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Abstract

Cardiovascular diseases are the leading causes of death
in the world. The limited regenerative capacity of adult
cardiomyocytes is the major barrier for heart
regeneration. After myocardial infarction, myofibroblasts
are the dominant cell type in the infarct zone. Therefore,
it is a good idea to reprogram terminally differentiated
myofibroblasts into cardiomyocyte-like cells directly,
providing a good strategy to simultaneously reduce scar
tissue and increase functional cardiomyocytes.
Transcription factors were first identified to reprogram
myofibroblasts into cardiomyocytes. Thereafter,
microRNAs and/or small molecules showed great
potential to optimize the reprogramming process. Here,
we systemically summarize and compare the major
progress in directed cardiac reprogramming including
transcription factors and miRNAs, especially the small
molecules. Furthermore, we discuss the challenges
needed to be overcome to apply this strategy clinically.
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Background

Cardiovascular disorders are the leading cause of human
death in the world, and there were around 133 deaths
per 100,000 people in 2013 according to the National
Bureau of Statistics of China. This number was 136/
100,000 in 2014. Over the past several decades, thera-
peutic approaches, including new drug development and
cell transplantation, have had a limited effect on treating
cardiovascular disorders in the clinic. Meanwhile, heart
transplantation is restricted by the limited access to
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donor organs and itself has considerable mortality asso-
ciated with immunosuppressant therapy and graft vascu-
lopathy. Hence, it is important to explore novel
therapeutic approaches for cardiac regenerative therapy.

The low regenerative capacity of cardiomyocytes is the
main problem for heart repair. In order to get new cardio-
myocytes, several strategies are developed, including: induc-
tion of pluripotent stem cells (iPSCs) and differentiation
into cardiomyocytes [1, 2]; activation of cardiac stem cells
or stimulation of cardiomyocytes to re-enter the cell cycle
[3, 4]; and direct reprogramming of fibroblasts to cardio-
myocytes [5, 6]. Cardiac fibroblast cells, accounting for up
to 50% of all cardiac cells, survive well and couple with
neighboring cells, and have been identified as an ideal cell
source for direct reprogramming into cardiomyocytes [7].
After myocardial infarction, the fibroblasts expand and con-
stitute the majority of the cells in the infarct zone [8, 9].
Therefore, reprogramming cardiac fibroblast cells into car-
diomyocytes represents a promising and beneficial ap-
proach for cardiovascular regeneration.

MpyoD, the master regulator gene for skeletal muscle
cells, was discovered many years ago, but master regula-
tors for other cell lineages were not been discovered until
2006 [10]. What is surprising is the innovative discovery
that the transcription factors Oct4, Sox2, Kif4, and c-myc
were capable of reprogramming terminally differentiated
cells into iPSCs [11]. The induction of iPSCs provided
new insights for direct reprogramming of adult cell types
into specific lineages employing a combination of tran-
scriptional factors [12], such as Mgn3, Pdx1, and Mafa for
pancreatic B-cells [13], and Gata4, Hand2, Mef2c, and
Tbx5 for cardiomyocytes [14, 15]. Therefore, induction of
cardiomyocytes from endogenous fibroblasts exhibits a
feasible and promising approach to restore cardiac func-
tion following injury.

In this article, we review previous work on direct re-
programming of fibroblasts into cardiomyocytes using
mouse and human cells, and discuss future efforts
needed to apply this technique to the clinic.
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Direct cardiac reprogramming of murine fibroblasts

In 2010, postnatal cardiac and dermal fibroblasts were
directly reprogrammed into cardiomyocyte-like cells in
vitro, with a combination of three developmental tran-
scription factors (GMT: Gata4, Mef2c, and Tbx5) by the
group of Srivastava et al. [15] Thereafter, the same group
demonstrated that retroviral delivery of GMT in vivo re-
programmed murine cardiac fibroblasts into induced
cardiomyocytes, with decreased infarct size and mod-
estly attenuated cardiac dysfunction [16]. Meanwhile,
the group of Olson et al. reported increased reprogram-
ming efficiency in vitro and in vivo by adding Hand2 to
the GMT combination, with improved cardiac function
and reduced scar formation after myocardial infarction
[14]. These studies provide a new insight into heart re-
generation through gene therapy. Recently, non-
integrated methods were developed to transfect mRNAs
and proteins of cardiac transcription factors into fibro-
blasts to induce cardiomyocytes and cardiac progenitor
cells, respectively [17, 18]. These reports provided safe
methods for clinical application with great potential.

