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CONTEMPORARY REVIEW

Effects of PCSK9 Targeting: Alleviating 
Oxidation, Inflammation, and 
Atherosclerosis
Emily Punch, MSc; Justus Klein; Patrick Diaba-Nuhoho , MPhil, MSc; Henning Morawietz , PhD;   
Mahdi Garelnabi, PhD

ABSTRACT: Characterized as a chronic inflammatory disease of the large arteries, atherosclerosis is the primary cause of 
cardiovascular disease, the leading contributor of morbidity and mortality worldwide. Elevated plasma cholesterol levels and 
chronic inflammation within the arterial plaque are major mediators of plaque initiation, progression, and instability. In 2003, 
the protein PCSK9 (proprotein convertase subtilisin/kexin 9) was discovered to play a critical role in cholesterol regulation, 
thus becoming a key player in the mechanisms behind atherosclerotic plaque development. Emerging evidence suggests 
that PCSK9 could potentially have effects on atherosclerosis that are independent of cholesterol levels. The objective of this 
review was to discuss the role on PCSK9 in oxidation, inflammation, and atherosclerosis. This function activates proinflamma-
tory cytokine production and affects oxidative modifications within atherosclerotic lesions, revealing its more significant role 
in atherosclerosis. Although a variety of evidence demonstrates that PCSK9 plays a role in atherosclerotic inflammation, the 
direct mechanism of involvement is still unknown, driving a gap in knowledge to such a predominant player in cardiovascular 
disease. Investigation of proteins structurally related to PCSK9 may interestingly be the link in unveiling the mechanistic role of 
this protein’s involvement in oxidation and inflammation. Importantly, the unique structure of PCSK9 bears structural homol-
ogy to a one-of-a-kind domain found in the metabolic protein resistin, which is responsible for many of the same inflammatory 
outcomes as PCSK9. Closing this gap in knowledge of PCSK9`s role in atherosclerotic oxidation and inflammation will provide 
fundamental information for understanding, preventing, and treating cardiovascular disease.
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Cardiovascular diseases are the leading 
causes of morbidity and mortality worldwide.1 
Atherosclerosis as the main underlying cause in-

volves the deposition and accumulation of lipids and 
fibrous materials beneath endothelial cells lining the 
large arteries. A variety of genetic and environmen-
tal factors influence atherosclerotic plaque develop-
ment and progression, one of the most prominent 
causes being elevated blood cholesterol levels fol-
lowed by chronic inflammation within the arterial wall.2 
Regardless of extensive past and present investiga-
tion of atherosclerotic plaque pathophysiology, the 
complexity of the chronic inflammatory state of the 

arteries during atherosclerotic plaque advancement 
and progression has presented more questions with 
every answer. In 2003, the protein PCSK9 (proprotein 
convertase subtilisin/kexin 9) was discovered to play a 
critical role in cholesterol regulation, thus becoming a 
key player in the mechanisms behind atherosclerotic 
plaque development (Figure 1).

PCSK9 inhibitors play an important role in the lipid 
management of patients with hypercholesterolemia, 
diabetes, and acute coronary syndrome.3–8 New 
emerging evidence suggests that PCSK9 could have 
functions beyond cholesterol regulation by contributing 
to inflammation,9 oxidation, and atherosclerosis. It is 
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thought to cause stimulation of the proinflammatory re-
sponse within the plaque, being a potential direct link to 
atherosclerosis, yet the mechanisms remain unknown. 
Multiple recent studies have shown that there is a cor-
relation between PCSK9 and inflammation, indepen-
dent of cholesterol levels.10–15 More specifically, PCSK9 
has been shown to be associated to the TLR4 (toll-like 
receptor 4)/NF-кB (nuclear factor-kappa B) proinflam-
matory pathway. TLR4 is a transmembrane receptor 
involved in local or systemic immune responses, caus-
ing the activation and nuclear translocation of NF-кB, 
a transcription factor for a wide variety of inflammatory 
cytokines13; it is also a known mechanistic contributor 
of atherosclerotic inflammation.16 It has been shown 
both in vivo and in vitro that overexpressing PCSK9 
positively correlates to the upregulation of TLR4 and 
expression and activation of its downstream target NF-
кB, and silencing PCSK9 has the reverse effects.

Supporting evidence has shown that PCSK9 has 
been found to have a unique C-terminal cysteine-rich 
domain (CRD) that is structurally homologous to an-
other plasma protein, resistin.17–19 This CRD of resistin 
is known to bind to and activate TLR420 and the cell 
surface receptor adenylyl CAP1 (cyclase-associated 
protein 1),21,22 both triggering a proinflammatory re-
sponse. PCSK9 has now also been shown to bind to 

CAP1 to modulate LDL-R (low-density lipoprotein re-
ceptor) degradation.

The goals of this review were to emphasize the un-
deniable evidence that PCSK9 stimulates a proinflam-
matory response within atherosclerotic plaque, and 
that this mechanism may be better understood with 
the investigation of other structurally related proteins 
that trigger similar pathways. It could also bring new 
knowledge to the broader field of immunology, be-
cause PCSK9 expression has been reported in some 
other inflammation-induced disorders in addition to 
atherosclerosis.23–25

ATHEROSCLEROTIC PLAQUE 
INITIATION AND PROGRESSION AND 
ROLE OF OXIDATIVE MODIFICATIONS
Damage to endothelial cells that line the vessel wall 
begins the initiation of plaque development. This en-
dothelial damage is triggered by a wide variety of mod-
ulators inducing oxidative stress such as excess LDL-C 
(low-density lipoprotein cholesterol),26 cigarette smoke 
toxins,27 and high blood pressure.28 Injury of the vessel 
barrier promotes deposition of circulating LDL-C (espe-
cially when modified and in excess) in endothelial cells 
of the arterial tunica intima, followed by a layer of vas-
cular smooth muscle cells (VSMCs).2,29 Accumulation 
of LDL-C in the intima causes a response of spon-
taneous oxidation, leading to the production of oxi-
dized LDL (Ox-LDL).30,31 The chemical modification of 
LDL-C causes the molecule to acquire oxidative modi-
fied specific epitopes known as damage-associated 
molecular patterns. These epitopes are then recog-
nized by pattern recognition receptors such as CD36 
(cluster of differentiation 36), TLR4, LOX-1 (lectin-like 

