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ABSTRACT

Genome-scale metabolic models are instrumen-
tal in uncovering operating principles of cellular
metabolism, for model-guided re-engineering, and
unraveling cross-feeding in microbial communities.
Yet, the application of genome-scale models, espe-
cially to microbial communities, is lagging behind the
availability of sequenced genomes. This is largely
due to the time-consuming steps of manual cura-
tion required to obtain good quality models. Here,
we present an automated tool, CarveMe, for recon-
struction of species and community level metabolic
models. We introduce the concept of a universal
model, which is manually curated and simulation
ready. Starting with this universal model and an-
notated genome sequences, CarveMe uses a top-
down approach to build single-species and commu-
nity models in a fast and scalable manner. We show
that CarveMe models perform closely to manually
curated models in reproducing experimental pheno-
types (substrate utilization and gene essentiality).
Additionally, we build a collection of 74 models for
human gut bacteria and test their ability to reproduce
growth on a set of experimentally defined media. Fi-
nally, we create a database of 5587 bacterial models
and demonstrate its potential for fast generation of
microbial community models. Overall, CarveMe pro-
vides an open-source and user-friendly tool towards
broadening the use of metabolic modeling in study-
ing microbial species and communities.

INTRODUCTION

Linking the metabolic phenotype of an organism to envi-
ronmental and genetic perturbations is central to several
basic and applied research questions. To this end, genome-

scale metabolic models provide a mechanistic basis allowing
to predict the effects of, e.g. gene knockouts, or nutritional
changes (1,2). Indeed, such models are currently used in a
wide range of applications, including rational strain design
for industrial biochemical production (3,4), drug discovery
for pathogenic microbes (5), and the study of diseases with
associated metabolic traits (6–9).

An emerging application of genome-scale models is the
study of cross-feeding and nutrient competition in micro-
bial communities (10–15). However, a vast majority of rele-
vant microbial communities, such as those residing in the
human microbiota (16), ocean (17) or soil (18), still re-
main inaccessible for metabolic modeling due to the un-
availability of the corresponding species-level models. Thus,
applications of metabolic modeling lag behind the oppor-
tunities presented by the increasing number of genomics
and metagenomics datasets (19). A major bottleneck is the
so-called genome-scale reconstruction process, which often
requires laborious and time-consuming curation, without
which the model quality remains low. This becomes an even
more stringent bottleneck considering that microbial com-
munities can contain hundreds of different species.

Several metabolic reconstruction tools are currently
available, each offering different degrees of trade-off be-
tween automation and human intervention (20–25) (see
Supplementary Table S1 for a detailed comparison). These
tools follow a bottom-up reconstruction approach consist-
ing of the following main steps: (i) annotate genes with
metabolic functions; (ii) retrieve the respective biochemical
reactions from a reaction database, such as KEGG (26); (iii)
assemble a draft metabolic network; (iv) manually curate
the draft model. The last step includes several tasks, such as
adding missing reactions required to generate biomass pre-
cursors (gap-filling), correcting elemental balance and di-
rectionality of reactions, detecting futile cycles, and remov-
ing blocked reactions and dead-end metabolites (see (27) for
a detailed protocol). If these problems are not resolved, the
model can generate unrealistic phenotype predictions, such
as incorrect biomass yields, excessive ATP generation, false
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Figure 1. Comparison between bottom-up and top-down genome-scale metabolic model reconstruction: (A) in the traditional (bottom-up) approach, a
draft model is automatically generated from the genome of a given organism (by homology/orthology prediction against annotated genes), followed by
extensive manual curation; (B) in the top-down approach, a universal model is automatically generated and manually curated. This model is then used as a
template for organism-specific model generation (carving), a process that identifies (by homology/orthology predictions) which reactions are present in the
given organism. This process does not require manual intervention and can be easily parallelizable to automatically generate a large number of models. Op-
tionally, this can be also applied to the generation of microbial community models by merging single-species models; (C) during bottom-up reconstruction,
new reactions are iteratively added to the network for gap-filling purposes. This process is context dependent, i.e. it requires specifying the environmental
conditions (growth medium) and the expected phenotype (usually biomass formation); (D) top-down reconstruction is a context-independent process that
infers gapless pathways from genetic evidence alone by assigning confidence scores to all the reactions in a universal model.

gene essentiality, or incorrect nutritional requirements. The
manual curation step is time-consuming and includes repet-
itive tasks that must be performed for every new reconstruc-
tion.

