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Abstract
Background: The New World monkey (Platyrrhini) subfamily Pitheciinae is represented by the genera Pithecia, 
Chiropotes and Cacajao. In this work we studied the karyotypes of Pithecia irrorata (2n = 48) and Cacajao calvus 
rubicundus (2n = 45 in males and 2n = 46 in females) by G- and C-banding, NOR staining and chromosome painting 
using human and Saguinus oedipus whole chromosome probes. The karyotypes of both species were compared with 
each other and with Chiropotes utahicki (2n = 54) from the literature.

Results: Our results show that members of the Pitheciinae have conserved several chromosome forms found in the 
inferred ancestral Platyrrhini karyotype (associations of human homologous segments 3a/21, 5/7a, 2b/16b, 8a/18, 14/
15a and 10a/16a). Further, the monophyly of this subfamily is supported by three chromosomal synapomorphies (2a/
10b, an acrocentric 15/14 and an acrocentric human 19 homolog). In addition, each species presents several 
autapomorphies. From this data set we established a chromosomal phylogeny of Pitheciinae, resulting in a single most 
parsimonious tree.

Conclusions: In our chromosomal phylogeny, the genus Pithecia occurred in a more basal position close to the 
inferred ancestor of Platyrrhini, while C. c. rubicundus and C. utahicki are closely related and are linked by exclusive 
synapomorphies.

Background
The subfamily Pitheciinae includes the genera Pithecia
Desmarest, 1804, Chiropotes and Cacajao Lesson, 1840.
Pithecia comprises five species: Pithecia pithecia, Pithe-
cia monachus, Pithecia irrorata (each two subspecies),
Pithecia albicans and Pithecia aequatorialis (both mono-
typic) [1]. Chiropotes is represented by the two species
Chiropotes albinasus (monotypic) and Chiropotes satanas
(three subspecies) [2], and Cacajao by Cacajao calvus
(four subspecies) and Cacajao melanocephalus (two sub-
species) [3]. The geographic distribution of this subfamily
is restricted to the Amazon region. Recent morphologi-
cal, karyotypic and molecular data pointed to a new spe-
cies for Chiropotes, C. israelita, and indicated that the
subspecies Chiropotes satanas utahicki should be

accepted as a full species [4]. The majority of the Pithecii-
nae species are listed as endangered (http://www.cites
.org). 

It is accepted that the Pitheciinae represent a mono-
phyletic clade [4-7]. Several studies using morphological
[5-7], molecular [8,9] and cytogenetic [10] traits suggest
that Chiropotes and Cacajao are sister taxa and place
Pithecia most basal within this clade. It was further sug-
gested that the Pitheciinae are a sister group of Aotus and
Callicebus [5], while more recent molecular phylogenetic
analyses supported an association of Pitheciinae and Cal-
licebus, but associate Aotus with Callitrichidae [8,11-14].

To date, cytogenetic studies of members from this sub-
family are still rare. The karyotypes of C. albinasus, P.
monachus, P. aequatorialis and P. albicans have not yet
been described so far, while for others, for example for C.
melanocephalus, only the diploid chromosome number
was published [15]. Moura-Pensin et al. [10] were the first
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to present a broader comparative cytogenetic study,
including Pithecia irrorata, Chiropotes satanas chiropo-
tes, Chiropotes satanas utahicki and Cacajao calvus rubi-
cundus. Cacajao shows the lowest diploid chromosome
number among Pitheciinae with 2n = 46 in females and
45 in males [10,15-17]. Pithecia has 2n = 48 chromo-
somes [18], and Chiropotes has the highest diploid num-
ber with 2n = 54 [10,19]. Only Chiropotes utahicki and C.

israelita were so far analyzed by chromosome painting
using human whole chromosome probes [19]. Stanyon et
al. [19] showed that Chiropotes retained all human
homologous syntenic associations proposed for the
ancestral Platyrrhini karyotype, but also include several
derived chromosome forms that are exclusive to this
genus.