Nonstandard Abbreviations and Acronyms

CAP1	 cell surface receptor adenylyl 
cyclase-associated protein 1

CRD	 cysteine-rich domain
EGF-A	 epidermal growth factor-like repeat-A
hQSOX1b	 human quiescin sulfhydryl oxidase 

1b
IL-1a	 interleukin-1a
IκB	 inhibitor of nuclear factor kappa B
IL-1β	 interleukin-1β
LDL-R	 low-density lipoprotein receptor
LOX-1	 lectin-like oxidized low-density 

lipoprotein receptor-1
MyD88	 myeloid differentiation factor 88
NF-кB	 nuclear factor-kappa B
MCP-1	 monocyte chemoattractant protein-1
Ox-LDL	 oxidized LDL
PCSK9	 protein proprotein convertase 

subtilisin/kexin 9
PKA	 protein kinase A
SREBP-2	 sterol regulatory element-binding 

protein-2
THP-1	 Tamm-Horsfall protein-1
TLR4	 toll-like receptor 4
VSMC	 vascular smooth muscle cells

Figure 1.  Secretion of PCSK9 from hepatocytes into the 
circulation.
PCSK9 is primarily expressed and secreted by hepatic cells, 
where it functions to degrade cell surface LDL-R, inhibiting cell 
surface receptor recycling and contributing to the decrease of 
plasma cholesterol clearance. LDL-C indicates low-density 
lipoprotein cholesterol; LDL-R, low-density lipoprotein receptor; 
and PCSK9, protein proprotein convertase subtilisin/kexin 9.
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oxidized low-density lipoprotein receptor-1), and CRP 
(C-reactive protein), stimulating a variety of immune re-
sponses such as proinflammatory cytokine production 
and internalization of the oxidative species by vascular 
and phagocytic cells.32–35 On the other hand, low-dose 
reactive species like Nox4-generated hydrogen perox-
ide can mediate vasoprotective and antiatherosclerotic 
mechanisms.36–39

The proinflammatory response generated by Ox-
LDL recruits circulating monocytes to enter the intima, 
where they differentiate into resident macrophages. 
The macrophages engulf Ox-LDL molecules, causing 
a phenotypical change into foam cells, ultimately re-
sulting in cell death, proinflammatory cytokine release, 
and fatty lesion formation. This chronic inflammation in 
the arterial wall drives additional monocyte infiltration, 
foam cell development, plaque deposition, and eventu-
ally arterial occlusion and plaque formation. Instability 
and plaque injury causes myocardial infarction and 
thrombolytic stroke.40 VSMCs are well-known for play-
ing a role in atherosclerotic progression and inflamma-
tion modulation. When fatty depositions accumulate in 
the plaque, VMSCs migrate and phenotypically trans-
form into resident macrophages to engulf the oxidized 
species, further contributing to atherosclerotic lesion 
development and progression.41,42 As demonstrated 
here, oxidation and chronic inflammation are important 
driving forces of atherosclerosis, and thus atheroscle-
rotic cardiovascular disease (CVD) (Figure 2).

The role of oxidation in atherogenesis is complex 
and has many contributing factors. First, LDL (low-
density lipoprotein) molecules within the artery wall can 
be oxidized to different levels, contributing to athero-
sclerosis development. Minimally oxidized LDLs have 
a low affinity to macrophage scavenger receptors that 
are contributing to foam cell production. Minimally ox-
idized LDL is known to stimulate adhesion molecules, 
chemokines, and cytokines, leading to extravasation 
of cells into the arterial wall and further LDL oxida-
tion.43–46 Furthermore, minimally oxidized LDL has also 
been found to induce tissue factor expression in en-
dothelial cells. Extensively oxidized LDL stimulates the 
proliferation of VSMCs and is recognized by macro-
phage scavenger receptors, leading to engulfment and 
formation of foam cells, directly contributing to fatty 
plaque accumulation.47,48

The oxidation of LDL is multifactorial, including many 
contributing factors from various cells. Lipoxygenase 
is an intracellular enzyme that has been found to 
contribute to the direct enzymatic oxidation of LDL 
in macrophages within the arterial walls. These en-
zymes can also contribute to nonenzymatic oxidation 
by the byproduct production of radical oxidants.49–51 
Myeloperoxidase is another common oxidizing enzyme 
that contributes to arteriosclerosis. Myeloperoxidase 
is expressed in activated neutrophils and monocytes 

as well as resident macrophages. This enzyme uses 
hydrogen peroxide and chloride to produce the cyto-
toxic reactive species hypochlorous acid. As with the 
lipoxygenase enzyme, byproducts of myeloperoxidase 
can generate the production of radical oxidants, fur-
ther contributing to an increased oxidative state within 
the artery wall.52

Another important aspect of the role of oxidation 
in arteriosclerosis is its impact on HDL (high-density 
lipoprotein). HDL is known to be a cardioprotective 
molecule, because it mediates antioxidant effects 
to LDL and promotes reverse cholesterol transport 
from foam cells. The oxidative modifications of HDL 
cause some loss of its protective function. Various ox-
idants such as peroxyl and hydroxyl radicals as well 
as myeloperoxidase-generated oxidative species can 
cause HDL oxidation.53 Free radical–mediated lipid 
oxidation events can generate biological aldehydes, 
such as malondialdehyde, 4-hydroxynonenal, and 
acrolein.54,55 Malondialdehyde and 4-hydroxynonenal 
aldehydes are known to oxidatively modify amino 
acid side chains found on HDL, which in turn impairs 
HDL antiatherogenic functions. HDL modification by 
acrolein aldehydes inhibits the cholesterol transport 
function of HDL.56 Thus, oxidative events aiding in ath-
erogenesis are not only associated with LDL oxidation. 
These events are multifactorial, involving many cells 
and molecules via diverse biochemical and physiolog-
ical pathways.

PCSK9s involvement in the complex oxidation pro-
cess during atherogenesis is understudied. PCSK9 is 
known to cause the stimulation of a set of chemokines 
and cytokines, specifically from macrophages. This 
stimulation results in an increased infiltration and acti-
vation of monocytes. In addition, VSMCs are activated 
by PCSK9, stimulating the conversion to activated 
macrophages. These cellular processes can further 
be aggravated by oxidative stress in the arterial site by 
production of previously discussed oxidative enzymes. 
Interestingly, it has recently been shown that evolo-
cumab (a PCSK9 inhibitor) significantly prevents cy-
totoxicity induced by hydrogen peroxide and reduces 
hydroperoxides and malondialdehyde levels in human 
umbilical vein endothelial cells.57 Further investigation 
of PCSK9’s direct involvement in the regulation of ox-
idative stress would bring great advancement to the 
field.