Based on the forced expression of cardiac transcription
factors, many methods were developed to enhance the re-
programming efficiency, including inhibitor/cytokine treat-
ments and epigenetic modulation [14, 16, 19]. SB431542 (a
transforming growth factor (TGF)- pathway inhibitor) can
increase the conversion of both mouse embryonic fibro-
blasts and adult cardiac fibroblasts into cardiomyocyte-like
cells up to fivefold based on the combination of Gata4,
Hand2, Mef2c, Tbx5, and Nkx2.5 [19]. Furthermore,
inhibition of pro-fibrotic signaling (both TGF-- and Rho-
associated kinase pathways) reprograms embryonic
fibroblasts into functional cardiomyocyte-like cells, with ef-
ficiency up to 60% for ¢cInT or a-actinin [20]. Besides in-
hibitors, cytokines, including fibroblast growth factor
(FGF)2, FGF10, and vascular endothelial growth factor
(VEGEF), can increase the number of induced cardiac myo-
cyte cells (iCMs) with spontaneous beating by 100-fold and
accelerate the maturation of iCMs [21]. Bmil acts as a crit-
ical barrier to iCM induction through epigenetic
modulation, and reduced Bmil expression changes the
chromatin modification at cardiogenic loci, including in-
creased active histone mark H3K4me3 and reduced repres-
sive  H2AK119ub. Correspondingly, cardiogenic gene
expression was de-repressed during iCM conversion. These
results indicate that the process of reprogramming is com-
plex and influenced by many factors. Sequential addition of
cytokines and inhibitors holds great promise for optimizing
the protocol for cardiomyocyte reprogramming.

In addition to transcription factors and small molecules,
microRNAs (miRNAs) have great influence on the expres-
sion of transcription factors such as Gata4, Hand2, Mef2c,
T-box, and Nkx2.5, which regulate heart development.
Thus, miRNAs represent an attractive and promising
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direction for reprogramming. miR-1 and miR-133 are car-
diac and skeletal muscle-specific molecules, with miR-1
accounting for ~40% of miRNAs in the mammalian heart
[22]. A “miRNA combo” (miR-1, miR-133, miR-208, and
miR-499) was reported to convert cardiac fibroblasts into
functional cardiomyocyte-like cells in vitro and in vivo
[23, 24]. Adeno-associated virus (AAV) vectors are attract-
ive tools for gene therapy, but the limited cargo size
(~4.5 kb) of AAV restricts the expression of multiple tran-
scription factors in one vector. However, considering the
small size of miRNAs, it holds great potential to use miR-
NAs as gene therapy targets in vivo.

Above all, transcription factors and miRNAs play im-
portant roles during cardiac reprogramming [25-28].
Their functions in the cardiac development and direct
reprogramming are summarized in Table 1.

During the iPSC induction process there is a pluripotent
intermediate state, showing plastic developmental poten-
tial. After transfection of four Yamanaka factors and ma-
nipulating pathways for cardiogenesis, mouse embryonic
fibroblasts (MEFs) can be reprogrammed into cardiomyo-
cytes with spontaneous contraction [29]. Contracting cells
resembling cardiomyocytes were also observed during
iPSC induction via the chemical combination CREVPTZ
(CHIR99021, RepSox, Forskolin, VPA, Parnate, TTNPB,
and DZnep). Furthermore, these chemically induced car-
diomyocytes (CiCMs) are not generated through the iPSC
stage, but via a cardiac precursor-like stage. These results
indicate that the intermediate state is plastic and provides
a new reprogramming strategy to generate cardiomyocytes
[30]. Rgarding the safety problem of genetic manipulation,
it is promising that the chemical cocktails could repro-
gram fibroblast cells into induced cardiomyocyte-like cells.
However, considering reprogramming myocardial fibro-
blasts in situ, how to release these small molecules into
the infarct region and reprogram myofibroblasts success-
fully into cardiomyocytes in vivo is still challenging. New
materials that control drug release may overcome this
problem. Meanwhile, it is worth noting that the strategy
may have the risk of tumorigenicity since the specificity of
small molecules cannot be guaranteed, and this procedure
can also induce iPSCs. Typical methods for murine fibro-
blast reprogramming are summarized in Table 2.