In this work, we present CarveMe, a new reconstruction
tool that shifts this paradigm by implementing a top-down
reconstruction approach (Figure 1). We begin by recon-
structing a universal metabolic model, which is manually
curated for the common problems mentioned above. No-
tably, this universal model is simulation-ready: it includes
import/export reactions, a universal biomass equation, and
contains no blocked or unbalanced reactions. Subsequently,
for every new reconstruction, the universal model is con-
verted to an organism-specific model using a process called
’carving’ (see Materials and Methods section for details).
In essence, this process removes reactions and metabolites
not predicted to be present in the given organism, while
preserving all the manual curation and relevant structural
properties of the original model. The lack of manual in-
tervention makes this process automatable and the recon-
struction of multiple species can be easily parallelized (Fig-
ure 1B). Unlike traditional (bottom-up) gap-filling, which
iteratively adds reactions to enable growth on different me-

dia (Figure 1C), the top-down approach is able to infer the
uptake/secretion capabilities of an organism from genetic
evidence alone (Figure 1D), making it especially suitable
for organisms that cannot be cultivated under well-defined
media. Finally, CarveMe automates the creation of micro-
bial community models by merging selected sets of single-
species models into community-scale networks.

MATERIALS AND METHODS

Universal model building

CarveMe provides a Python script to build an universal
draft model of metabolism by downloading all reactions
and metabolites in the BiGG database (28) into a single
SBML file (BiGG version 1.3 was used during this work).
All associated metadata are stored as SBML annotations.
The same script assists with automated curation tasks to
build a final universal model (as described next).

Universal bacterial model

The draft model built from the entire BiGG database was
manually curated to generate a fully-functional universal
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model of bacterial metabolism. First, all reactions and
metabolites present in eukaryotic compartments were re-
moved. An universal biomass equation was then added
to the model. This equation was adapted from the Es-
cherichia coli biomass composition (29) in accordance to a
recent study on universal biomass components in prokary-
otes (30).

Next, we constrained reaction reversibility to eliminate
thermodynamically infeasible phenotypes. Lower and up-
per bounds for the Gibbs free energy change for each reac-
tion (�Gr) were estimated using the formula:

�Gr = �Go
r + RT ln Q

where �Go
r was calculated using the component contribu-

tion method (31), R is the universal gas constant, and the
temperature T was set to 298.15 K (25 C). The reaction quo-
tient (Q) denotes the product-to-substrate ratio, which was
limited by the physiological bounds imposed on metabo-
lite concentrations. A recent study showed that absolute
metabolite concentrations are conserved among different
kingdoms of life (32). The concentrations measured in this
study were used as reference and allowed to vary by 10-
fold with respect to the measured values. All other metabo-
lites were allowed to vary between 0.01 and 10 mM. The
reactions were set as irreversible in the thermodynamically
feasible direction whenever the estimated bounds for �Gr
were either strictly positive or strictly negative. Since �Go

r
could not be determined for all reactions, additional heuris-
tic rules were applied: (i) ATP-consuming reactions were
not allowed to proceed in the reverse direction; (ii) reac-
tions present in thermodynamically curated models (29,33)
assumed the reversibility constraints adopted in these mod-
els.

Atomically unbalanced reactions were removed from the
model. If not removed, these reactions can lead to sponta-
neous mass generation and unrealistic yields. Subsequently,
blocked reactions and dead-end metabolites were deter-
mined using flux variability analysis and removed from the
model.

Finally, the model was simulated under different medium
compositions, including minimal medium (M9 with glu-
cose), and complete medium (all uptake reactions allowed
to carry flux). The model was tested for biomass and ATP
production. Unlimited ATP generation was detected by flux
variability analysis (34) and the reversibility of the reac-
tions involved in energy-generating cycles was manually
constrained in an iterative way until all reactions operated
in the most thermodynamically favorable direction.

Specialized templates

The universal biomass composition does not contain mem-
brane and cell wall components specific for Gram-negative
and Gram-positive bacteria, which can lead to false nega-
tive gene essentiality predictions for lipid biosynthesis path-
ways that generate these membrane/cell wall precursors.
We generated specialized templates for Gram-positive and
Gram-negative bacteria by adding these components to the
respective biomass composition. The Gram-positive tem-
plate includes glycerol teichoic acids, lipoteichoic acids and
a peptidoglycan unit. The Gram-negative template includes

phosphatidylethanolamines, murein and a lipopolysaccha-
ride unit. We also provide a template for cyanobacteria that
contains a thylakoid compartment for photosynthesis, and
a template for archaea that contains ether lipids in the cell
membrane composition and lacks peptidoglycans.

In all cases, the final biomass composition is normalized
to represent 1 gram of cell dry weight. During reconstruc-
tion, the user can select the universal bacterial template
or one of the specialized templates. Furthermore, a utility
to automatically generate customized templates with user-
provided biomass compositions is included.

Gene annotation

The amino acid sequences for all genes in the BiGG
database were downloaded from NCBI and stored as a sin-
gle FASTA file. This file is used to align the input genome
files given by the user (using DIAMOND (35)) and find the
corresponding homologous genes in the BiGG database.
The user can provide the genome as a DNA or protein
FASTA file (note that raw genome files are not supported,
since open reading frame identification is outside the scope
of the tool).

Alternatively, the user can provide an alignment file exter-
nally generated with eggnog-mapper (36), which provides
higher confidence for functional annotation by refining the
alignments with orthology (rather than homology) predic-
tions.

