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Abstract

Introduction: Few studies have explored whether gait measured continuously within

a community setting can identify individuals with Alzheimer’s disease (AD). This study

tests the feasibility of this method to identify individuals at the earliest stage of AD.

Methods:Mild AD (n = 38) and cognitively normal control (CNC; n = 48) participants

from the University of Kansas Alzheimer’s Disease Center Registry wore a GT3x+

accelerometer continuously for 7 days to assess gait. Penalized logistic regressionwith

repeated five-fold cross-validation followed by adjusted logistic regression was used

to identify gait metrics with the highest predictive performance in discriminating mild

AD fromCNC.

Results: Variability in step velocity and cadence had the highest predictive utility

in identifying individuals with mild AD. Metrics were also associated with cognitive

domains impacted in early AD.

Discussion:Continuous gait monitoringmay be a scalable method to identify individu-

als at-risk for developing dementia within large, population-based studies.
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1 INTRODUCTION

The prevalent number of Alzheimer’s disease (AD) cases in the United

States is projected tomore thandouble fromnearly 5million in 2014 to

nearly 14 million by 2060 and costs will rise to over $1 trillion.1 In the

absence of effective therapies to prevent or treat AD, there is growing

interest in identifying cost-effective biomarkers for early identification

of risk for AD. Biomarkers are useful tools for identifying individuals

early in disease progressionwhomay benefit from treatments or trials,

for use as surrogate end-points for clinical trials, and as a way to better

understand mechanisms of disease progression to identify targets for

interventions.

Noninvasive, cost-effective biomarkers are essential to improving

diagnosis of AD across multiple care settings and screening large num-

bers of individuals to direct them into targeted clinical trials.2 Recently,

“digital” biomarkers from sensor and mobile/wearable devices3,4 have

been suggested for early detection as an alternative to fluid and imag-

ing markers, considering mounting evidence indicating that sensory

and motor changes may precede neurologic and neurodegenerative

diseases.

Prior work indicates a relationship between cognitive function and

gait, considering that walking requires complex cognitive functions

including executive function, attention, anddepthperception.5 Consid-

erable work additionally indicates that subtle disturbances in gait and

balance can predict falls among individuals with neurologic disorders

such as Parkinson’s disease (PD)6 and healthy older adults.7,8 Iden-

tifying gait abnormalities or impairments may also help discriminate

betweenneurologic disease states aswell as predict progression toAD.

Indeed, evidence indicates the benefit of laboratory or performance-

based gait measures in assisting with predicting dementia9,10,11 and

cognitive impairment.12 Alterations in laboratory-based measures of

pace and gait variability in particular have been shown to precede

dementia onset, predict diagnosis, and differentiate between neuro-

logic diseases.13,14,15

Themajority of priorwork using gait to describe and predict demen-

tia has used laboratory or performance based gait measures, which

may not accurately reflect movement in participants’ usual free-living

environment. Over the last 10-years, passive, accelerometer-based,

body-worn devices have been used to measure physical activity and

more recently as gait measures in population- and clinic-based stud-

ies.Despite important differencesbetweengaitmeasured in free-living

versus lab settings,16,17 there is considerable interest in measuring

gait continuously in community settings because of cost and time sav-

ings, the likelihood of measuring rare events, and the ability to con-

duct remote assessments for patients in areas with limited healthcare

professionals.16,18

Prior efforts have developed robust pipelines for generating quanti-

tative gaitmetrics from accelerometer-based, body-worn sensors, par-

ticularly in the PD field.19 Recently, the Deep and Frequent Phenotyp-

ing for Experimental Medicine Study (D&FP) introduced a pilot study

to incorporate body-worn sensors in the measurement of gait in mild

AD.20 The Brain and Movement Group at Newcastle University have

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature using tra-

ditional (eg, PubMed) sources as well as Google keyword

searches. Prior studies have explored whether lab-based

gait measures can discriminate between neurologic dis-

eases and assist in dementia prediction. Recent work has

explored the use of wearable accelerometers to measure

gait in community settings.We included the relevant cita-

tions.

2. Interpretation: Our findings are the first to demonstrate

the feasibility and predictive validity of using continu-

ous gaitmonitoring in community settings to discriminate

individuals with mild Alzheimer’s disease (AD) from cog-

nitively normal controls.

3. Future directions: These results suggest that continu-

ous gait monitoring may be a cost-effective and scal-

able method to identify individuals at risk for AD and

may eventually be appropriate for clinical settings. Future

large, prospective studies are required to determine

whether continuous gait monitoring can predict AD

among cognitively normal individuals and is associated

with the progression of AD pathology.

used sensorsworn during performance-based testswithin a laboratory

setting to differentiate between dementia subtypes.21 To our knowl-

edge, few if any studies have explored whether gait measured continu-

ously within a free-living community setting can differentiate between

dementia disease states. Ambulatory assessment on a 24-hour basis

offers the opportunity to explore whether increased time resolution,

which provides close to real-time gait assessment, may more sensi-

tively identify individuals with dementia.