PCSK9 DISCOVERY AND 
INVOLVEMENT IN CHOLESTEROL 
REGULATION
PCSK9 is the ninth family member of the class of pro-
teins known as proprotein convertases, most pre-
dominantly expressed and secreted in hepatic cells. In 
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2003, the idea that PCSK9 is linked to cholesterol me-
tabolism was introduced when Abifadel et al identified 
a novel genetic mutation found in patients with severe 
hypercholesterolemia. The missense mutation was 
found on chromosome 1 in the PCSK9 gene, causing 
gain-of-function of PCSK9 and autosomal dominant 
familial hypercholesterolemia.58 Further research re-
vealed that gain-of-function mutations causing hyper-
cholesterolemia are associated with the highest risk for 
CVD, whereas loss-of-function mutations are associ-
ated with hypocholesterolemia, significantly reducing 
the risk of CVD.59 PCSK9 expression was then shown 
to be primarily regulated by the transcription factor 
SREBP-2 (sterol regulatory element-binding protein-2), 
when intracellular cholesterol levels caused changes in 
PCSK9 messenger RNA levels via SREBP-2.60,61

PCSK9’s molecular mechanism on cholesterol me-
tabolism was quickly uncovered, relieving posttrans-
lational regulation of hepatic LDL-Rs by the binding 
of PCSK9 to the receptor. The colocalization of the 
2 proteins causes degradation of the receptor, rather 
than recycling of the receptor to the cell surface, where 
it is used for cholesterol clearance. Cholesterol is an 

organic sterol lipid that must be transported in the 
aqueous blood stream by LDL as a polar transporter 
molecule. The presence of PCSK9, especially in ex-
cess, causes decreased levels of LDL-R, and thus ele-
vates circulating levels of LDL-C, which in turn results in 
greater amounts deposited and oxidized in the intima 
space, leading to enhanced plaque development.62,63 
The specific binding site on LDL-R for PCSK9 was ini-
tially localized to the EGF-A (epidermal growth factor-
like repeat-A) domain of the receptor.64 More recently, 
CAP1 was identified as a new binding partner of 
PCSK9 and a key mediator of caveolae-dependent 
endocytosis and lysosomal degradation of LDL-R,21 
both resulting in inhibition of LDL-R cell surface recy-
cling when PCSK9 is bound. After this mechanistic 
discovery, PCSK9 was quickly targeted for therapeutic 
monoclonal antibody design to reduce blood choles-
terol levels in patients with elevated cholesterol levels, 
thus reducing the risk of atherosclerotic plaque pro-
gression.62,65–67 In addition, novel strategies to target 
PCSK9 are currently being developed.68,69 However, 
because of the quick chase of effective therapeutics 
to lower cholesterol, PCSK9 biology and its possible 

Figure 2.  Schematic representation of PCSK9s involvement in atherosclerotic plaque 
development.
Endothelial cell damage allows infiltration of circulating LDL-C and to the intimal space. Oxidation of LDL-C 
in the intimal space stimulates proinflammatory activation and phagocytosis of macrophages. Engulfment 
of excess Ox-LDL by macrophages generates foam cells, which contributes to fatty deposits in the 
arterial wall, proinflammatory cytokine release, and apoptosis. Circulating PCSK9 secreted from hepatic 
cells also enters the intimal space, where it stimulates macrophage cells to produce proinflammatory 
cytokines and VSMC migration and transformation to macrophages, which in turn become apoptotic 
foam cells. Atherosclerotic macrophages and VSMCs also secrete PCSK9 within the plaque, contributing 
to increased inflammation and fatty deposition. Collectively, the proinflammatory stimulation within 
the plaque drives recruitment and infiltration of more circulating monocytes, feeding the cycle. LDL-C 
indicates low-density lipoprotein cholesterol; Ox-LDL, oxidized low-density lipoprotein; PCSK9, protein 
proprotein convertase subtilisin/kexin 9; and VSMC, vascular smooth muscle cells.
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influence on other physiological processes are not 
generally well understood.

PCSK9 has also been shown to be associated with 
binding to other receptors of the LDL-R family, including 
very low-density lipoprotein receptor (VLDL-R), CD36, 
apolipoprotein E receptor 2 (ApoER2), and low-density 
lipoprotein receptor-related protein 1 (LRP1).70–72 
Interestingly, PCSK9 was later found to be expressed 
in VSMCs, having a direct effect for reduction of LDL-R 
on macrophage cells within the arterial plaque,73 as 
well as modulating phenotype, proliferation, and mi-
gration of VSMCs.74 This led to investigations of PCSK9 
within an atherosclerotic plaque and association with 
immune-related cells, and a novel function of its in-
volvement in atherosclerotic inflammation.

PCSK9 AND INFLAMMATION
Recently, PCSK9 has been gaining recognition as hav-
ing more physiological roles in atherosclerotic plaque 
development in addition to cholesterol regulation. 
Many studies do demonstrate that PCSK9 enhances 
atherosclerosis in an LDL-R–dependent manner. LDL-
R–deficient mice expressing no PCSK9 or high levels 
of PCSK9 exhibited similar levels of plasma cholesterol 
and aortic cholesteryl esters accumulation to wild-type 
mice.75 A limitation of this study is lack of inflammatory 
marker assessment in this model to differentiate the 
relationship of PCSK9 to cholesterol and inflammation.