Reaction scoring

The alignment scores obtained in the previous step are
mapped to reaction scores using gene-protein-reaction
(GPR) associations (this process is illustrated in Supple-
mentary Figure S8). The goal is to score the certainty that
a reaction is present in the given organism. Gene scores are
first converted to protein scores as the minimum score of
all subunits that form a protein complex. Protein scores are
then converted to reaction scores by summing the scores of
all isozymes that can catalyze a given reaction. Customized
GPR associations for the reconstructed organism are gen-
erated during this process.

The final scores are normalized to a median value of
1 and typically follow a log-normal distribution. Enzyme-
catalyzed reactions without genetic evidence are given a
negative score (default: –1), and spontaneous reactions are
given a neutral score.

Model carving

Carving is the process of converting a universal model
into an organism-specific model by removing reactions and
metabolites unlikely to be present in the given organism.
This is performed by solving a mixed integer linear program
(MILP) that maximizes the presence of high-score reactions
and minimizes the presence of low-score reactions while en-
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forcing network connectivity (i.e. gapless pathways):

max sT(y f + yr )

s.t.

S · v = 0

v > −Myr + εy f

v < −εyr + My f

vi > 0 ∀i ∈ {forward irreversible}
vi < 0 ∀i ∈ {backward irreversible}
yr + y f ≤ 1

yr , y f ∈ {0, 1}n

vgrowth > vmin
growth

where s is the reaction scores vector (determined in the
previous step), v is the flux vector, yf and yr are binary
vectors indicating the presence of flux in the forward or
backward reaction, S is the stoichiometric matrix, ε is
the minimum flux carried by an active reaction (default:
0.001 mmol/gDW/h), M is a maximum flux bound (de-
fault: 100 mmol/gDW/h), and vmin

growth is the minimum
growth rate (default: 0.1 h–1).

After solving the MILP problem, all inactive reactions
are removed from the model, including all consequently or-
phaned genes and metabolites. The final model is then ex-
ported as an SBML file. The user can select between the
latest (FBC2) or the legacy (COBRA) version.

Ensemble generation

CarveMe allows the generation of ensemble models. This
is performed by randomizing the weighting factors of reac-
tions without genetic evidence, and solving the MILP prob-
lem multiple times to generate alternative models. The size
of the ensemble (number of models) is selected by the user,
and the final ensemble is exported as a single SBML file.

For the purpose of phenotype array simulation and gene
essentiality prediction, a voting threshold (T) is used to
determine a positive outcome (i.e. a substrate is growth-
supporting or a gene is considered essential, if the percent-
age of models that agree with such phenotype is larger than
T). Simulation results with multiple thresholds (10%, 50%,
90%) are reported in this work.

Experimental constraints

Experimental data can be provided as additional input dur-
ing reconstruction in a tabular format. These can be used
to indicate the presence, absence, or preferred direction of a
given set of reactions (including intracellular reactions and
metabolite exchange reactions). According to the level of
confidence, these can be provided as ’hard’ or ’soft’ con-
straints.

Soft constraints are specified as a mapping from reactions
to one of three possible values that modify the MILP objec-
tive, giving a different weight to the binary variables associ-

ated with the respective reactions: 1) forward direction pre-
ferred; –1) backward direction preferred; 0) reaction should
not occur.

Hard constraints are simply a list of flux bounds (vmin
i <

vi < vmax
i ). They can be used to force or block the utilization

of any given reaction (please note that they can also make
the MILP problem infeasible so they should be used with
care).

Gap-filling

The user can (optionally) provide a list of media where the
organism is expected to grow. If the model does not repro-
duce growth on these media after reconstruction, CarveMe
will perform additional gap-filling to enable the expected
phenotypes. The implementation is similar to bottom-up
gap-filling methods, except that the reactions scores pre-
viously calculated are used as weighting factors. This in-
creases the probability that a pathway with some level of
genetic evidence is selected over an alternative pathway with
lower evidence. The problem is formulated as follows:

min
∑
i∈R

(
1

1 + si

)
yi

s.t.

S · v = 0

lb < v < ub

yi lbi < vi < yi ubi ∀i ∈ R

yi ∈ {0, 1} ∀i ∈ R

vgrowth > vmin
growth

where R is the set of reactions in the universe not present in
the model, si is the annotation score of reaction i (0 for reac-
tions without score), lb and ub are the lower and upper flux
bound vectors, and vmin

growth is the same as previously defined.

Microbial community models

CarveMe provides a script to merge a selected set of single-
species models into a microbial community model. The re-
sult is an SBML model where each species is assigned to
its own compartment and the extracellular environment is
shared between all species. Several options are provided,
such as the creation of a common community biomass reac-
tion, creation of isolated extracellular compartments con-
nected by an external metabolite pool, and the initializa-
tion of the community environment with a selected growth
medium. The model can be readily used for flux balance
analysis (just like a single-species model) to explore the
solution space of the community phenotype, and also for
the application of community-specific simulation methods
(10,11).