Direct cardiac reprogramming of human fibroblasts

Compared to murine fibroblasts, it takes a long time to re-
program human fibroblasts into cardiomyocytes and it is
more difficult to obtain mature cardiomyocytes from hu-
man somatic cells. After reprogramming in mice, Nam et
al. [31] reported in 2013 that the combination of GATA4,
HAND?2, TBX5, MYOCD (myocardin), miR-1, and miR-133
activated cardiac marker expression, but that most induced
cardiomyocytes were in a partially reprogrammed state.
In the same year, Wada et al. [32] discovered that
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Table 1 The functional mechanisms of transcription factors and microRNAs in the cardiac development and direct reprogramming

Factors

Direct reprogramming (crude, artificial
transcription factor dosage)

Cardiac development (fine balance of
transcription factor expression)

GATA4, MEF2C, TBX5 [15]

TBX5 [25]

NKX2.5
Hand?2

Mesp1 [26]

Myocd

miR-1, miR-133, miR-208,
miR-499 [24]

miR-1 [27]

miR-133 [28]

GATA4, MEF2C, and TBX5 are the core
components of direct reprogramming

Promotes the differentiation of transfected
cells into beating cardiomyocytes

Induces Ryr2 gene expression

Induces tropomyosin and cTnT in human
dermal fibroblasts

Expressed in CPCs and programs nascent
mesoderm toward a cardiovascular cell fate

Regulates the development of cardiomyocytes
and smooth muscle cells, and increased the
expression of cardiac sarcomeric proteins

Alters H3K27 methyltransferase and
demethylase expression

Promotes cardiomyocyte proliferation and
suppresses apoptosis

miR-133-mediated Snail repression

NKX2.5, Mesp1, and Myocd. expressed in
cardiac progenitor cells (CPCs), and induce the
development of cell fate to the mesoblastema
layer

GATA4, HANDZ2, and TBX5: induce the cardiac
gene expression

Promotes cardiomyocyte proliferation and
suppresses apoptosis; increases expression of
contractile proteins (MHC); influences the
development of ventricular septum

Promotes cardiomyocyte proliferation and
suppresses apoptosis

Promotes cardiomyocyte proliferation

Table 2 Factors and results in mouse direct cardiac reprogramming

Combination of factors

Original cell Markers and efficiency

AP Ca’" transient Beating

GMT [15]

OSKM; JIT, BMP4 [29]

GMT [16]

miR-1,133,208,499; JAK inhibitor | [23]

GMT, Myocd, Srf, Mesp1, Smarcd3 [42]
Hand?2, Nkx2.5, Gata4, Mef2c, Tbx5 [43]
OSKM; PEG hydrogel [44]

GHMT, MyoD domain [45]

GHMT and SB431542 [19]

GHMT, Myod domain [46]

GMT, Mesp1, Myocd and miR-133 [28]
OCT4, SCPF [35]

GHMT [47]

GMT mRNA, C_lipo [17]

miR-1, miR-133, miR-208, miR-499 [24]
OSKM, Ascorbic acid [48]

CHIR99021, RepSox, Forskolin, VPA [30]