In this study, we measured gait features continuously for 7 days

using a body-worn accelerometer in a sample of community-dwelling

older adults with mild AD and cognitively normal controls (CNC). We

measured domain-specific gait parameters using a pipeline developed

and validated in the PD field. We then used these parameters to

explore the efficacy of gait metrics to differentiate between mild AD

and CNC participants and associations with cognitive performance.

This study tests the feasibility of a low-cost, scalable method to iden-

tify individuals at the earliest stage of dementia.

2 METHODS

2.1 Participants

Mild AD and CNC participants were from the University of Kansas

Alzheimer’s Disease Center Registry (KU-ADC). Recruitment and eval-

uation of participants in the KU-ADC have been reported previously.22
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Briefly, KU-ADC participants receive annual cognitive and clinical

examinations and experienced clinicians trained in dementia assess-

ment provide consensus diagnoses (see Section 2.5, Cognitive status

and psychometric test battery, below).

Participants recruited into the study underwent a full physical and

neurological examination and review of medical history. Participants

withmobility disability, including those confined to abedorwheelchair,

and participants with inadequate visual or auditory capacity were

excluded. The KU-ADC registry excludes individuals with active (<2

years) ischemic heart disease (myocardial infarction or symptoms of

coronary artery disease) or uncontrolled insulin-dependent diabetes

mellitus. The study sample included individuals with mild AD, defined

as a clinical dementia rating (CDR)23 scale scores of 0.5 (verymild) or 1

(mild), and control participants, defined as a CDR score of 0.

A total of 100 community dwelling older adults with and without

mild AD were recruited. Of those, N = 92 had valid actigraphy data

and 86 of those participants provided valid gait data (n = 38 mild

AD; n = 48 controls) (gait data processing described in Section 2.4,

Gait feature extraction, below). Participant demographics are included

in Table S1 in the Supporting Information. The study protocol was

approved by the KU Medical Center Institutional Review Board. Par-

ticipants, and/or their legally acceptable representative, providedwrit-

ten, informed consent.

2.2 Physical function covariates

Whole body mass and cardiorespiratory capacity (VO2 max) were col-

lected due to the association of both with accelerometry and cogni-

tive outcomes. Whole body mass was determined using a digital scale

accurate to ±0.1 kg (Seca Platform Scale, Seca Corp., Columbia, MD),

and height (in cm) was measured by a stadiometer with shoes off, from

which bodymass index (BMI; weight [kg]/[height (m)]2) was calculated.

VO2 max was measured by a graded treadmill exercise test using a

modified Bruce protocol for older adults. Participants were attached

to a 12-lead electrocardiograph (ECG) to continuously monitor heart

rate and rhythm.24 Expired gaseswere collected continuously, andoxy-

gen uptake and carbondioxide productionwere averaged at 15-second

intervals (TrueOne 2400, Parvomedics, Sandy, UT).

2.3 Accelerometry measurement

A detailed description of accelerometry measurement has been pub-

lished previously.25 Briefly, the GT3x+ (Pensacola FL; Actigraph, 2012;

30Hz sampling rate) is a triaxial accelerometer validatedacross a range

of community dwelling older adults.26 The accelerometer was placed

on the dominant hip and participants were instructed to wear the

device for 24 hours a day for 7 days. Participants were asked to keep a

wear-timediary todetermine compliance aswell as to verify algorithm-

derived wake and sleep bouts. Mild AD participants had study part-

ners (required for recruitment) to help with completing study logs and

ensuring compliance.

2.4 Gait feature extraction

Protocols for extracting gait features have been described in detail

previously.19,6 Walking, lying, standing, and sitting were identified

automatically using an algorithm. Walking bouts of at least 60 sec-

onds were evaluated to generate 55 gait variables within five domains:

amplitude, pace, rhythm, symmetry, and variability. The amplitude

domain includes measures related to amplitude of gait function. The

pace domain includes measures related to walking speed as well as

stride and step length.27 The rhythm domain includes cadence and

parameters related to stride and step time.28 The symmetry domain

includes spatiotemporal measures related to differences between the

right and left lower limbs.27 The variability domain includes measures

related to stride-to-stride fluctuations.27 Table S2 contains complete

descriptions of each of the domain and associated gait variables.

2.5 Cognitive status and psychometric test
battery

Diagnosis of cognitive status was determined through consensus diag-

nosis by trained clinicians using comprehensive clinical research evalu-

ations and a review of medical records following the NINCDS-ADRDA

criteria.29 Cognitive testing was completed within a mean of 40.64

days of the measurement of accelerometer data, with all but three

cases occurring within 1 year of the accelerometry collection. Cogni-

tive tests were administered by a trained psychometrician; The cogni-

tive test battery included tests of verbal memory (Wechsler Memory

Scale [WMS]–Revised Logical Memory I and II, Free, and Cued Selec-

tive Reminding Task), attention (Digits Forward and Backward, Wech-

sler Adult Intelligence Scale [WAIS] subscale Letter–Number Sequenc-

ing) and executive function (Digit Symbol Substitution Test, and Stroop

Color–Word Test [interference score], Trail Making Test Part B, and

Category Fluency).