Simulation of phenotype arrays

Simulation of phenotype arrays was performed by con-
straining the respective models to M9 minimal medium
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(with a maximum uptake rate of 10 mmol/gDW/h for ev-
ery compound). For each type of array (carbon, nitrogen,
sulfur, phosphorus), the default source of the given element
(respectively: glucose, ammonia, sulfate, phosphate) was it-
eratively replaced with the respective compounds in the ar-
ray. For Shewanella oneidensis the default carbon source was
DL-lactate. A phenotype was considered viable if the growth
rate was at least 0.01 h–1. The experimental data used for
validation was obtained from (33,37–40).

Determination of gene essentiality

Gene essentiality was determined by iteratively evaluating
the impact of single gene deletions using the respective gene-
protein-reaction associations. For each organism, the evalu-
ation is restricted to the set of genes common to all the mod-
els. The media compositions were defined as M9 minimal
medium (with glucose) for E. coli, M9 (with succinate) for
Pseudomonas aeruginosa, LB medium for Bacillus subtilis
and S. oneidensis, and complete medium for Mycoplasma
genitalium. The experimental data used for validation was
obtained from (29,37,40–42).

Performance metrics

The performance metrics used to evaluate the phenotype
array simulations and gene essentiality predictions were de-
fined as follows:

Precision : TP/(TP + FP)

Sensitivity : TP/(TP + FN)

Specificity : TN/(TN + FP)

Accuracy : (TP + TN)/(TP + FP + FN + FN)

F1-score : 2 TP/(2 TP + FN + FP)

where the true positive (TP), false positive (FP), true nega-
tive (TN) and false negative (FN) cases were determined as
described above.

Human gut bacterial species

The reconstructions were performed using the genome
sequences and growth media provided in (43). The
uptake/secretion data collected by (44) were provided as
soft constraints during reconstruction (note that these data
are reported at species, rather than strain level, hence the
confidence level is low). Oxygen preferences were extracted
from the PATRIC database (45) and used as hard con-
straints. Each model was gap-filled for the subset of media
conditions where growth was observed.

Technical details

CarveMe is implemented in Python 2.7. It requires the
framed python package (version 0.4) for metabolic mod-
eling, which provides an interface to common solvers
(Gurobi, CPLEX), and import/export of SBML files
through the libSBML API (46). In this work, all MILP
problems were solved using the IBM ILOG CPLEX Op-
timizer (version 12.7).

RESULTS

Universal model of bacterial metabolism

We built an universal model of bacterial metabolism by
downloading reaction data from BiGG (accessed: version
1.3) (28), a database that integrates data from 79 genome-
scale metabolic reconstructions (23 unique species). Al-
though BiGG includes a few eukaryotic reconstructions
(such as yeast, mouse, and human), prokaryotes, especially
bacteria, are better represented, including species from 14
different genera. The universal model contains all BiGG
reactions with the exception of those exclusive to eukary-
otic organisms. The model underwent several curation steps
(see Methods), including estimation of thermodynamics,
verification of elemental balance, elimination of energy-
generating cycles, and integration of a core biomass com-
position. The final model includes three compartments (cy-
tosol, periplasm and extracellular), 2383 metabolites (repre-
senting 1503 unique compounds) and 4383 reactions (2463
enzymatic reactions, 1387 transporters and 473 metabolite
exchanges). From this universal model, we derived four spe-
cialized templates (Gram-positive and Gram-negative bac-
teria, archaea and cyanobacteria). These templates contain
modified biomass equations to account for the respective
differences in cell wall/membrane composition. The tem-
plate for cyanobacteria additionally includes a thylakoid
compartment. During reconstruction, the user can select
between the generic or specialized (or even a user-provided)
universal template. In addition to the universal model, we
generate a sequence database with a total of 30 814 unique
protein sequences derived from the gene–protein–reaction
associations of the original models. These are used to align
the input genomes and obtain confidence scores for the re-
spective reactions in the universal model.

Comparison with manually curated metabolic models

The quality of the models generated with CarveMe was
evaluated regarding their ability to reproduce experimen-
tal data and compared to previously published manually
curated models. Two reference model organisms were se-
lected as case-studies, E. coli (strain K-12 MG1655) and
B. subtilis (strain 168). These are the most well-studied
Gram-negative and Gram-positive bacteria, respectively,
with highly-curated metabolic models. We also selected four
organisms that are not part of the BiGG database, namely
M. genitalium (strain G-37), P. aeruginosa (strain PA01),
R. solenacearum (strain GMI1000) and S. oneidensis (strain
MR-1).

The genomes of these strains were downloaded from
NCBI RefSeq (release 84) (47) and used to build models
with CarveMe. The manually curated models were taken
from their respective publications (37–39,48–50). Further-
more, to analyze how CarveMe performs in compari-
son to other automated reconstruction tools, the same
genomes were used to generate genome-scale models using
the modelSEED pipeline (https://kbase.us/) (21).
Figure 2F shows a summary of all models in terms of
total number of genes (enzyme-associated) reactions and
metabolites.

https://kbase.us/
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Figure 2. Model summary and phenotype array simulation results: (A–E) simulation results for (A) B. subtilis, (B) E. coli, (C) P. aeruginosa, (D) R.
solanacearum and (E) S. oneidensis. (F) Summary of the 18 reconstructions analyzed in this study with regard to number of genes, reactions (only gene-
associated reactions considered) and metabolites (all unique compounds).