GHMT, miR-1, miR-133, Y-27632, A83-01 [20] MEF, AF

CF, TTDF cTnT": 30% of a-MHC cells; a-actinin®: most of cTnT" cells +  + +
MEF cTnT": 40% + o+ +
CF a-MHC-EYFP*: ~40% at border zone + o+ +
CF a-MHC-GFP*: ~28% + 4+ +
MEF Myh6.Egfp™: 2.4% -+ -
MEF, CF Troponin T-GCaMP5" activity: 1.6% ND + +
MEF, TTF Beat patch per cm? 9.4% ND + +
a-actinin*: 1.72 fold/control
HF, LBF, cTnT*: 4.9% ND + +
TTF
CF Troponin T-GCaMP5" activity: 9.27% ND + -
HF cTnT": 19% ND + 4
MEF, CF o-MHC-GFP & cTnT": 8.1%; a-actinin®: 19.9% ND -
MEF, TTF beating clusters:~40/well of 24-well plate + o+ +
MEF, Sarcomere™: ~32%; NPPA*: 35% of sarcomere®; MYL2": 22% + ND +
of sarcomere™
CF a-MHC-GFP*: 0.5% of transfected CF ND ND -
CF tdTomato™ Troponin T+:12% + ND +
MEF GATA4™: ~40%; MHC*: ~24% + ND +
MEF, TTF a-actinin®: 14.5%; o-MHC*: 9% + o+ +
cTnT": ~60% with A83-01; a-actinin™ ~60% with A83-01 + o+ +

A diverse range of factor combinations and original cells used in mouse cardiac reprogramming result in different efficiency, revealed by the expression of
cardiomyocyte markers, electrophysiological characters, and beating property
GMT: Gata4, Mef2c, Tbx5; GHMT: Gata4, Hand2, Mef2c, Tbx5; OSKM: Oct4, Sox2, KIf4, c-Myc; SCPF: SB431542, CHIR99021, parnate, forskolin; Y-27632, Rock inhibitor;

A83-01, TGF-B inhibitor

AF adult fibroblast, a-MHC a-myosin heavy chain, AP action potential, CF cardiac fibroblast, cTnT cardiac troponin T, HF head fibroblast, LBF low body fibroblast,
MEF mouse embryonic fibroblast, ND not detected, TTDF tail-tip dermal fibroblast, TTF tail tip fibroblast
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reprogramming fibroblasts with the transcription factors
GATA4, MEF2C, TBXS5, MESP1, and MYOCD (referred to
as GMTMM) changed the cell morphology from a spindle
shape to a rod-like shape, and exhibited spontaneous Ca**
oscillations. Srivastava and colleagues discovered that GMT
(GATA4, MEF2C, and TBX5) was insufficient for repro-
gramming of human fibroblasts into cardiomyocytes, and
the addition of ESRRG and MESPI to GMT could induce
cardiomyocyte-like cells with cardiac-specific gene expres-
sion and sarcomere formation. Furthermore, the addition of
MYOCD and ZFPM?2 resulted in more features of cardio-
myocytes, including global cardiac gene expression and a
phenotypic shift to a cardiac state [6]. Although the repro-
gramming efficiency in human cells is very low, these re-
ports represent a great step towards therapeutic application
in the clinic.

The abovementioned three reports in human cells all
concern transcription factors delivered through a virus
until Ding et al. reported on small molecules [36]. Small
molecules have effects in the reprogramming of human
pancreatic lineages and neural stem cells from somatic
cells [33, 34], and also have enormous influence in the
process of transdifferentiation of fibroblasts toward cardi-
omyocytes with reduced transcription factor numbers
[35]. Thereafter, Ding’s group found that human somatic
cells could be transdifferentiated to cardiomyocyte-like
cells which resembled naive human cardiomyocytes with
regards to the properties of transcriptome, epigenetics,
and electrophysiology, with nine small molecules (9C:
CHIR99021, A83-01, BIX01294, AS8351, SC1, Y27632,
OAC2, SU16F, and JNJ10198409) in 2016 [36]. Moreover,
human fibroblasts treated with 9C could be converted into
cardiomyocytes in the infarcted mouse heart, and en-
hanced the function of infarcted heart [36]. To understand
cardiac reprogramming further, we summarized typical
methods for human fibroblast reprogramming (Table 3).

