 mRNA expression levels between the low- and
high-risk groups in the GSE17536 from the GEO database.
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Presently, effective biomarkers that help in predicting the
prognosis of colon cancer are still under investigation all
over the world [36].

Existing guidelines have proposed the consideration of
ACT for patients with poorly differentiated histology, T4
stage, lymphovascular invasion, or perineural invasion
[37]. This regimen has been shown to be protective in the
treatment of tumor prognosis [38]. However, numerous
studies have not provided compelling evidence of ACT
improving survival in patients with high-risk colon cancer.
FU-based adjuvant chemotherapy has been proved not to
be beneficial to all patients with colorectal cancer [39, 40].
The effect of miRNAs in the modulation of 5-FU tolerance
has been largely evaluated in colorectal cancer (CRC) cells.
Upregulation of miR-15b-5p has strengthened 5-FU-
associated cell apoptosis and improved the cell response to
5-FU both in vitro and in animal models [41]. A study by
Booth et al. concluded that ACT does not have any associa-
tion with the survival among stage II colon cancer patients
and those who have been classified as high risk for the dis-
ease [42]. Another study, in contrast, had reported earlier
that ACT was associated with improved survival [43]. The
results of this current study are consistent with the statement
earlier made and also with the results from our analysis in
this study. M2 macrophages are important in the release of
circulating tumor cells (CTCs). Studies have proved that
M2 TAMs tend to promote directional migration in tumor
cells’ vessels and invasion by the paracrine loop of tumor-
derived CSF-1 and TAM-derived EGF/EGF-like ligands
[44, 45], secrete osteonectin [46], Cathepsin [47], and
TGF-Beta [48]. Numerous reports have found tumor-
associated M2 macrophages to predict worse outcomes than
M1 macrophages [49].

The GSEA is a computational method to explore if a
given set of genes are significantly involved in some path-
ways. In this study, the GSEA depicted that the low-risk
colon tumor samples from the dataset were enriched with
processes involved in immune responses or entails changes
in the tumor microenvironments. Hence, the results in this
study reveal many specific biological processes involved in
the immune cell microenvironment.

CTLA-4 negatively regulates immune responses and has
been reported as critical for controlling TIICs [50]. Recently,
abnormal expression of CTLA-4 has been reported in
numerous tumors and is believed to contribute to the initia-
tion and progression of cancer [51, 52]. As reported in our
study, the expression of CTLA-4 in the high-risk group
was relatively low compared to the low-risk group. This
observation is not out of place as a meta-analysis study has
been thought to link CTLA-4 polymorphisms to the devel-
opment of digestive system cancer [53]. Other studies have
reported an increased expression in CTLA-4, which was
related to worse outcomes for cancer, and this is contrary
to the results of this present study. These differences in the
reports call for the need to validate this observation in large
clinical samples in future experiments. However, antibodies
generated against CTLA-4 have been proposed as effective
in the treatment of a variety of cancers [54]. In a meta-anal-
ysis, LAG3 was reported to be associated with improved

overall survival [55]. Their effects were somewhat consistent
in different tumor types. In many cancers, the combination
of LAG3 and PD-1 inhibition has been synergic [56]. In
some melanoma patients, CTLA-4 inhibition has been found
to elicit an increase in the frequency of LAG3+ TILs [57]. So
far, no study has reported such in colorectal cancers. Further
studies are needed to establish the mechanisms of CTLA-4
and LAG3 in patients with colorectal cancer. Upregulation
of CTLA-4 and LAG3 molecules can initiate a negative feed-
back mechanism that creates an active immune environment
in an inflamed tumor and can improve prognosis [58]. The
observation in this current study showed this increased
expression of CTLA-4 and LAG3 in the low-risk group, a sit-
uation that needs further research to establish if this obser-
vation is real.

Even though some studies have used immune cell infil-
tration to establish a prognostic model, such studies did
not validate with any external cohort from the cancer data-
bases. This study on the other hand used data from the
external database, and there is the need to compare these
database results to clinically collected samples that serve as
the test cohort. A meta-analysis is therefore needed to pool
together all these studies to assess their overall outcome on
the diagnosis and prognosis of colorectal cancer. We col-
lected about 1087 samples from different databases, whose
data volume is large enough and persuasive. The immune
scoring model was repeatedly verified, and the relationship
between it and colorectal cancer was verified by single factor
and multifactor regression models, and it was combined
with clinical indicators and chemotherapy, which has great
clinical application value. These advantages offer a compar-
ative advantage over the other published work in offering a
better diagnosis and prognosis of CRC.

In summary, this study analyzed the critical immune
infiltrates using CIBERSORT and used them to assess their
prognostic performance in colon cancer together with other
factors such as age, grade, and TNM stage. They were used
in predicting the overall survival in 5, 10, and 15 years.
The effect on the survival of patients undergoing adjuvant
chemotherapy and no adjuvant chemotherapy treatment
has also been reported. All these results will help to improve
the diagnosis and enhance the prognosis of colorectal
cancer.
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