Other studies show PCSK9 has a role in inflamma-
tion. It was found to be a biomarker for illness sever-
ity in patients suffering from multiple traumatic injuries 
(Table 1).76–81 It has also been shown to be positively 

correlated to levels of circulating CRP,25 an acute bio-
marker of inflammation that has interestingly been 
demonstrated to increase the uptake of LDL-C into ar-
terial macrophages and act as a stronger predictor of 
cardiovascular disease than LDL-C levels.82,83

Both experimental and clinical data support the 
concept that systematic inflammation causes an in-
crease of PCSK9 expression.10 New evidence on 
PCSK9’s alternate role in atherosclerosis points to it 
being linked to the chronic inflammatory state of the 
atherosclerotic plaque, driving plaque progression and 
instability. This new evidence has demonstrated that 
PCSK9 is positively correlated with a various range 
of proinflammatory genes that drive plaque develop-
ment and progression12,13,84; thus, it plays a role in the 
chronic inflammatory state of atherosclerotic plaque. 
Ricci et al excitingly demonstrated that PCSK9 pro-
motes proinflammatory effects on macrophages. 
Incubation of THP-1 (Tamm-Horsfall protein-1)–derived 
macrophages as well as human primary macrophages 
with human recombinant PCSK9-stimulated expres-
sion of IL-1β (interleukin-1β), IL-6 (interleukin-6), TNF-α 
(tumor necrosis factor-α), CXCL2 (CXC motif chemok-
ine ligand 2), and MCP-1 (monocyte chemoattractant 
protein-1) messenger RNA in both cell lines. In addition, 
THP-1 macrophages cocultured with hepatocellular 
carcinoma cell line G2 (HepG2) overexpressing human 
recombinant PCSK9 caused increased expression of 
TNF-α and IL-1β messenger RNA in the THP-1 mac-
rophages. Ricci also revealed a positive correlation 
between PCSK9 and TNF-α plasma levels in adults.85 
These results suggest that the proinflammatory re-
sponse of PCSK9 on macrophages is mainly, but not 

Table 1.  Clinical Research Associated With PCSK9 and Inflammation

Reference Model type Findings

Polisecki et al81 PROSPER subjects Genetic variations of PCSK9 caused decrease in circulating LDL-C concentration but 
not in CHD risk.

Le Bras et al76 HYPOLYTE subjects* Illness severity in patients with severe multiple traumas is predicted by use of PCSK9 
as a late biomarker.

Cheng et al 12 Human tissue—coronary artery Serum PCSK9 levels positively correlates to quantity of necrotic core tissue, 
independent of LDL-C.

Fang et al25 Healthy patients and patients with SLE Patients with SLE have significantly higher circulating PCSK9 levels compared to 
controls.  
PCSK9 was found to be positively correlated to CRP concentrations.

Zhang et al80 Patients with CAD PCSK9 concentration in patients with CAD was positively correlated to CRP 
concentrations.

Zanni et al79 Patients infected and noninfected 
with HIV

HIV-infected subjects have a significant increase of PCSK9 levels, which positively 
correlates with markers of systemic monocytes compared with noninfected subjects.

Li et al78 Patients with CAD Plasma PCSK9 concentration is associated with WBCC.

Li et al77 Patients with and without CAD Elevated PCSK9 levels are associated with elevated WBCC and CRP in patients with 
CAD. Severity of CAD is positively associated with PCSK9 concentration.

Composition of human clinical research indicating PCSK9’s involvement in inflammation. Author, reference, model type, and key findings of each investigation 
are displayed. CAD indicates coronary artery disease; CHD, coronary heart disease; CRP, C-reactive protein; HYPOLYTE, hydrocortisone polytraumatise; LDL-
C, low-density lipoprotein cholesterol; PCSK9, protein proprotein convertase subtilisin/kexin 9; PROSPER, Prospective Study of Pravastatin in the Elderly at 
Risk; SLE, systemic lupus erythematosus; and WBCC, white blood cell count.

*HYPOLYTE subjects’ information can be found at ClinicalTrials.gov no. NCT00563303.
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exclusively, dependent on the presence of the LDL-R. 
Bone marrow–derived macrophages from LDL-R+/+ 
C57BL/6 mice were stimulated by human recombinant 
PCSK9, increasing expression of TNF-α (31.1±6.1–
fold). Other in vitro studies of Ricci could be strength-
ened by including an LDL-R knockout in these models.

In 2012, Tang et al demonstrated that PCSK9 small 
interfering RNA suppresses the Ox-LDL–induced up-
regulation of proinflammatory cytokine expression (IL-
1α, IL-6, and TNF-α) in THP-1–derived macrophages. 
This group also revealed that the exposure of THP-1–
derived macrophages to Ox-LDL caused significant 
degradation of IкB-α (inhibitor of nuclear factor kappa 
B-α) and increased expression and nuclear transloca-
tion of NF-κB p65, which was significantly attenuated 
by the use of PCSK9 small interfering RNA. In com-
bination, Tang et al demonstrated that PCSK9 small 
interfering RNA protects against inflammation via the 
inhibition of NF-κB activation in Ox-LDL–stimulated 
THP-1–derived macrophages.84 In this study, Tang et 
al used Ox-LDL to induce proinflammatory cytokine 
expression. Using a stimulant that does not function 
via LDL-R or eliminating LDL-R from the models might 
give further insight into the pathway of inflammatory 
stimulation of PCSK9.

In 2017, Tang et al then investigated the in vivo effect 
of PCSK9 on TLR4 expression and NF-кB expression 
and nuclear translocation in atherosclerotic aortas with 
PCSK9 silencing (lentivirus [LV]-PCSK9 short hairpin 
[sh] RNA) in apolipoprotein E knockout mice. TLR4 and 
NF-кB expression in the aortas of the LV-PCSK9 shRNA 
group showed a significant downregulation compared 
to the control. Using immunostaining, the group was 
able to detect TLR4 and NF-кB in atherosclerotic le-
sions of the aorta sinus plaques of the LV-PCSK9 
shRNA group, demonstrating a significant decrease in 
both proteins compared to the control (Table 2).13,86,87 
This group also showed that PCSK9 potentially regu-
lates inflammatory cytokine secretion (TNF-α, IL-1β, and 
MCP1) through the activation of the toll-like receptor 4/
nuclear factor-κB (TLR4/NF-кB) pathway in Raschke W 
et al., murine macrophage cell line 264.7 transformed 
by Abelson Leukemia virus (RAW264.7) macrophages. 
When stimulated with Ox-LDL, as expected, there was 
a significant increased gene expression of inflamma-
tory cytokines as modulators of TLR4/NF-кB activa-
tion. With the addition of LV-PCSK9, the expression of 
these cytokines significantly increased compared to 
the Ox-LDL–stimulated cells. When LV-PCSK9 shRNA 
was introduced to the cells, there was significant de-
crease of production of these cytokines compared to 
the other 2 experimental groups. In addition, Tang et al 
also demonstrated that the LV-PCSK9–treated macro-
phages upregulated TLR4 expression and promoted 
the expression of p-IкBa (phosphorylated IкBa), the 
degradation of IкBa, and NF-кB nuclear translocation. 