Page 4 of 8

Direct cardiac reprogramming in vivo

Reprogramming fibroblasts into cardiomyocytes in vivo is
required for heart regeneration. Transplanting repro-
grammed cells and transdifferentiation factors into the in-
farcted heart represent two strategies towards this purpose.
Firstly, cardiac fibroblasts were transduced with GMT for
1 day and were transplanted into mouse hearts. These cells
were reprogrammed to cardiomyocytes in vivo [15]. There-
after, in situ repair of the heart was performed by targeting
endogenous cardiac fibroblasts through virus transfection.
After coronary ligation, resident non-myocytes in the in-
farct zone can be reprogrammed into cardiomyocyte-like
cells by local delivery of GMT through a virus. In addition,
thymosin B4 can improve the migration ability of fibro-
blasts. Co-injection of thymosin 4 and GMT further im-
proved the ejection fraction and reduced scar formation
[16]. Using a retrovirus expression system, forced expres-
sion of GHMT (GATA4, HAND2, MEF2C, and TBX5) can
also reprogram cardiac fibroblasts into beating cardiomyo-
cytes in vivo [14]. In fact, the cardiac niche in vivo improves
the efficiency of transdifferentiation. This gives more hope
to increasing the reprogramming efficiency and maturity
[37]. These results suggest the possibility for repairing the
heart through gene therapy by targeting myofibroblasts.
However, a relatively safe gene delivery method needs to be
developed. AAV vectors show great potential for gene ther-
apy, but limited capacity restricts their application for mul-
tiple genes. Reprogramming with miRNAs may solve the
problem; furthermore, cell-penetrating proteins also hold
great promise.

Transplanting of human fibroblasts treated with 9C can
efficiently get chemically induced cardiomyocytes in vivo
and enhance the function of the infarcted heart [36]. Com-
pared to transcription factors and miRNAs, small mole-
cules have many advantages in vitro, such as better
temporal control, more effective cell delivery, and they are

Table 3 Factors and results in direct cardiac reprogramming of human cells

Factors Original cell Markers and efficiency AP Ca’* transient Beating

ETS2, MESPT [49] DF NKX2.5-tdTomato*: 30 colonies/plate - - -
(cardiac progenitor)

GATA4, MEF2C, TBX5, MESP1, MYOCD [32] HCF cTnT*: 5.9% + o+ +
a-actinin®: 5.5%

GATA4, MEF2C, TBX5, ESRRG, MESP1, MYOCD, ZFPM?2 [6] ESC, FH, a-MHC-mCherry™: 15.8% + o+ ND

neonatal skin a-MHC-mCherry® & cTnT": 13%

GATA4, MEF2C, TBX5, MESP1, MYOCD, miR-133 [28] HCF cTnT™: 27.8% ND + +
a-actinin™: 8%

GATA4, HAND2, MYOCD, TBX5, miR-1, miR-133 [31] HFF cTnT*: 34.1% ND +

CHIR99021, A83-01, BIXO1294, AS8351, SC1, Y27632, HFF cTnT": 6.6% + o+

OAC2, SUT6F, JNJ [36]

Differential factors combination and original cells used in human cardiac reprogramming result in different efficiency, revealed by the expression of

cardiomyocyte markers, electrophysiological characters and beating property

a-MHC a-myosin heavy chain, AP action potential, cTnT cardiac troponin T, DF dermal fibroblast, ESC embryonic stem cell, FH fetal heart, HCF human cardiac fibroblast,

HFF human foreskin fibroblast, ND not detected
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non-immune, less expensive, and safer. Moreover, it is more
convenient to control the process of programming through
varying small molecule concentrations and combinations.
However, there are still some questions about the use of
small molecules for reprogramming in situ. Small mole-
cules can enter the blood and spread to other organs with
ambiguous influence, and the impact time should be strictly
controlled to convert fibroblasts into target cells. Therefore,
novel biomaterials should be developed to help local deliv-
ery of multiple drugs in a controllable manner.