All the models were used to simulate substrate utiliza-
tion (Biolog phenotype arrays) and gene essentiality, and
the results were systematically compared against published
experimental data. Two exceptions were M. genitalium (no
Biolog data available) and R. solanacearum (no gene essen-
tiality data available). The predictive ability of the models
was evaluated in terms of multiple metrics: accuracy, preci-
sion, sensitivity, specificity, and F1-score (see Methods for
details on the experimental setup, metrics description, and
data sources).

Notably, four out of five models generated with CarveMe
were able to reproduce growth on minimal media from
genome data alone, without specifying any growth re-
quirements during reconstruction or performing any ad-
ditional gap-filling after reconstruction. The other model
(R. solanacearum) required one single gap-filling reaction
(asparagine synthetase) to reproduce growth on minimal
medium. All the models generated with modelSEED re-
quired the specification of the minimal media during re-
construction. Without this a priori information, the models
were unable to reproduce growth on the given media.

Benchmark 1: Biolog phenotype arrays. Regarding sub-
strate utilization, it can be observed that the performance
of CarveMe models is in-between the performance of man-
ually curated models and those generated with modelSEED
(Figure 2). In some cases the modelSEED models display

higher specificity (especially for S. oneidensis), but per-
form worse on other metrics. For E. coli, the CarveMe
model performs very closely to the iML1515 model, out-
competing the modelSEED model. In the case of B. sub-
tilis, both CarveMe and modelSEED perform considerably
worse than the iYO844 model. This difference in perfor-
mance can be explained by the lack of annotated trans-
porters for B. subtilis, which have been manually added in
the curated model.

To test the influence of transporter annotation, we re-
peated the simulations for all models, this time allowing
free diffusion of any metabolites without associated trans-
porters (Supplementary Figure S1). It can be observed that
for B. subtilis the automated reconstructions now perform
more closely to the manually curated model, with the mod-
elSEED reconstruction outperforming CarveMe. For the
other organisms, one can also observe a smaller perfor-
mance gap between the manually curated models and the
automatic reconstructions, with CarveMe generally outper-
forming modelSEED.

Benchmark 2: Gene essentiality. Regarding the ability to
predict gene essentiality, the same general pattern can be
observed, with CarveMe models displaying a performance
in-between the manually curated models and modelSEED
(Figure 3). Two exceptions are M. genitalium (modelSEED
outperforms CarveMe for most metrics) and S. oneidensis
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Figure 3. Model Gene essentiality results: (A-E) Gene essentiality results for (A) B. subtilis, (B) E. coli, (C) M. genitalium, (D) P. aeruginosa, and(E) S.
oneidensis; (F)Fraction of essential genes per organism (the circle area is proportional to the number of metabolic genes common to all the models).

(iSO783 and modelSEED display similar performance, be-
ing both outperformed by CarveMe).

One common pattern for most CarveMe models (and
modelSEED to some extent) is a slightly decreased sen-
sitivity with regard to gene essentiality (i.e. many essen-
tial genes reported as false negatives) when compared
to the manually curated models. One possible reason is
the utilization of generic biomass templates that exclude
non-universal cofactors (30) and other organism-specific
biomass precursors. To test the influence of biomass com-
position on gene essentiality prediction, we built mod-
els for E. coli and B. subtilis using three distinct biomass
compositions: our universal (core) biomass compositon,
our Gram-negative and Gram-positive compositions, and
the organism-specific compositions taken directly from the
manually curated models (Supplementary Figure S2). Con-
firming to our hypothesis, we observed a gain in sensitivity
(and consequently in the F1-score) when using organism-
specific biomass compositions. Nonetheless, the specialized
Gram-negative and Gram-positive compositions perform
closer to the organism-specific compositions than to the
core biomass composition. Hence, the utilization of special-
ized templates seems to be a suitable compromise when an
organism-specific biomass composition is not available.

Benchmark 3: Ensemble modeling. A general limitation in
building genome-scale metabolic models, given the available
data, is the existence of several equally plausible models.

This has been explored by Biggs and Papin (51), showing
that when gap-filling a model for multiple growth media,
the selected order of the media influences the final network
structure. Another source of ambiguity is the degeneracy of
solutions when solving an optimization problem to gener-
ate the model itself. To tackle this issue, CarveMe allows the
generation of model ensembles. The user can select the de-
sired ensemble size, and then use the ensemble model for
simulation purposes in order to explore alternative solu-
tions.