This group then showed that LV-PCSK9 shRNA signifi-
cantly attenuated all these effects.13 The discoveries of 
Tang et al demonstrate that the TLR4/NF-кB pathway 
may be one of the major mechanisms that links PCSK9 
to atherosclerotic inflammation. Further examination of 
the direct binding of PCSK9 to TLR4, thus activating 
NF-кB, must be done to confirm that this is the primary 
mechanism. Table  1 compiles some of the scientific 
research indicating PCSK9’s clear involvement in in-
flammation (Figure 3).

Although these studies have some limitations, it 
does not mean that LDL-R is the only receptor me-
diating inflammatory stimulation for PCSK9, because 
other studies showed that PCSK9 causes upregula-
tion of TLR4 (implied receptor stimulation), resulting 
in increased cytokine expression. It is also important 
to note that other studies discuss the inflammatory 
actions of PCSK9.88–92 The role of PCSK9 inflamma-
tion is controversial, because clinical studies failed 
to demonstrate the effect of PCSK9 inhibitors on 
the markers of inflammation. There are also conflict-
ing results on the independent association between 
PCSK9 levels and atherosclerosis in the general 
population. In one study, plasma PCSK9 was asso-
ciated with the progression of carotid atherosclero-
sis,93 whereas another study showed no correlation 
between PCSK9 concentration and carotid intima 
media thickness.94 Intravascular imaging studies of 
coronary artery plaques also yielded conflicting ob-
servations. One study tantalizingly detected a cor-
relation between plasma PCSK9 and plaque necrotic 
core independent of LDL-C,12 but another study 
showed no effect of PCSK9 inhibitor evolocumab on 
plaque composition.95 The function of PCSK9 in in-
flammation might be tissue specific. Lower levels of 
circulating PCSK9 in normolipidemic subjects are as-
sociated with adipose tissue inflammation,96 whereas 
PCSK9 inhibition reduces inflammation in the liver.97 
Additional studies will clearly define the role of PCSK9 
as a link between cholesterol and inflammation and 
how much of the inflammatory response is choles-
terol independent.

ROLE OF TLR4 IN CHRONIC 
ARTERIAL INFLAMMATION
TLR4 is part of the toll-like receptor family of proteins, 
a family of membrane-spanning proteins displayed on 
innate immune cells such as macrophages that rec-
ognize certain pathogen-associated patterns such as 
lipopolysaccharide found on gram-negative bacterial 
cell walls. Binding of a ligand to the toll-like receptors 
results in the recruitment of the connecter molecule 
MyD88 (myeloid differentiation factor 88) to the Toll/
IL-1 receptor domain of the receptor. This triggers a 
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cascade of intracellular signal transductions, leading 
to the activation and nuclear translocation of the tran-
scription factor NF-κB, and the induction of a variety 
of proinflammatory cytokines including, IL-1, IL-6, IL-12, 
TNF-α, IL-1β, and MCP-1.98 NF-кB is typically seques-
tered in the cytoplasm by its inhibitory protein, IкB, and 
prevented from interaction with nuclear localization sig-
nals. When IкB becomes p-IкB, it degrades, allowing 
NF-кB to receive signals from the nuclear localization 
signals and to be translocated to the nucleus (Table 3). 
The TLR4/NF-кB proinflammatory signaling pathway 
plays a significant role in the chronic inflammatory state 
of the atherosclerotic plaque, because human and mu-
rine atherosclerotic plaques express TLR4, and TLR4 
expression in macrophages is upregulated in the pres-
ence of Ox-LDL.16,99,100 Additionally, Ox-LDL seques-
tered in the intimal space of arterial lesions directly 
induces TLR4/NF-кB signaling pathways in resident 
macrophages, which is especially enhanced though 
macrophage scavenger receptor CD36.101–105 In regard 
to arterial endothelial cells, TLR activation promotes 
lipid and white blood cell accumulation within the arte-
rial plaque.102

Interestingly, in 2004, Michelsen et al discovered 
that the deletion of TLR4 on apoE−/− mice caused a 
significant decrease in aortic atherosclerosis, aortic 
sinus lipid accumulation, and macrophage infiltration.16 
TLR4’s ability to facilitate such significant effects on 
plaque formation and progression in the absence of any 
pathogen-associated patterns suggest that the driving 
force of plaque inflammation is via endogenous ligands.

It is undeniably evident that PCSK9 plays a prom-
inent role in the stimulation of inflammation within the 

atherosclerotic plaque. PCSK9 is shown to have a posi-
tive correlation to proinflammatory cytokine expression 
and NF-кB upregulation, which is a major mechanistic 
driving force of plaque inflammation. Additionally, the 
findings of its homologous CRD to resistin’s, which is 
the domain responsible for the interaction between re-
sistin and inflammatory initiation via TLR4 and CAP1, 
provide support for the novel function of PCSK9.

PCSK9 STRUCTURE AND 
STRUCTURAL HOMOLOGY TO 
RESISTIN
Supporting evidence linking PCSK9 to inflammation 
was found by the discovery of a rather unique CDR 
domain on PCSK9, that is structurally homologous to 
the protein resistin’s one-of-a-kind CDR,18,19 which is 
responsible for proinflammatory stimulation similar to 
PCSK9 function. The structural homology of the C-
terminal cysteine-rich domain from PCSK9 and the 
resistin homotrimer is shown in Figure 4. Imaging and 
superposition of the molecules have been realized 
with PyMOL.106 PCSK9 belongs to the proprotein con-
vertase family, where all zymogen forms consist of an 
N-terminal pro-domain, a subtilisin-like catalytic do-
main capable of protease function, and a C-terminal 
domain.107 The pro-domain of proprotein convertases 
functions as an intramolecular chaperone in the en-
doplasmic reticulum, assisting in proper folding of 
the catalytic domain before secretion of the polypep-
tide. After proper folding of the catalytic domain, the 

Table 2.  Murine Research Associated to PCSK9 and Inflammation

Reference Model type Findings

Feingold et al10 C57BL/6 mice Inflammatory stimulants (lipopolysaccharide, zymosan, and 
turpentine) cause increased expression of PCSK9 mRNA in 
hepatic tissue.