Composite scores for each domain (verbal memory [VM], attention

[ATTN], and executive function [EF]) were derived using confirmatory

factor analysis (CFA). CFA is an advantageous method of summariz-

ing multiple cognitive scores into empirically and theoretically justi-

fied components. Scores were standardized to the mean performance

of CNC participants. Additional information on the CFA derived factor

scores are in Table S3.

2.6 Statistical analysis

The primary goal of this study was to determine whether gait features

derived from continuous, in-community ambulatory assessment could

differentiate betweenmild AD and CNC.

Our analytic plan first explored different aggregation or summary

approaches—mean or variability—that may be most appropriate

for gait metrics collected continuously (ie, 24 hours a day) over 7

days. Second, we determined whether those summary gait metrics

discriminated between AD and CNC participants using a two-stage,



4 of 10 VARMA ET AL.

F IGURE 1 Step-velocity comparisons for two study participants, mild AD (red) and CNC (blue). (A) A single, hypothetical performance-based
evaluation in the laboratory (single evaluation and one value). (B) Density plots from continuous free-living gait data collected over 7 days,
providingmultiple evaluations and a distribution of values. (C) Side-by-side boxplots for values of step-velocity-cm-sec data over 24 hours across
7 days of data collection. Participants in (B) and (C) were the same, andwere chosen to clearly visualize differences between CNC and AD groups.
Abbreviations: AD, Alzheimer’s disease; CNC, cognitively normal control; step-velocity-cm-sec, mean step length/mean step time

data-driven approach. Third, we explored whether the most discrim-

inatory metrics from the two-stage approach were associated with

cognitive scores.

I. Exploring aggregation approaches for continuous gait metrics

Because we had multiple observations per gait metric per subject

generated from valid (at least 60 seconds long) walking bouts over the

course of 7 days, it was possible to aggregate each metric into a single

summary using either the central tendency of the metric (mean) or its

variability (standard deviation; SD). Similar to Figure 2 in Warmerdam

et al ,16 in Figure 1A,B compares hypothetical performance-based gait

metrics collected in-lab (ie, single evaluation andone value) versus con-

tinuous free-living gait data collected over 7 days that provides multi-

ple evaluations and a distribution of values. We display data from two

subjects (mild AD vs CNC) for one of the gait metrics—step-velocity-

cm-sec (defined asmean step length/mean step time)—assessed during

valid walking bouts (>60 seconds) over 7 days.

Figure 1C displays the boxplots for values of step-velocity-cm-sec

for the same two participants. While the mild AD participant had

a lower median and lower variability compared to the CNC partici-

pant, it is not immediately clear which summary is more likely to dis-

criminate between them. Because both tendency and variability mea-

sures likely contain relevant and potentially unique information,30 we
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explored and compared both in the discrimination models described

below.

II. Two-stage approach to identify metrics that discriminate

between AD and CNC

Wefolloweda twostage, data-drivenapproach to select gaitmetrics

that identify significant differencesbetween the twogroups. In the first

stage, we performed variable selection using penalized logistic regres-

sion to identify the important gait metrics associated with cognitive

status (ADvsCNC), after adjusting for ageand sex. Specifically,weused

abi-level selectionpenalty “GroupExponential Lasso” (GEL)31 to simul-

taneously identify both the informative domains and the important gait

metrics. This model includes a penalty that induces sparsity at both the

group (domain) and individual (metrics) levels.

We used repeated five-fold cross-validation with 100 times

repeated Monte-Carlo resampling32 on data and noted the selection

percentages of each of the domains and gait metrics. A variable is

selected for an iteration if it is identified to be important in at least

one of the folds of cross-validation. In particular, the selection percent-

age of a metric G is given by PG = 1∕100
100∑

I = 1
I{∪5k = 1 Sik } (G), where

I{∪5k = 1 Sik } = 1 if G is a selected feature for iteration i in any of the

fold k (k = 1,2,. . . ,5). This helped us rank the gait metrics and domains

according to importance defined via selection percentages.

In the second stage, we used the five top performing gait metrics

identified in the first stage in age and sex adjusted logistic regression

(unpenalized) models to study their association with AD status as the

main outcome. A conservative Bonferroni corrected P-value (signifi-

cance) threshold of .01 ( = 0.05/5) was applied to account for multiple

comparisons.Weexplored correlations across gaitmetrics anddecided

to use each gaitmetric separately inmarginalmodels due to high corre-

lationanda relatively small sample size. For theevaluationofpredictive

performance of the models, we performed repeated cross-validation

and reported theaverage cross-validatedareaunder the curve (cvAUC)

of the receiver operating characteristic (ROC) curve for each of the

five logistic regressionmodels.We then reported any increased cvAUC

comparing each model to the age and sex only benchmark logistic

regression model. In an exploratory analysis to identify the predictive

value of combining multiple gait metrics in a joint model, we fit a mul-

tiple regression model with two gait metrics (ie, step-velocity-cm-sec,

andwidth of the dominant frequency in the power spectrum frequency

domain,mediolateral direction [wdML]; SD) thatwereminimally corre-

lated (r∼ 0.1).