Figure 2 G - (A) and C-banding (B) in C. c. rubicundus.

Figure 1 G- (A) and C-banding (B) in P. irrorata.



Finotelo et al. BMC Evolutionary Biology 2010, 10:189
http://www.biomedcentral.com/1471-2148/10/189

Page 3 of 9
With the aim to establish detailed chromosomal phy-
logenies of the three genera of Pitheciinae, we studied the
karyotypes of the species Pithecia irrorata and Cacajao
calvus rubicundus using both classic cytogenetics and
chromosome painting with human and Saguinus oedipus
whole chromosome probes.

Methods
Chromosome preparations were obtained from whole
blood cultures of one female and two male Pithecia irro-
rata (PIR) individuals kept at the Parque Zoobotânico
Gavião Real, Capitão Poço, Para, Brazil, of two females
from the Centro Nacional de Primatas, Ananindeua,
Para, Brazil, and of a male and a female Cacajao calvus
rubicundus (CCR) individual kept at the Centro de Pri-
matologia do Rio de Janeiro, Rio de Janeiro, Brazil.

G-banding, using Wright stain [20], C-banding [21] and
NOR-staining [22], followed standard procedures. FISH
experiments using human whole chromosome paint
probes 1-22, X and Y, and S. oedipus paint probes (22
autosomes, X and Y) were performed as previously
described [23-25]. While both human probes were
hybridized for CCR and PIR, only PIR is queried with
SOE paints. Paint probes were labeled by DOP-PCR [26]
using Biotin-dUTP, Digoxigenin-dUTP (Roche) and
TAMRA-dUTP (Biosystems/PE Applied). After classical
staining, metaphases were photographed using a Zeiss III
microscope with Kodak Imagelink HQ film. FISH/DAPI

Table 1: Left (columns 1-3): Homology between human (HSA), P. irrorata (PIR) and C. c. rubicundus (CCR) chromosomes, 
Right (columns 4 and 5): Homology between S. oedipus (SOE) and C. c. rubicundus (CCR) chromosomes.

HSA PIR CCR SOE CCR

1 10, 9 (q) and 23 11, 17 and 6 (p) 1 13 (distal q), 14 and 20

2 2 (q) and 4 (q) 5 (q) and 7 (q) 2 1 (proximal p), 13 (proximal q) and 16

3 15, 16 and 19 (distal q) 19 (proximal q), 2 (p) and 1 (distal p) 3 3

4 5 9 4 19

5 1 (proximal q + p) 21 (proximal q) and 2 (q) 5 15

6 3 8 6 2 (q) and 21

7 1 (distal p) and 11 21 (distal q) and 10 7 9

8 7 (p) and 12 3 (p) and 12 8 8

9 17 14 9 7 (q) and 18

10 6 (proximal p- distal q) and 2(p) 4 (proximal p- distal q) and 7(p) 10 5

11 18 Y-autosome 11 1 (q)

12 14 6 (q) 12 6 (q)

13 8 (proximal q + p) 13 13 10

14 13 (distal q) 1 (distal q) 14 Y-autosome

15 9 (p) and 13 (proximal q) 1 (proximal q) and 18 15 4

16 6 (distal p- proximal q) and 4(p) 4 (distal p- proximal q) and 5(p) 16 11

17 21 16 17 2 (p)

18 7 (q) 3 (q) 18 12

19 22 15 19 1 (distal p)

20 20 1 (proximal p) 20 17

21 19 (proximal q) 19 (distal q) 21 6 (p)

22 8 (distal p) 20 22 7 (p)

X X X X X

Figure 3 NOR-staining in P. irrorata (A) and C. c. rubicundus (B). 
NOR-regions are highlighted by arrows.