Conclusion

Although transcription factors, miRNAs, and small mole-
cules have been proved important for reprogramming fi-
broblasts into cardiomyocytes, their reproducibility in
different laboratories is low and the induced cardiomyo-
cytes show different properties and maturity. There are
several reasons for this instability. The different original
cells have different tendencies for transdifferentiation into
cardiomyocytes. Compared to tail tip fibroblasts, cardiac
fibroblasts have more potential to be reprogrammed into
cardiomyocytes [7]. The combination of different tran-
scription factors may also influence the process of repro-
gramming. In addition, the induction medium and the
time spent in the process of induction have important
roles during reprogramming. Moreover, different criteria
give rise to different success levels in the process, and thus
a detailed standard is needed to define the level of induced
cardiomyocytes, besides spontaneous beating and being
calcium transient. Thus, optimization of the minimal and
effective combination to improve reprogramming effi-
ciency is required, including the epigenetic status, matur-
ation, and the integration ability into the infarcted heart.
Overall, direct reprogramming is a complex process influ-
enced by many factors, and there are still many issues to
be resolved.
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Compared with iPSC preparation and cardiac differenti-
ation, direct reprogramming may eliminate the risk of tera-
toma formation and shorten the time for cell
transplantation. There are many differences in the cellular,
molecular, and electrophysiological levels of the de novo
cardiomyocytes induced from iPSCs and direct reprogram-
ming [20, 38, 39] (Table 4). In addition, the iCMs from in
situ direct reprogramming may have better interaction with
cells in the heart [40]; this may reduce the risk of arrhyth-
mias compared to cell transplantation. Furthermore, con-
sidering myofibroblasts as the dominant cell type in the
infarct zone, direct reprogramming may reduce the scar
size. Local delivery of gene therapy vectors or small mole-
cules holds great promise for heart regeneration.

In this review, we have discussed the potential application
of reprogramming fibroblasts into cardiomyocytes (Fig. 1).
Over the past years, direct reprogramming in the heart has
made significant progress and has important implications
in understanding the biology of heart development. All
studies in cardiac cell reprogramming have been positive in
mouse cardiovascular disease models, but much more re-
mains to be done to overcome the challenges during clin-
ical translation. One of the major challenges in the field of
direct cardiac reprogramming is the low efficiency [25]. An-
other challenge is the heterogeneity which is demonstrated
by high-resolution single-cell sequencing [41]. Patch clamp
also confirmed the presence of pacemaker, ventricular, and
atrial cardiomyocytes. Therefore, the potential risk of ar-
rhythmias still exists because of the different electrophysi-
ology properties. However, this risk is ignored in the mouse
because its heart rate is quite different from humans.
Therefore, it will also necessary to conduct large animal
studies, such as in pigs and monkeys, to verify the safety of
directed reprogramming.

Above all, following the discoveries of key transcrip-
tion factors, miRNAs, cytokines, small molecules, gene

Table 4 The differences of cardiomyocytes induced from iPSCs and direct reprogramming

Properties iPSC/hPSC-derived cardiomyocytes Direct reprogrammed cardiomyocytes Adult cardiomyocytes

Differentiation >80% ~60% cTnT" a-actinin® [20] /

efficiency

Size Small size (membrane capacitance 18 pF) [38], Small size Membrane capacitance 150 pF
1/10 of physical size of adult cardiomyocytes

Nucleus Mono-nuclear [39] Mono-nuclear Bi- or multi-nuclear

Morphology Circular or irregular shape Spindle-shape Rod-shape

Sarcomere Better organized Disarrayed Highly organized

Primary metabolic ~ Glucose Glucose Fatty acid

substrate

Markers a-MHC™, a-actinin™, Troponin T* a-MHC*, a-actinin™, Troponin T* a-MHC™, a-actinin®, Troponin T*

Ca’* transient + + (few induced cardiomyocytes) +

Electrophysiology ~ Resting membrane potential -60 mV Resting membrane potential -48 mV Resting membrane potential —

(slower action potential)

(slowest action potential)

90 mV (quicker action potential)

hPSC human pluripotent stem cell, iPSC induce pluripotent stem cell, / no data
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Gene therapy (AAV et., al)
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Fig. 1 The potential application of reprogramming fibroblasts into cardiomyocytes. The means of direct reprogramming through
transcription factors, microRNAs, and small molecules are shown in vitro and in vivo. AAV adeno-associated virus, FGF fibroblast growth
factor, Ml myocardial infarction, TGF transforming growth factor, VEGF vascular endothelial growth factor

Pro-fibrotic signaling inhibitors

<k, Full reprogrammed mature cardiomyocyte

delivery methods, and novel biomaterials, reprogram-
ming mechanisms will be clarified. After systematic re-
search in large animals, directed cardiac reprogramming
may ultimately contribute to heart repair.
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