III. Associations between discriminatory gait metrics and cognition

Using multivariate linear regression models, we explored whether

the two most discriminatory gait metrics identified in the two stage

modelwereassociatedwith cognitive scoresofVM,ATTN, andEF, after

adjusting for age, sex, and years of education. AdjustedR-square values

of the models were used to assess performance compared to the age,

sex, and education only benchmarkmodel.

Because of the important associations between sex and gait33 as

well as significant sex imbalance between the AD and CNC samples in

this study, we explored the effect of sex in models described above by

adding a sex-interaction term.

3 RESULTS

Table S1 displays sample characteristics for the total, AD, andCNCpar-

ticipants. On average, respondents were 73.2 years of age (SD = 7.1

years) with 16.6 years of education (SD = 3.2). Half (50%) of the total

samplewas female.No statistical differencesbetween theADandCNC

groups were observed across age, BMI, or V02 max. Compared to the

CNC group, the AD group had a significantly smaller percentage of

females (26.3 vs 68.8) and lower education (15.6 years vs 17.4 years).

In the first stage of our two-stage approach to identify metrics that

discriminate between AD and CNC, we used variable selection and

repeated cross validation to identify the most predictive domains (Fig-

ure 2A,B) and the top five most predictive gait metrics (Figure 2C,D)

according to selection percentages for both mean and SD. The top five

most predictive gait metrics were then used in the second stage to

explore discriminative predictive performance.

Predictive domains and the top five gait metrics varied between

mean and SD. Among domains, pace had the highest selection percent-

age for both the mean and SD. For mean, pace was followed by ampli-

tude and then symmetry and variability; rhythm was not selected in

repeated cross-validations. For SD, pace was followed by rhythm, vari-

ability, and then symmetry; amplitude was not selected in repeated

cross-validations. Among gait metrics, step velocity (pace domain) had

the highest selection percentage for bothmean and SD. Formean, step

velocity was followed by activity level (amplitude domain); step length

(pace domain); acceleration range, vertical direction (rngV; ampli-

tude domain); and the wdML (variability domain). For SD, step veloc-

ity (pace domain) was followed by distance (pace domain), cadence

(rhythmdomain), step length (pacedomain), and thenwdML (variability

domain). The selection percentages of gait metrics were higher among

the SDmetrics compared tomean, suggesting that SD aggregationmay

bemore predictive thanmean aggregation.

In the second stage of our two-stage approach, we used the top five

selected gait metrics for both mean and SD in age and sex adjusted

logistic regression models. The selected gait measures were generally

moderately to highly correlated for bothmean (Figure 3A) and SD (Fig-

ure 3B) aggregations. In particular, among the top five selected SDmet-

rics the pace domain measures (step velocity, distance-m, mean step

length) were highly intercorrelated and correlated with cadence-V-

time-domain (rhythmdomain) (r=0.5 to 1.0). Therefore, each gaitmet-

ric was used in a separate logistic regression model along with age and

sex as covariates. Step velocity and wdML (SD) were both identified as

important gait metrics (ie, selected in the top five) and had the lowest

correlation (r ∼ 0.1), and therefore were used in the exploratory joint

models described below.

Tables 1 (for mean) and 2 (for SD) indicate the predictive perfor-

mance of the top five gait metrics in terms of cvAUC and provide com-

parison to thebenchmark logisticmodel includingonly ageand sexwith

cvAUC = 0.705. In the mean model, higher mean of step-velocity-cm-

sec and mean-step-length were significantly (alpha = 0.01) associated

with a lower odds of AD. Increased predictive performance compared

to the benchmarkmodel ranged from 9% to 14%.
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F IGURE 2 Selection percentages of themost predictive domains and gait metrics from variable selection for discriminating betweenmild
Alzheimer’s disease (AD) and cognitively normal control (CNC) participants, for means and standard deviations (SD) of measured values calculated
continuously (ie, 24 hours a day) over 7 days. (A)Mean aggregation for domains. (B) SD aggregation for domains. (C)Mean aggregation for gait
metrics. (D) SD aggregation for gait metrics. Selection was performed using penalized logistic regression (bi-level selection penalty Group
Exponential Lasso [GEL]). Selection percentages from themodel for the five domains and the top fivemost predictive gait metrics are indicated.
Abbreviations: activity level (amplitude domain), mean signal vector magnitude; cadence-V-time-domain (rhythm domain), number of steps per
minute (calculated from the vertical axis); distance-m (pace domain), sum of step length; mean-step-length-cm (pace domain), mean step length
calculated using the inverted pendulummodel; rngV (amplitude domain), acceleration range, vertical direction; step-velocity-cm-sec (pace
domain), mean step length/mean step time; wdML (variability domain), width of the dominant frequency in the power spectrum frequency domain,
mediolateral direction

In the SD model, the gain in the overall predictive performance

was approximately two times higher than that of the mean model.