Tang et al13 Apolipoprotein E knockout mice LV-PCSK9 shRNA treatment of mice causes significantly 
less atherosclerotic plaque development, decreased number 
of macrophages, and decreased expression of vascular 
proinflammatory proteins (TNF-α, IL-1β, MCP-1, TLR4, and NF-
κB) compared with untreated mice.

Landlinger et al87 APOE*3Leiden.CETP mice AT04A anti-PCSK9 vaccine causes significant reduction of 
various plasma proinflammatory markers SAA, MIP-1β/CCL4, 
MDC/CCL22, SCF, and VEGF-A compared with control. 
Additionally, AT04A vaccine causes significant decrease in 
atherosclerotic lesion area, total lesions in the aorta, and aortic 
inflammation compared with control.

Kühnast et al86 APOE*3Leiden.CETP mice Monocyte recruitment to atherosclerotic plaques is reduced 
with alirocumab treatment. Total macrophage and necrotic core 
content was also reduced with treatment.

Composition of murine experimental research indicating PCSK9’s involvement in inflammation. Author, reference, model type, and key findings of each 
investigation are displayed. APOE*3Leiden indicates apolipoprotein E3-Leiden; AT04A, affitope-based vaccine; CCL4, C-C motif chemokine ligand 4; CCL22, 
C-C motif chemokine ligand 22; CETP indicates cholesteryl ester transfer protein; IL-1β, interleukin-1β; LV-PCSK9, lentivirus PCSK9; MCP-1, monocyte 
chemoattractant protein-1; MDC, macrophage-derived chemokine; MIP-1β, macrophage inflammatory protein-1β; mRNA, messenger RNA; NF-κB, nuclear 
factor-кB; PCSK9, protein proprotein convertase subtilisin/kexin 9; SAA, serum amyloid A; SCF, cytokine stem cell factor; shRNA, short hairpin RNA; TNF-α, 
tumor necrosis factor-α; TLR4, toll-like receptor 4; and VEGF-A, vascular endothelial growth factor-A.
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pro-domain undergoes autocatalysis, breaking the co-
valent bond anchoring the catalytic and pro-domains. 
The protein then undergoes a second catalytic cleav-
age in the pro-domain, allowing full access, thus func-
tion, of the protease catalytic active site. PCSK9 is a 

unique proprotein convertase molecule, because it 
does not undergo the second cleavage event, allow-
ing the pro-domain to remain noncovalently associ-
ated with the catalytic active site. This blocking of the 
catalytic triad interestingly results in the protein being 

Figure 3.  Activation of macrophages within atherosclerotic plaque by interaction with PCSK9.
PCSK9 is now known to stimulate proinflammatory effects within an atherosclerotic plaque. PCSK9 
is expressed and secreted by hepatic cells, macrophages, and vascular smooth muscle cells. PCSK9 
activates macrophage proinflammatory effects by cell surface receptor binding of TLR4 and potentially 
several other inflammatory stimulating receptors. This graphic represents the binding of PCSK9 to 
and activation of TLR4, triggering NF-кB activation and nuclear translocation. Nuclear translocation of 
the transcription factor NF-кB stimulates the expression and secretion of a variety of proinflammatory 
cytokines, contributing to increased monocyte infiltration and plaque deposition. Other receptors on the 
macrophage represent additional proinflammatory-stimulating binding partners for PCSK9 within cells in 
the atherosclerotic plaque. CXCL2 indicates CXC motif chemokine ligand 2; IL-1a, interleukin-1a; IL-1β, 
interleukin-1β; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; NF-κB, nuclear factor-
kappa B; PCSK9, protein proprotein convertase subtilisin/kexin 9; TLR4, toll-like receptor 4; TNF-α, tumor 
necrosis factor-α; and VSMCs, vascular smooth muscle cells.

Table 3.  In Vitro Cell Culture Research on PCSK9 and Inflammation

Reference Model type Findings

Tang et al84 RAW264.7 cell line PCSK9 overexpression in cultured Ox-LDL–induced 
macrophages caused increase expression of proinflammatory 
cytokines, TLR4, and IκBα, IкBα degradation, and nuclear 
translocation of NF-κB.

Ricci et al85 THP-1–derived macrophages and human primary 
macrophages

Incubation of THP-1–derived macrophages and human 
primary macrophages with PCSK9 causes a significant 
increased expression of IL-1β, IL-6, TNF-α, CXCL2, and MCP-1 
mRNA. THP-1–derived macrophages cocultured with HepG2s 
overexpressing hPCSK9 causes an increased expression of 
TNF-α and IL-1β mRNA in macrophages.

Tang et al84 THP-1–derived macrophages Ox-LDL–stimulated macrophages express PCSK9 in a 
dose-dependent manner and cause nuclear translocation of 
NF-κB. PCSK9 small interfering RNA in Ox-LDL stimulated 
THP-1–derived macrophages, suppressed expression of 
inflammatory cytokines, and attenuated NF-κB nuclear 
translocation.

Composition of some in vitro cell culture experimental research indicating PCSK9’s involvement in inflammation. Author, reference, model type, and key 
findings of each investigation are displayed. CXCL2 indicates CXC motif chemokine ligand 2; IκBα, inhibitor of nuclear factor kappa Bα; IL-1β, interleukin-1β; IL-6, 
interleukin-6; MCP-1, monocyte chemoattractant protein-1; mRNA, messenger RNA; NF-κB, nuclear factor-kappaB; Ox-LDL, oxidized low-density lipoprotein; 
PCSK9, protein proprotein convertase subtilisin/kexin 9; THP-1, Tamm-Horsfall protein-1; TLR4, toll-like receptor 4; and TNF-α, tumor necrosis factor-α.
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prohibited from using its protease functioning abilities. 
Another unique structural aspect of PCSK9 is that 
its C-terminal domain is unlike the other proprotein 
convertase proteins. PCSK9’s C-terminal consists of 
an extremely distinctive CRD. The unique C-terminal 
domain consists of 3 subdomains or modules (M1–
M3) that are densely packed and are associated via 
a pseudo 3-fold axis, with a 6-stranded, 2-sheet β-
sandwich formed by each subdomain.17 The cysteines 
found in each module bind in a 1 to 6, 2 to 5, 3 to 4 
pattern between β-sheets β1 to β6, β2 to β6, and β3 
to β5, respectively.18 This noteworthy 3-jelly-roll struc-
ture of the CRD of PCSK9 has only been recognized 
in 1 other molecule, the metabolic protein resistin.18,108 
The resistin molecule contains a 3-stranded, α-helical, 
coiled-coil just under a 3-stranded, β-strand jelly-roll 
structure, the only structural difference in C-terminal 
domains of the 2 molecules being the coiled-coil com-
ponent of resistin, where this is lacking in PCSK9.18 
This exciting evidence, displaying PCSK9’s CRD ex-
clusive structural homology to resistin, is a critical link 

in understanding the physiology of PCSK9s involve-
ment in atherosclerotic proinflammation, because 
the homologous domain of resistin is associated with 
proinflammatory stimulation within atherosclerotic 
plaques.