Finotelo et al. BMC Evolutionary Biology 2010, 10:189
http://www.biomedcentral.com/1471-2148/10/189

Page 4 of 9
stained metaphase images were captured with a CCD
camera (AxioCam MR monochrome, or Photometrics
C250/A, equipped with a KAF1400 chip, respectively)
coupled to a Zeiss Axiophot microscope. The images
were analyzed using Adobe Photoshop software version
CS3 and Corel Photo Paint 10. Chromosomes were iden-

tified by computer enhanced DAPI banding (Axiovision
3.0).

For phylogenetic analysis a binary data matrix was
established, based on the presence or absence of discrete
chromosomal characters obtained by comparative analy-
sis of both chromosome painting patterns derived from

Figure 4 Representative FISH-images from cross-species chromosome painting experiments using human probes in P. irrorata (A), human 
(B) and S. oedipus probes (C) in C. c. rubicundus. Beside each metaphase the respective probe composition and color assignment is given
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human whole chromosome probes and by G-banding
patterns in the Pitheciinae species included in our study
and from the literature [19]. Brachyteles arachnoides [24]
and Cebus apella [25] were used as outgroups. We attrib-
uted "0" (zero) value to the absence of a character (an
association or a syntenic group that is conserved or
changed by chromosome rearrangements) and "1" (one)
value to the presence of the character. These data were
subjected to maximum parsimony analysis (PAUP 4.0
software; Phylogenetic Analysis Using Parsimony), using
the exhaustive search option. The relative stability of
nodes was assessed by bootstrap estimates.

Results
Classical cytogenetics
P. irrorata has 2n = 48 chromosomes, with nine metacen-
tric or submetacentric and 14 acrocentric autosome
pairs. The X chromosome is a medium sized submeta-
centric. The G-banded karyotype is shown in the Figure
1A. C-banding highlighted constitutive heterochromatin
in the centromeres of all chromosomes and an interstitial
band in the long arm of pair 18 (Figure 1B).

C. c. rubicundus has 2n = 45 chromosomes in males
and 2n = 46 in females as a result of a Y-autosomal trans-
location, causing a multiple sex chromosome system
X1X2Y (Figure 2A). The autosomal set is composed by
nine meta- or submetacentric and 13 acrocentric pairs.
The X1 chromosome is a medium sized submetacentric,
homologous to the X of other primates. The X2 chromo-

some is a medium sized acrocentric, corresponding to the
original homologue of the autosome translocated to the Y
chromosome. Constitutive heterochromatin (Figure 2B)
was observed in centromeric regions of all autosomes. In
addition, secondary C-bands were observed on pairs 1, 2
and 3, in the distal regions of chromosome pairs 4p, 5p,
6p and 4q and proximally on chromosome pair 15q.

NOR-staining was found in the proximal region of the
long arm of six acrocentric chromosomes both on P. irro-
rata (Figure 3A) and C. c. rubicundus (Figure 3B).

Molecular cytogenetics
Pithecia irrorata
The homology map between human (HSA) and P. irro-
rata was established using chromosome paint probes
(Figure 1A). Human probes showed 32 hybridization sig-
nals per haploid chromosome set (Figure 4A; Table 1).
Fourteen autosomes and the X showed conserved syn-
teny. From these, eight autosomes hybridized an entire P.
irrorata chromosome (HSA 4, 6, 9, 11, 12, 17, 19, 20) and
six were found associated with other chromosomes (HSA
5, 13, 14, 18, 21, 22). The remaining eight human auto-
some probes produced multiple signals in different chro-
mosomes of P. irrorata. HSA 2, 7, 8, 10, 15, and 16 each
hybridized two chromosomes, while HSA 1 and 3 each
produced signals on three chromosomes per haploid set.
Six chromosomes of P. irrorata correspond to the human
syntenic associations 5/7, 2/16, 10/16, 8/18, 15/14 and 3/

Table 2: Derived rearrangements that led to chromosome forms found in the three Pitheciinae taxa, taking into account 
data from chromosome painting with human whole chromosome probes (HSA) and from G-banding on P. irrorata (PIR), C. 
c. rubicundus (CCR) and C. utahicki (CUT - [19]).