We generated model ensembles (N = 100) for all organ-
isms and repeated the phenotype array simulations and
gene essentiality predictions using different voting thresh-
olds (10%, 50%, 90%) to determine a positive prediction (see
Methods). To confirm that the ensemble generation is unbi-
ased, we calculated the Jaccard distance between every pair
of models in each ensemble (Supplementary Figure S3A).
We observed that all ensembles show some extent of vari-
ability with the pairwise distances following normal distri-
butions. The ensemble for M. genitalum shows the highest
variability (average distance of 0.48), whereas the E. coli
ensemble shows the lowest variability (average distance of
0.04). This distance is a reflection of the degree of uncer-
tainty in the network structure.

Interestingly, we observe that the variability in network
structure does not necessarily reflect into phenotype vari-
ability, with the different models within an ensemble often
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predicting the same phenotypes. Regarding the phenotype
array simulations (Supplementary Figure S3B–F), we can
generally observe an increase in sensitivity at the cost of de-
creased specificity with respect to the single model recon-
structions. With regard to gene essentiality (Supplementary
Figure S3G–K), there are no observable differences between
the ensemble model simulations and the results obtained
with single models. This result is most likely a reflection of
the robustness of cellular function to perturbations in the
network structure during evolution (52,53). In both scenar-
ios, the results seem to be independent of the voting thresh-
old (with exception of the 90% threshold, where often no
positive consensus is obtained).

Metabolic models for the human gut bacteria

The human gut microbiome is of particular interest for
metabolic modeling due to its impact on human health (54–
56). In this regard, one major hurdle is the characteriza-
tion of gut bacterial species in terms of growth requirements
and metabolic potential. In a recent study from our group,
the growth of 96 phylogenetically diverse gut bacteria was
characterized across 19 different media (15 defined and 4
complex media compositions) (43). From this list, a total of
47 bacteria are also included in the AGORA collection, a
recently published collection of 773 semi-manually curated
models of human gut bacteria (57). These models, however,
could not reproduce the metabolic needs experimentally ob-
served by Tramontano et al., highlighting the need for the
use of validated growth media for species that are distant
from model organisms.

In this work, we used CarveMe to reconstruct the
metabolism of 74 bacterial strains that grew in at least
one defined medium in the Tramontano et al. study. Since
CarveMe allows users to provide experimental data in tab-
ular format during reconstruction, we used a recently pub-
lished collection of literature-curated uptake/secretion data
for human gut species (44) to further refine the recon-
structed models (see Materials and Methods). The resulting
models thus represent an up-to-date and experimentally-
backed collection for gut bacteria.

To understand how the media information contributed to
the model refinement, we analysed the gap-filling reactions
introduced in each model when these data is provided dur-
ing reconstruction. Interestingly, we observed that the to-
tal number of gap-filling reactions is negatively correlated
with the genome size of the respective organism (Pearson’s
r = –0.29, P = 0.0055; Supplementary Figure S4A). Con-
sidering that small-genome species usually tend to harbor
many auxotrophies, and also that many of the gap-filling
reactions occur in amino acid metabolism, it is likely that
such auxotrophies are not correctly identified due to poor
annotation of the transport-associated genes.

Finally, we compared the number of gap-filled reactions
between CarveMe and AGORA models (40 models in com-
mon) and observed that they are well correlated (Pearson’s
r = 0.5, P = 0.0047; Supplementary Figure S4B). Inter-
estingly, the most extensively gap-filled organism in both
collections is Bifidobacterium animalis (subsp. lactis Bi-07),
which is also the organism with smaller number of genes.
The most extensively gap-filled subsystem across all organ-

isms, ’Cofactor and Prosthetic Group Biosynthesis’, is also
the same for both collections. Overall, this shows that the
quality of the CarveMe models (even without the Tramon-
tano et al. data) is comparable to the manually-curated
AGORA collection, which further highlights the advan-
tages of our top-down curation approach.

Large-scale model reconstruction and community models

To demonstrate the scalability of CarveMe, and to pro-
vide the research community with a collection of recon-
structed models spanning a wide variety of microbes, we re-
constructed 5587 bacterial genome-scale models. These cor-
respond to all bacterial genomes available in NCBI RefSeq
(release 84) (47) that are classified as reference or represen-
tative assemblies at the strain level. This collection of mod-
els represents metabolism across all (currently sequenced)
bacterial life and thus can help uncovering principles under-
lying the architecture and diversity of metabolic networks.

Here, we analyse the distribution of the number of (anno-
tated) metabolic genes, reactions and metabolites across all
organisms (Figure 4). It is possible to observe that these are
all normally distributed, with the average organism contain-
ing 691 metabolic genes, 1308 reactions and 792 metabo-
lites. The smaller metabolic networks belong to the My-
coplasma genus with as few as 238 reactions (Mycoplasma
ovis str Michigan), whereas the larger metabolic networks
belong to the Klebsiella and Escherichia genera, with up to
2472 reactions (Klebsiella oxytoca str CAV1374). We note
that these numbers are indicative, as they can be biased or
restricted by the quality of the gene annotation and the
scope of the reaction database.