Greater variability of step-velocity-cm-sec, distance-m, cadence-V-

time-domain and wdML were significantly (alpha = 0.01) associ-

ated with a lower odds of AD. Increase in the predictive per-

formance compared to the benchmark model ranged from 9%

to 26%.

Models including interactions between sex and each gait metric

were not significant and did not improve predictive performance in

logistic regressionmodels.

In Figure 4, we have included a violin plot displaying a side-by-side

comparison (AD vs CNC) of the two SD gait metrics with the high-

est predictive performance: step-velocity-cm-sec (pace domain) (Fig-

ure 4A) and cadence (cadence-V-time-domain; rhythm domain) (Fig-

ure 4B). The AD samples have distinctly lower adjusted residuals (after

adjusting for sex and age) compared to CNC.

In exploratory analyses, we fit a joint SD model including step-

velocity-cm-sec and wdML, two metrics with minimal correlation

(∼0.1). As indicated inTable S4, bothgaitmetrics significantly increased

predictive performance compared to the benchmark model by around

30%.

Finally, we used the two most discriminatory metrics from the

second stage of analysis described above—step-velocity-cm-sec (SD)

(pace domain) and cadence-V-time-domain (SD) (rhythm domain)—in

models exploring associations with cognitive performance. Model

results are included in Table S5. Both step-velocity-cm-sec and
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F IGURE 3 Heatmaps of correlations between the top gait metrics. (A)Mean aggregation. (B) SD aggregation. Abbreviations: activity level
(amplitude domain), mean signal vector magnitude; cadence-V-time-domain (rhythm domain), number of steps perminute (calculated from the
vertical axis); distance-m (pace domain), sum of step length; mean-step-length-cm (pace domain), mean step length calculated using the inverted
pendulummodel; rngV (amplitude domain), acceleration range, vertical direction; SD, standard deviation; step-velocity-cm-sec (pace domain),
mean step length/mean step time; wdML (variability domain), width of the dominant frequency in the power spectrum frequency domain,
mediolateral direction

TABLE 1 Mean results from logistic regression of cognitive status
(AD, CNC) on gait metrics

Gait measure Beta P cvAUC

% gain

cvAUC

Step-velocity-cm-sec –0.043 .00201 0.801 13.62

Activity level –43.514 .01104 0.767 8.79

Mean-step-length-cm –0.090 .00352 0.790 12.06

rngV –2.044 .0116 0.770 9.22

wdML –0.138 .88897 0.680 –3.55

Each gait measure was used separately along with age and sex as the pre-

dictor. We indicated the percentage gains using each gait metric compared

to the benchmark cvAUCof 0.705 (age+sex logistic regressionmodel). Bon-

ferroni correctedP-value thresholdof .01wasapplied to identify significant

associations.

Abbreviations: activity level, mean signal vector magnitude; AD,

Alzheimer’s disease; CNC, cognitive normal controls; cvAUC, average

cross-validated area under the curve; mean-step-length-cm, mean step

length calculated using the inverted pendulum model; rngV, acceleration

range, vertical direction; step-velocity-cm-sec, mean step length/mean

step time; wdML, width of the dominant frequency in the power spectrum

frequency domain, mediolateral direction.

cadence-V-time-domain were significantly associated with cognitive

scores of ATTN, VM, and EF after adjusting for age, sex, and education.

The increase in the adjusted R-square value for step-velocity-cm-sec

was 33% for ATTN, 44% for VM, and 40% for EF. The increase in the

adjusted R-square value for cadence-V-time-domain was 24% for

ATTN, 40% for VM, and 33% for EF. Similar to the direction in the

logistic regression models, greater variability of the SD gait metrics

was associated with higher cognitive scores.

Models exploring interaction between sex and each gait metric did

not result in improved predictive performance in linear regression

models.

4 DISCUSSION

Low-cost, biologically relevant biomarkers are essential for improv-

ing diagnosis of AD and screening large, community-based samples to

identify individuals at the earliest stage of dementia for targeted inter-

ventions. This study is the first to measure gait continuously in a free-

living community setting and identify gaitmetrics that candifferentiate

between individuals withmild AD and CNC.

We found that the variability in gaitmetrics (ie, SDaggregation), fea-

tures that are intrinsic to 24-hour, continuous and near real-time gait

assessment,maybemore sensitivemeasuresofAD-relatedgait impair-

ment than mean measures. Specifically, variability in step velocity and

cadence, gaitmetrics in thepace and rhythmdomains respectively, pro-

vided a significant gain in predictive utility beyond a benchmark model

andwere significantly associatedwith cognitive status and additionally

explained a large percent of variability in cognition impacted in early

AD.