HSA PIR CCR CUT CHROMOSOME REARRANGEMENTS

10a/16a 6 4 7 Paracentric inversion

7b 11 10 6 Pericentric inversion

11 18 Y 12 Y-autosome translocation

3a/21 19 19 22 Paracentric inversion

5/7a
3b

1
16

2
21

11
18
20

Inversions (pericentric and paracentric); centric fission and tandem fusion

2b/16 4 5 10
17

Pericentric inversion; centric fission

13
22

8 13
20

15
25

Pericentric inversion; centric fission

1b
15b

9 17
18

24
26

centric fission

14/15a
20
3c

13
20
15

1 1
8

Tandem fusion; centric fission; pericentric inversion

1c
12

23
14

6 21
5

Centric fission and fusion; pericentric inversion
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21, also previously found in the putative ancestral karyo-
type of Platyrrhini.
Cacajao calvus rubicundus
Hybridizations of human paint probes resulted in 33
FISH-signals per haploid set of C. c. rubicundus (Figure
4B; Table 1). Thirteen human autosomes and the X
showed conserved synteny. From these, HSA 4, 6, 9, 11,
13, 17, 19 and 22 probes hybridized onto a whole chro-
mosome and HSA 12, 14, 18, 20, 21 were found in syn-
tenic association. The remaining nine probes produced
multiple signals in different chromosomes of C. c. rubi-
cundus. HSA 2, 5, 7, 8, 10, 15, and 16 paints each hybrid-
ized two chromosomes, whereas HSA 1 and 3 probes
each hybridized three chromosomes. Nine chromosomes
of C. c. rubicundus presented the syntenic associations 1/
12, 2/10, 2/16, 3/20/15/14, 3/5, 3/21, 5/7, 8/18 and 10/16.
Human chromosome 11 was identified as the autosome
involved in the Y-autosome translocation. Figure 2A sum-
marizes the mapping of human chromosomes to the G-
banded karyotype of C. c. rubicundus.

Hybridizations of S. oedipus (SOE) probes showed 28
signals per haploid chromosome set of C. c. rubicundus
(Figure 4C; Table 1). SOE autosome 3, 4, 5, 7, 8, 10, 13, 14,
15, 16, 18 and 20 probes each hybridized an entire chro-
mosome and SOE 11, 12, 17, 19, 21 and 22 were found
conserved but in association with other chromosomes.
The remaining four probes each produced multiple sig-
nals in different chromosomes of C. c. rubicundus. SOE 6
and 9 hybridized onto two chromosomes and SOE 1 and
2 three chromosomes each per haploid set, respectively.
Five chromosomes of C. c. rubicundus correspond to the
syntenic associations 19/2/11, 17/6, 21/12, 22/9 and 2/1.
The Y-autosome translocation involved the SOE 14
homologue. Figure 2A gives an overview of the mapping
of the SOE chromosome probes to the G-banded karyo-
type of C. c. rubicundus.

Phylogenetic analysis
The comparative analysis of the P. irrorata, C. c. rubicun-
dus (this study) and C. utahicki [19] karyotypes by G-

Figure 5 Comparative karyotype analysis of P. irrorata, C. c. rubicundus and C. utahicki [19]by G-banding and FISH using human whole chro-
mosome probes. The banded C. utahicki chromosomes were obtained from a previously unpublished metaphase [10].
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banding and FISH with human whole chromosome
probes is summarized in Figure 5. The results showed
that the chromosomal differences found among the three
taxa are consequence of centric fusions and fissions, peri-
centric and paracentric inversions, tandem fusions and a
Y-autosome translocation (Table 2).

These data were translated into a binary matrix (Addi-
tional file 1) and were then subjected to parsimony analy-
sis. A single most parsimonious three was obtained
(Figure 6) comprising 45 steps with a consistency index of
0.978, a retention index 0.909 and a homoplasy index of
0.022.