Interestingly, as the size of the metabolic networks grows,
there there is an asymptotic trend of the number of metabo-
lites with respect to the number of genes and reactions (Fig-
ure 4B and C). This indicates a saturation of metabolite
space relative to the expansion of the enzyme and reaction
space. This can occur due to, for example, alternative path-
ways acting on the same metabolites. In fact, earlier studies
show that evolution favors the selection of specialized en-
zymes that co-exist with ancestral promiscuous enzymes, as
well as differentially regulated isoforms, working as a con-
trol mechanism that confers robustness towards environ-
mental and genetic perturbations (58–60).

We further looked at how frequently individual reactions
and metabolites occur across species (Figure 4D). The fre-
quency of reactions shows a negative exponential distribu-
tion with 30% of all reactions being present in less than 10%
of the organisms, and only 5% of reactions being present
more than 90% of the organisms. Interestingly, the metabo-
lite frequency shows instead a bimodal distribution with
peaks below 10% frequency (≈ 20% metabolites) and above
90% frequency (≈25% metabolites). As expected, the high
frequency reactions and metabolites are distributed across
the primary metabolism, including carbohydrate, lipid, nu-
cleotide, amino acid and energy metabolism (Supplemen-
tary Figure S5).

Next, we illustrate the use of our model collection to build
microbial community models and explore inter-species in-
teractions. We created random assemblies of microbial com-
munities of different sizes (up to 20 member species per
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Figure 4. NCBI RefSeq reconstruction collection summary: (A) Number of genes vs number of reactions per organism; (B) Number of reactions vs number
of metabolites per organism; (C) Number of genes vs number of metabolites per organism; (D) Reaction and metabolite frequency distribution across all
organisms; (E) Metabolic interaction potential (MIP) of randomly assembled communities of different sizes, including absolute MIP values (box plots),
and average MIP normalized by community size (red dots with 95% confidence intervals).

community, 1000 assemblies for each community size) and
calculated their metabolic interaction potential (MIP score,
as defined in (11)). In brief, the MIP score of a commu-
nity is a measure of the number of compounds that can be
exchanged between the community members, allowing the
community to reduce its dependence on the environmental
supply of nutrients.

The results obtained with this collection (Figure 4E)
closely match those previously obtained with a smaller
model collection (1503 bacterial strains, generated with
modelSEED) (11). In particular, while the potential for in-
teraction increases with the community size, the number
of interactions normalized by the community size shows a
maximum at a relatively small community size (6–7 species).

DISCUSSION

We introduced CarveMe, an automated reconstruction tool
for genome-scale metabolic models that implements a novel
top-down reconstruction approach. Our extensive bench-
mark shows that the performance of CarveMe models, in
terms of reproducing experimental phenotypes, is compa-
rable to that of manually curated models and often exceeds
the performance of models generated with modelSEED.
Notably, many of our models correctly reproduced growth
on minimal media without any growth requirements being
specified during reconstruction. This was not observed with

modelSEED, making CarveMe especially suited for situa-
tions where the growth requirements are not known a priori
(e.g. microbes that cannot be cultivated under well-defined
media). In case a generated model is not able to reproduce
growth on a given medium, CarveMe can additionally per-
form gap-filling to enable the expected phenotype. The im-
plemented gap-filling approach differs from methods that
simply minimize the number of added reactions (61), by pri-
oritizing reactions according to their gene homology scores,
similarly to the likelihood-based method proposed by Bene-
dict and co-workers (62). Note that our approach differs
from the latter in the sense that the gap-filling is applied to a
model that was top-down generated from a fully-functional
universal model.

We used the BiGG database (28) to build our universal
model, which offers some advantages compared to other
commonly used reaction databases such as KEGG, Rhea,
or modelSEED (21,26,63). First, it was built by merging
several genome-scale reconstructions (ranging from bac-
terial to human models), which leverages on the cura-
tion efforts that were applied to these models. Secondly,
BiGG reactions contain gene-protein-reaction associations,
compartment assignments, and human-readable identifiers.
These aspects facilitate the reconstruction process and the
utilization of the generated models. However, BiGG is
limited in size and scope compared to other databases,
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which may result in lack of coverage of certain metabolic
functions. A comparison between the reaction contents of
BiGG, modelSEED and KEGG (Supplementary Figure
S6), shows that BiGG contains a large number of reactions
which are not present in the other databases (most likely a
consequence of the manual curation efforts), but lags be-
hind in terms of total coverage of EC numbers. We ex-
tracted all KEGG cross-references from the BiGG database
and mapped them into KEGG’s global pathway map (Sup-
plementary Figure S7). As expected, primary metabolism
is essentially complete, whereas peripheral pathways asso-
ciated with secondary metabolism contain multiple gaps.
This makes CarveMe models suitable for common types
of analysis (prediction of gene essentiality, nutritional re-
quirements, cross-feeding interactions), while applications
concerning secondary metabolism will require additional
curation. Transport reactions are also often missing from
most databases due to the lack of functional annotation
of transporter genes (64), which can hamper the correct
prediction of metabolic exchanges. To cope with these is-
sues, in future releases we plan to facilitate the integration
of reaction data from multiple databases. Cofactor utiliza-
tion (e.g.: NAD versus NADP preference) is another com-
mon issue in model reconstruction, being especially rele-
vant for metabolic engineering applications where cofac-
tor balancing is critical (65). Unlike functional annotation,
cofactor preference cannot be directly predicted by homol-
ogy, and methods based on structural motifs have been pro-
posed (66,67). Although we currently do not implement
such methods as part of CarveMe (mainly because their
predictive power remains to be sufficiently validated), their
outputs can be provided to the reconstruction pipeline as
additional (generic) constraints (see Materials and Meth-
ods). Note that, despite all the limitations mentioned above,
CarveMe showed high predictive performance even for or-
ganisms which are not part of the BiGG database.