Specific gait metrics may be sensitive to changes in specific disease

pathology and cognitive decline. Prior work has shown that changes in

pace and rhythm may be specific to AD pathology (compared to Lewy

Body disease pathology)15 and pace (including step velocity) is associ-

ated with memory decline while rhythm (including cadence) is associ-

ated with executive function decline.34 Our findings suggest that step

velocity and cadence (ie, the pace and rhythm domains) are the most

discriminative between mild AD and CNC and are strongly associated
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TABLE 2 SD results from logistic regression of cognitive status (AD, CNC) on gait metrics

Gait measure Beta P cvAUC

% gain

cvAUC

Step-velocity-cm-sec –0.249 .00019 0.887 25.82

Distance-m –0.431 .00019 0.886 25.67

Cadence-V-time-domain –0.587 2.9 * 10−5 0.889 26.1

Mean-step-length-cm –0.142 .0378 0.774 9.79

wdML –5.164 .00912 0.771 9.36

Each gait measure was used separately along with age and sex as the predictor. We indicated the percentage gains using each gait metric compared to the

benchmark cvAUCof0.705 (age+sex logistic regressionmodel). Bonferroni correctedP-value thresholdof .01was applied to identify significant associations.
Abbreviations: AD, Alzheimer’s disease; cadence-V-time-domain: number of steps per minute (calculated from the vertical axis); CNC, cognitive normal con-

trols; cvAUC, average cross-validated area under the curve; distance-m, sum of step length; mean-step-length-cm, mean step length calculated using the

inverted pendulum model; SD, standard deviation; step-velocity-cm-sec: mean step length/mean step time; wdML, width of the dominant frequency in the

power spectrum frequency domain, mediolateral direction.

F IGURE 4 Violin plots indicating the distribution of the residual
associations between cognitive status (AD, CNC) and SD values of gait
metrics, after adjusting for sex and age. (A) Step-velocity. (B) Cadence.
Abbreviations: AD, Alzheimer’s disease; cadence
(cadence-V-time-domain), dominant frequency of the power spectrum
in the rhythm domain * 60; CNC, cognitive normal control; SD,
standard deviation

with cognitive domains that change early in disease progression. This

suggests that both metrics may be sensitive to cognitive change prior

to disease onset and diagnosis, and may be useful for monitoring cog-

nitive change and estimating disease progression in the prodromal or

preclinical stages of AD.

Our study results suggest that unsupervised, 24-7 gait monitoring

may be a feasible, low-cost, and scalable method to identify individuals

at the earliest stage of dementia and can potentially be used to identify

individuals at risk of progressing to dementia. While there are impor-

tant differences between gait measured in free-living versus lab set-

tings, there is considerable interest in real-time measurements of risk

factors and the use of technology for diagnostic support, for example,

teleneurology.18 Our findings are among the first to suggest the ben-

efits of diagnosis using remote, real-time gait assessments. They pave

the way for generating gait metrics from accelerometer data collected

in large, community-based studies to determine whether these digital

biomarkers may predict dementia onset and progression.

Rather than simply being a motor control activity, gait is a com-

plex function that involves coordination across multiple cognitive

domains and is likely a main feature of many neurodegenerative

diseases.35 Early gait dysfunction, a feature of motoric cognitive risk

syndrome, has been shown to be highly prevalent among individuals

withpreclinicalAD.36,37 Prior studiesusing laboratoryorperformance-

based gait measures have shown that gait dysfunction across multiple

domains, including pace, rhythm, and variability, are associated with

cognitive decline, incident dementia, and MCI subtypes compared to

normal controls.38,39 Numerous papers have identified specific, lab-

based quantitative gait metrics that can differentiate between disease

groups. Variability of walking quality (ie, SD of stride regularity and SD

of peak amplitude), velocity, stride length, and stride time are different

betweenMCI andhealthy controls.13,40 Gait speed, symmetry, and reg-

ularity are lower inMCI individualswhoprogressed toADversus those

who did not;30 gait speed, step length, and double support declined in

AD;41 and variability is likely more sensitive than mean among indi-

viduals with dementia.42 Step time variability has been shown to be a

stronger predictor of risk of MCI among cognitive normal individuals

compared to gait speed.43

Our results, which indicate specific domains (pace, rhythm, ampli-

tude, and variability) and gait metrics (cadence and step velocity) dis-

criminate betweenADandCNC, are broadly consistentwith prior find-

ings. As illustrated in Figure 1, gait measures collected continuously

in the community over a 7-day period produce a significant amount

of information that likely better represents subtle differences in gait

between mild AD and CNC compared to both averaged data and sin-

gle point gait measures recorded in lab or structured settings. Signifi-

cant associations between variability in step velocity and cadence, and

cognitive measures of EF, ATTN, and VM, are consistent with the close

relationship between higher order cognitive functions and gait,35,5 as

well as prior studies indicating that gait measures among individu-

als with MCI or AD are significantly associated with EF, ATTN, and

memory.35,34,44

The novelty of this study is in the use of 24-7 gait monitoring in a

community-based population to identify gait metrics that can discrim-

inate between AD and CNC. The use of small, nonintrusive devices
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to measure gait continuously while individuals are “in the wild” have

recently been used in fall prevention and Parkinson’s research.19 Addi-

tionally, accelerometers andwearable sensors have been used in struc-

tured settings to measure gait using performance-based tests (ie,45).