Discussion
The G-, C-banding and NOR-staining results on P. irro-
rata and C. c. rubicundus obtained in this study are in
agreement with previously published data [10], including
the difference in the diploid number for males and
females in C. c. rubicundus [10,15-17].

Our results by chromosome painting in P. irrorata and
C. c. rubicundus, as well as those from C. utahicki [19],
demonstrated that these species conserved all human
homologous syntenic associations found in the inferred
ancestral New World primate karyotype (3a/21, 5/7a, 2b/
16b, 8a/18, 14/15a and 10a/16a) [27]. The morphology
and banding pattern of the 3a/21 homologues in C. c.
rubicundus and C. utahicki is similar to the ancestral
Platyrrhini type, while in P. irrorata it was modified by a

paracentric inversion. The biarmed chromosome form 5/
7a found in P. irrorata is also similar to the ancestral
Platyrrhini type, whereas in C. c. rubicundus and C. uta-
hicki this association is found on a presumably derived
acrocentric chromosome. Cacajao further shows human
chromosome 5 homologues fissioned into 5a1 and 5a2. A
similar fission was previously found in Atelinae [24],
however, involving different break points. Therefore,
these fissions represent no synapomorphy, but rather
occurred independently in the two clades. Chromosome
forms 2b/16b and 8a/18 each showed similar morphology
compared to homologues from other Platyrrhini and are
therefore considered ancestral traits. The association 14/
15a was observed in an acrocentric chromosome in P.
irrorata, while in C. utahicki it has fused with chromo-
some 20 forming the association 20/15/14 on chromo-
some 1. In C. c. rubicundus it was found fused with the
human 3/20 homolog, leading to the association 3/20/15/
14. Finally, a pericentric inversion was observed for chro-
mosome form 10a/16a in all species analyzed here, result-
ing in chromosome form 16a/10a/16a/10a. This derived
inversion has also been found previously in Callicebus
[28], indicating that Pithecia, Chiropotes and Cacajao are
sister groups of Callicebus. This observation is in agree-
ment with recent classifications based on molecular data,
supporting the classification of subfamilies Pitheciinae
and Atelinae as sister groups included in the family Ateli-
dae [8,12].

Figure 6 Most parsimonious tree based on the binary chromosome character matrix (additional file 1). The analysis was made employing the 
maximum parsimony method using PAUP software.
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A comparative chromosome analysis of the three Pith-
eciinae species shows further synapomorphies shared
between C. c. rubicundus and C. utahicki (fission of 5/7,
resulting in separate 5a1 and 5a2 segments, and fusion
20/15/14), shared between P. irrorata and C. c. rubicun-
dus (acrocentric 7b, acrocentric 12) and for Pitheciinae in
general (fusion 2a/10b, acrocentric 15/14 and acrocentric
19). In contrast, no derived chromosome forms shared
between P. irrorata and C. utahicki were found.

Our phylogenetic analysis suggests that P. irrorata, C. c.
rubicundus and C. utahicki are a monophyletic group.
Further, and as expected, the chromosomal data sup-
ported by exclusive synapomorphies demonstrates that
C. c. rubicundus and C. utahicki are sister taxa. Moreover,
P. irrorata was placed in a more basal position, having
retained a karyotype closer to that of the inferred ances-
tral Platyrrhini. This phylogenetic arrangement supports
previously published phylogenies [5-8,12], and also the
phenetic inferences [10].

Conclusions
In conclusion, this comparative chromosomal analysis
clarifies some intrageneric relationships within Pithecii-
nae, while the position of this group in relation to Callice-
bus and Aotus remained undefined. Additional
comparative high-resolution molecular cytogenetic stud-
ies will be necessary to precisely define the rearrange-
ments between Aotus and Callicebus to clarify their
phylogenetic relationships with Pitheciinae.
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