The quality of the universal model used for top-down re-
construction is of paramount importance. There is a trade-
off between the desired broadness of this “universal” model
and the amount of curation effort required. In this work, we
opted to provide a well-curated universal model of bacterial
metabolism, which can be generally used for reconstruction
of any bacterial species. We also provide more refined tem-
plate models (Gram-positive and Gram-negative bacteria,
cyanobacteria and archaea), which account for differences
in membrane/cell wall composition. In future releases, we
aim to provide a larger collection of universal models in
order to improve coverage of all domains of microbial life
(such as yeasts and other eukaryotes).

The universal model and, consequently, all generated
models are pre-curated for common structural and bio-
chemical inconsistencies and can be readily used for simu-
lation. Nonetheless, these models should still be considered
as drafts subject to further refinement, as they might re-
quire organism-specific curation to reproduce certain phe-
notypes. The pipeline allows users to provide their own tem-
plates at any desired taxonomic level and provides methods
to facilitate the creation and curation of such templates (see
Materials and Methods). For instance, a user might decide
to manually curate a universal model for a particular species
and use it to reconstruct multiple strains of that species.

Finally, we have given particular attention to mak-
ing CarveMe an easy-to-use tool. While the underly-
ing carving procedure can work with genetic evidence
alone (i.e. without requiring the specification of a medium
composition), any collected experimental data (such as
growth media, known auxotrophies, metabolic exchanges,
presence/absence of reactions) can be provided in a sim-
ple tabular format as additional input for reconstruction.
Also, it implements a modular architecture that facilitates
modification/integration of new components. For instance,
sequence alignments are performed with diamond (35) or
can be extracted from the output of third-party tools (we
currently support eggnog-mapper (36)). Another salient
feature of CarveMe is its speed and easy parallelization.
A single reconstruction required, on average, 3 min on a
laptop computer (Intel Core i5 2.9 GHz). Indeed, this al-
lowed us to rapidly create one of the largest publicly avail-
able metabolic model collections. The pipeline is available
as an open-source command line tool, and can be easily
installed on a personal computer as well as on a high-
performance computing cluster. Several other features in-
clude direct download of genome sequences from NCBI,
and automatic generation of microbial community models.
This is expected to facilitate the use of genome-scale models
by a broad range of researchers and cope with the increasing
number of sequenced genomes publicly available.
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7. Väremo,L., Nookaew,I. and Nielsen,J. (2013) Novel insights into
obesity and diabetes through genome-scale metabolic modeling.
Front. Physiol., 4, 92.

8. Zelezniak,A., Pers,T.H., Soares,S., Patti,M.E. and Patil,K.R. (2010)
Metabolic network topology reveals transcriptional regulatory
signatures of type 2 diabetes. PLoS Comput. Biol., 6, e1000729.

9. Havas,K.M., Milchevskaya,V., Radic,K., Alladin,A., Kafkia,E.,
Garcia,M., Stolte,J., Klaus,B., Rotmensz,N., Gibson,T.J. et al. (2017)
Metabolic shifts in residual breast cancer drive tumor recurrence. J.
Clin. Invest., 127, 2091–2105.

10. Zomorrodi,A.R. and Maranas,C.D. (2012) OptCom: a multi-level
optimization framework for the metabolic modeling and analysis of
microbial communities. PLoS Comput. Biol., 8, e1002363.

11. Zelezniak,A., Andrejev,S., Ponomarova,O., Mende,D.R., Bork,P. and
Patil,K.R. (2015) Metabolic dependencies drive species co-occurrence
in diverse microbial communities. Proc. Natl. Acad. Sci. U.S.A., 112,
6449–6454.

12. Ponomarova,O., Gabrielli,N., Sévin,D.C., Mülleder,M., Zirngibl,K.,
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Noronha,A., Greenhalgh,K., Jäger,C., Baginska,J., Wilmes,P. et al.

(2017) Generation of genome-scale metabolic reconstructions for 773
members of the human gut microbiota. Nat. Biotechnol., 35, 81.

58. Nam,H., Lewis,N.E., Lerman,J.A., Lee,D.-H., Chang,R.L., Kim,D.
and Palsson,B.O. (2012) Network context and selection in the
evolution to enzyme specificity. Science, 337, 1101–1104.

59. Notebaart,R.A., Szappanos,B., Kintses,B., Pál,F., Györkei,Á.,
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