REDOX MODIFICATIONS—EFFECTS 
ON RESISTIN AND PCSK9
Because resistin’s inflammatory stimulating function 
takes place via its CRD, which is also speculated for 
PCSK9, it is important to discuss how redox modifi-
cations of these cysteines modulate function. Disulfide 
bonds are formed during posttranslational modifica-
tion within the endoplasmic reticulum, via oxidation 
of sulfhydryl groups between 2 cysteines. Disulfide 
bond modifications promote proper protein folding 
and enhanced protein stability.109 Disulfide bonds can 
be modulated once the protein is in its functional lo-
cation because of the presence of enzymes or the 

Figure 4.  Structural homology of the C-terminal cysteine-rich domain from PCSK9 and the 
resistin homotrimer.
The crystal structure of PCSK9 (1A) contains an inhibitory prodomain (orange), a serine protease domain 
(light blue), and a C-terminal CRD (green). The resistin (2A) homotrimer (domains are colored red, blue, 
and yellow) forms a 3-stranded α-helical coiled-coil under a 6-stranded β-strand jelly-roll structure. The 
structural homology of the CRD region of PCSK9 and the resistin homotrimer are shown from a top view 
(1B and 2B). Superposition of the CRD of PCSK9 and the resistin homotrimer (3, colors of structures 
according to 1A and 1B) leads to rotation of the nonconserved region of resistin.18 For a better visualization, 
the inhibitory prodomain and the serine protease domain have been excluded from the superposition. 
Structures are shown in a cartoon representation. Imaging and superposition of the molecules have been 
realized with PyMOL.106 CRD indicates cysteine-rich domain; and PCSK9, protein proprotein convertase 
subtilisin/kexin 9.
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surrounding environment. Highly oxidative environ-
ments favor disulfide bond formation.

Resistin is part of the found in inflammatory zone 
(FIZZ) family of genes, which play a role in inflamma-
tion. The oxidative state of some of these FIZZ proteins 
has been studied, and it is seen that a highly oxida-
tive environment is favorable for protein function. In the 
endoplasmic reticulum, sulfhydryl oxidases catalyze 
disulfide bond formation by reduction of molecular 
oxygen to hydrogen peroxide. hQSOX1b (human qui-
escin sulfhydryl oxidase 1b) presence was found to be 
critical to biological function of the resistin-like protein 
mFIZZ1 expressed in the wheat germ embryo. In the 
absence of this enzyme, biological function of murine 
found in inflammatory zone 1 (mFIZZ1) was lost.110

Because resistin has been linked to insulin resis-
tance, interestingly, it has been demonstrated that 
oxidative stress may enhance insulin resistance and 
have impact on endogenous expression of resistin in 
the adipocyte.111 Also, it has been shown that serum 
resistin can be significantly reduced after short-term 
antioxidant treatment with ascorbic acid, further indi-
cating that importance of oxidative state of this cyste-
ine rich protein.112

Little is known about the redox state of PCSK9 and 
how this affects its function. It can be speculated that 
the oxidative state plays a role on PCSK9 function, be-
cause the CRD of this protein is so structurally homol-
ogous to resistin’s active CRD. If this is assumed, the 
atherosclerotic environment has high oxidative stress, 
which would lead to retention/formation of disulfide 
bonds in PCSK9. Because PCSK9 is known to be 
functional in the atherosclerotic environment, it can be 
speculated that disulfide bonds of the CRD could aid 
in biological function.

RESISTIN AND PCSK9—RELATION TO 
INFLAMMATION
Resistin was initially studied in mice, where it was 
found to be an adipokine associated with obesity and 
insulin resistance.113 More recent research has un-
veiled that resistin in humans is a potential key player 
in atherosclerotic proinflammatory stimulation and lipid 
accumulation. It was demonstrated that macrophages 
within atherosclerotic lesions secrete resistin, directly 
effecting endothelial function and VSMC migration 
to the lesion.114,115 Cho et al then demonstrated that 
resistin is expressed in atherosclerotic lesions and 
causes stimulation of monocytes, endothelial cells, 
and VSMCs, inducing inflammation within the arterial 
plaque.116 Resistin has also been found to promote 
lipid internalization in human macrophages via CD36 
upregulation as well and acts as a regulator of mac-
rophage phenotypic transformation to foam cells within 

the intima space.117,118 Resistin was also shown to be 
a potent proinflammatory cytokine inducer (IL-6, IL-12, 
and TNF-α) via NF-кB regulation.119,120 Recently, signal 
transducer and activator of transcription 3 (STAT3) was 
identified a regulator of leptin- and resistin-mediated 
transcriptional induction of PCSK9.121 Furthermore, 
interferon-γ and the suppressor of cytokine signaling 
3 (SOCS3) pathways are involved in the PCSK9 activa-
tion.122,123 Additionally, resistin was found to be posi-
tively correlated to the inflammatory biomarker CRP, 
just as PCSK9 is.124 Potential similarities of biological 
effects of PCSK9 and resistin might involve proinflam-
matory effects. The one-of-a-kind CRD domain of re-
sistin that can trigger these immense proinflammatory 
effects strongly suggests that PCSK9 may function in 
the same manner, by use of the homologous CRD do-
main, because PCSK9 seems to trigger many of the 
same inflammatory responses as resistin. Investigation 
of the mechanism of resistin’s distinctive CRD domains 
role in inflammation stimulation revealed that the CRD 
domain can bind to and trigger inflammation through 
CAP1 and TLR4. CAP1 is a cell surface receptor that 
mediates inflammatory response for human mono-
cytes. The direct binding of human resistin via the CRD 
domain to CAP1 in monocytes specifically upregulates 
cAMP, PKA (protein kinase A) activity, and NF-κB–
related transcription of inflammatory cytokines.22 It was 
recently speculated and confirmed that PCSK9 also 
binds to CAP1 in the same manner as resistin, via the 
homologous CRD domain. Jang et al demonstrated 
with a variety of molecular and biophysical techniques 
that PCSK9 binds CAP1 in human liver and kidney cells 
via the CRD, specifically to facilitate endocytosis and 
lysosomal degradation of LDL-R.21 Although PCSK9 
have been shown to now bind CAP1 via its CRD do-
main in liver and kidney cells, this research excludes 
examination of this interaction in regard to proinflam-
matory stimulation, specifically in mononucleated im-
mune cells.