While one study has described the feasibility of 24-7 gait monitoring

using accelerometers20 and another study used a gait specific sensor

to record gait during usual daily activities,46 our study is the first to

use a standard accelerometer commonly used across multiple large,

population-based studies. Gait variability measured over long periods

of time when environmental and external conditions are not fixed is a

novel and likely sensitive biomarker for AD.

This study has a number of important implications with regard to

AD treatment. First, our results suggest that continuous gait moni-

toring may be a scalable method to identify at-risk individuals within

large, population-based studies. As an early screener, continuous gait

monitoring holds promise as a cost-effective “first gate” that does

not require the use of invasive procedures or significant resources to

assess cognition.47 Additionally, continuous gait monitoring may pro-

videmetrics that are sensitive to changes in cognitive impairment prior

to the onset of dementia as well as disease progression.48

There are limitations to this study. First, we have a relatively small

sample size that is not balanced for sex. While we considered these

limitations when designing appropriate statistical analyses, our results

will need to be validated in larger studies and with longitudinal mea-

sures of AD phenotypes. Second, this study is cross-sectional and does

not measure whether gait metrics measured using 24-7 gait monitor-

ing may predict AD or identify risk for AD during the preclinical stage.

Third, placement of the accelerometer on the dominant hip is likely not

the optimal location to measure gait. However, this placement, com-

pared to lower back placement, is more typical of large population-

based studies. Our future goal is to scale thiswork to large, prospective

studies that include both accelerometer data collection and demen-

tia outcomes in order to further explore whether sensor-generated

gait biomarkers can predict whether individuals will progress to

AD.
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2. Zvěřová M. Alzheimer’s disease and blood-based biomarkers–

potential contexts of use.Neuropsychiatr Dis Treat. 2018;14:1877.
3. Thambisetty M, Lovestone S. Blood-based biomarkers of Alzheimer’s

disease: challenging but feasible. BiomarkMed. 2010;4(1):65-79.
4. Kourtis LC, Regele OB, Wright JM, Jones GB. Digital biomarkers for

Alzheimer’s disease: the mobile/wearable devices opportunity. NPJ
Digi Med. 2019;2(1):1-9.

5. Yogev-SeligmannG,Hausdorff JM,GiladiN. The roleof executive func-

tion and attention in gait.Mov Disord. 2008;23(3):329-342.
6. Weiss A, Herman T, Giladi N, Hausdorff JM. Objective assessment of

fall risk in Parkinson’s disease using a body-fixed sensor worn for 3

days. PLoS One. 2014;9(5):e96675.
7. Muir SW,GopaulK,MonteroOdassoMM.The roleof cognitive impair-

ment in fall risk among older adults: a systematic review and meta-

analysis. Age Ageing. 2012;41(3):299-308.
8. Nastasi AJ, Ahuja A, Zipunnikov V, Simonsick EM, Ferrucci L, Schrack

JA. Objectivelymeasured physical activity and falls in well-functioning

older adults: findings from the baltimore longitudinal study of aging.

Am J PhysMed Rehabil. 2018;97(4):255.
9. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H.

Abnormality of gait as a predictor of non-Alzheimer’s dementia.N Engl
J Med. 2002;347(22):1761-1768.

10. Waite LM, Grayson DA, Piguet O, Creasey H, Bennett HP, Broe GA.

Gait slowing as a predictor of incident dementia: 6-year longitudinal

data from the Sydney older persons study. J Neurol Sci. 2005;229:89-
93.

11. Montero-Odasso M. Gait as a biomarker of cognitive impairment and

dementia syndromes. Quo vadis?. Eur J Neurol. 2016;23(3):437-438.
12. Camicioli R, Howieson D, Oken B, Sexton G, Kaye J. Motor slow-

ing precedes cognitive impairment in the oldest old. Neurology.
1998;50(5):1496-1498.

13. Bahureksa L, Najafi B, Saleh A, et al. The impact of mild cog-

nitive impairment on gait and balance: a systematic review and

meta-analysis of studies using instrumented assessment. Gerontology.
2017;63(1):67-83.

14. Beauchet O, Annweiler C, Callisaya ML, et al. Poor gait performance

and prediction of dementia: results from ameta-analysis. J AmMedDir
Assoc. 2016;17(6):482-490.

15. Mc Ardle R, Galna B, Donaghy P, Thomas A, Rochester L. Do

Alzheimer’s and Lewy body disease have discrete pathological signa-

tures of gait? Alzheimer’s Dement. 2019;15(10):1367-1377.
16. Warmerdam E, Hausdorff JM, Atrsaei A, et al. Long-term unsuper-

vised mobility assessment in movement disorders. Lancet Neurol.
2020;19(5):462-470.