Because resistin has been shown to bind CAP1, 
further in vitro binding assays were performed be-
tween CAP1 mutants and rhResistin to gain insights of 
where this binding occurs on the receptor. The 293A 
cells of various CAP1 histidine (His)-tagged mutants 
were treated with recombinant human resistin (rhRe-
sistin), followed by immunoprecipitation with anti-His 
antibodies. Western blotting was performed with both 
anti-resistin and anti-His antibodies. Results demon-
strated that human resistin binds to CAP1 via the src-
homology 3 (SH3) binding domain. Various molecular 
modeling schemes supported these findings.22

As this C-terminal domain of resistin, which 
binds SH3 of CAP1, has structural homology with 
the CRD of PCSK9, further investigation was done 
to see if PCSK9 binds this same domain on CAP1. 
Coimmunoprecipitation of human PCSK9-flagTM 
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segment A (hPCSK9-FlagA) on a variety of CAP1 mu-
tants were tested in human embryonic kidney (HEK) 
293 cells. PCSK9 interacted with all mutants and wild-
type CAP1 except for the mutant with a deletion of src 
homology 3 binding domain (SH3BD), suggesting that 
CAP1 binds PCSK9 via this domain as resistin does.21

Importantly, resistin was also found to cause LDL-R 
degradation, in the absence of PSCK9. HepG2 cells 
incubated with PCSK9 small interfering RNA caused 
a significant increase of LDL-R. When these cells in-
cluded the addition of resistin, significant LDL increase 
was ablated. This further supports the speculation that 
resistin and PCSK9 may have the same physiological 
mechanisms.125

The proinflammatory effects of resistin in regard to 
TLR4 activation were also investigated, demonstrating 
that resistin binds to TLR4 specifically with the CDR 
domain, triggering NF-кB nuclear translocation and 
proinflammatory response.20,126 Future studies should 
be conducted to investigate PCSK9’s likely direct bind-
ing to TLR4 via the CRD domain, to bring insight on its 
role in atherosclerotic inflammation.

CONCLUSIONS
CVD is the leading cause of death in the world. Initiation 
and advancement of CVD is caused by the chronic in-
flammatory disease of the large arteries, atherosclero-
sis. Atherosclerosis is the development of fatty lesions 
within arterial walls, driven by chronic inflammation, 
leading to arterial obstruction or thrombolytic rup-
ture of unstable plaque. It is well known that oxidative 
stress and the chronic inflammatory state of the plaque 
is responsible for the cycle of mononuclear cell infiltra-
tion, fatty sheath formation, and inflammatory cytokine 
release. However, not all players and mechanistic prin-
ciples in this cycle are known or fully understood.

Exciting novel findings suggest that the proprotein 
PCSK9 is one of the unknown major players in ath-
erosclerotic inflammation. Although initially found to 
regulate cholesterol metabolism, accumulating evi-
dence demonstrates that PCSK9 is expressed within 
the plaque and is involved in the modulation of gene 
expression of a variety of proinflammatory proteins, as 
summarized in Table 1.

This evidence linking PCSK9 and inflammation is 
supported though the discovery that PCSK9s rare 
C-terminal CRD has incredible structural homology 
to a domain on resistin that is responsible for proin-
flammatory stimulation, similar to PCSK9’s effect. This 
homologous domain on resistin is known to bind and 
activate both CAP1 and TLR4 (pattern recognition re-
ceptors found on most cell surfaces). CAP1 and TLR4 
are both stimulated by the binding resistin’s CRD, ul-
timately causing activation and nuclear translocation 
of NF-кB, a transcription factor for an assortment of 

proinflammatory cytokines. Notably, PCSK9 was 
found to bind to CAP1 in human liver and kidney cells 
though the CRD, to eliminate cell surface recycling of 
and to facilitate degradation of LDL-R.21 This evidence 
may further contribute to the potential mechanisms of 
PCSK9 and inflammation, but investigation of PCSK9’s 
CRD binding to and activation of CAP1 in inflammatory-
related cells is nonexistent. Even more so, the investi-
gation of TLR4 and PCSK9 in atherosclerotic plaque 
progression is needed. Although resistin’s C-terminal 
CRD is known to bind and stimulate TLR4, the homol-
ogous CRD of PCSK9 and its potential direct interac-
tion with TLR4 has, to the best of our knowledge, yet 
to be explored.

Because protein folding and structure directly dictate 
protein function, it is not an implausible idea to exam-
ine structural characteristics of PCSK9 to understand 
mechanistic aspects of its involvement in atherosclerotic 
inflammation. It is now undeniable that PCSK9 plays a 
role in the cyclic chronic inflammatory state of a fatty 
lesion, but can we link structural domains/motifs of this 
protein to others that are known to directly cause inflam-
mation? It is especially important to note that unlike all 
other convertases, interestingly, PCSK9’s catalytic active 
site is sterically hindered by the prodomain through non-
covalent interactions. Being the only convertase enzyme 
that primarily causes its effects without use of the cata-
lytic domain, and with multiple different binding domains 
recognized, raises interest and speculation on how this 
molecule is involved with atherosclerotic chronic inflam-
mation. Insight into the direct mechanism of PCSK9, 
oxidation, and inflammation will help fill in some of the 
gaps in knowledge of full comprehension of the chronic 
inflammatory state of atherosclerosis. Bringing deeper 
knowledge to this subject can immensely contribute 
to the health and well-being of many individuals now 
and especially in the future, because this intricate and 
complicated chronic oxidation and inflammation are the 
major contributors to CVD, and thus morbidity and mor-
tality worldwide. Targeting the alleviated oxidation and 
inflammation might contribute to the beneficial effects of 
PCSK9 inhibition in CVDs.
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