17. Urbanek JK, Zipunnikov V, Harris T, Crainiceanu C, Harezlak J, Glynn

NW. Validation of gait characteristics extracted from raw accelerome-

try duringwalking againstmeasures of physical function,mobility, fati-

gability, and fitness. J Gerontol A Biol Sci Med Sci. 2018;73(5):676-681.
18. Dorsey ER, Glidden AM, Holloway MR, Birbeck GL, Schwamm LH.

Teleneurology and mobile technologies: the future of neurological

care.Nat Rev Neurol. 2018;14(5):285-297.
19. Galperin I, Hillel I, Del Din S, et al. Associations between daily-living

physical activity and laboratory-based assessments of motor severity

in patientswith falls andParkinson’s disease.ParkinsonismRelat Disord.
2019;62:85-90.

20. Mc Ardle R, Morris R, Hickey A, et al. Gait in mild Alzheimer’s disease:

feasibility of multi-center measurement in the clinic and home with

body-worn sensors: a pilot study. J Alzheimer’s Dis. 2018;63(1):331-
341.

21. Mc Ardle R, Del Din S, Galna B, Thomas A, Rochester L. Differentiating

dementia disease subtypes with gait analysis: feasibility of wearable

sensors?.Gait Posture. 2020;76:372-376.



10 of 10 VARMA ET AL.

22. Graves RS, Mahnken JD, Swerdlow RH, et al. Open-source, rapid

reporting of dementia evaluations. J Registry Manag. 2015;42(3):111-
114.

23. Morris JC. The clinical dementia rating (cdr): current version and scor-

ing rules.Neurology. 1993;43(11):2412-2414.
24. HollenbergM,Ngo LH, TurnerD, Tager IB. Treadmill exercise testing in

an epidemiologic study of elderly subjects. J Gerontol A Biol Sci Med Sci.
1998;53(4):B259-B267.

25. Varma VR, Watts A. Daily physical activity patterns during the early

stage of Alzheimer’s disease. J Alzheimer’s Dis. 2017;55(2):659-667.
26. Aguilar-FaríasN,BrownWJ,PeetersGG.ActiGraphGT3X+ cut-points

for identifying sedentary behaviour in older adults in free-living envi-

ronments. J Sci Med Sport. 2014;17(3):293-299.
27. Gouelle A, Mégrot FaMB. Interpreting spatiotemporal parameters,

symmetry, and variability in clinical gait analysis. In: Müller B, Wolf SI,

Brueggemann GP, Deng Z, McIntosh A, Miller F, SelbieWS, eds.Hand-
book of HumanMotion. Cham, Switzerland: Springer; 2018:689-707.

28. Hollman JH,McDadeEM,PetersenRC.Normative spatiotemporal gait

parameters in older adults.Gait Posture. 2011;34(1):111-118.
29. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan

EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-

ADRDA Work Group* under the auspices of department of health

and human services task force on Alzheimer’s disease. Neurology.
1984;34(7):939-944.

30. Gillain S, Dramé M, Lekeu F, et al. Gait speed or gait variability, which

one to use as a marker of risk to develop Alzheimer disease? A pilot

study. Aging Clin Exp Res. 2016;28(2):249-255.
31. Breheny P. The group exponential lasso for bi-level variable selection.

Biometrics. 2015;71(3):731-740.
32. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical

Learning: With Applications in R. New York: Springer; 2013.

33. Ko SU, Tolea MI, Hausdorff JM, Ferrucci L. Sex-specific differences in

gait patterns of healthy older adults: results from the Baltimore Longi-

tudinal Study of Aging. J Biomech. 2011;44(10):1974-1979.
34. Parihar R, Mahoney JR, Verghese J. Relationship of gait and cognition

in the elderly. Curr Transl Geriatr Exp Gerontol Rep. 2013;2(3):167-173.
35. Amboni M, Barone P, Hausdorff JM. Cognitive contributions to gait

and falls: evidence and implications. Mov Disord. 2013;28(11):1520-
1533.

36. Verghese J, Annweiler C, Ayers E, et al. Motoric cognitive risk

syndrome: multicountry prevalence and dementia risk. Neurology.
2014;83(8):718-726.

37. Verghese J, Ayers E, Barzilai N, et al. Motoric cognitive risk syndrome:

multicenter incidence study.Neurology. 2014;83(24):2278-2284.
38. Verghese J,WangC, LiptonRB,HoltzerR, XueX.Quantitative gait dys-

function and risk of cognitive decline and dementia. J Neurol Neurosurg
Psychiatry. 2007;78(9):929-935.

39. Verghese J, RobbinsM, Holtzer R, et al. Gait dysfunction inmild cogni-

tive impairment syndromes. J AmGeriatr Soc. 2008;56(7):1244-1251.
40. Hausdorff JM, Hillel I, Shustak S, et al. Everyday stepping quantity

and quality among older adult fallers with and without mild cogni-

tive impairment: initial evidence for new motor markers of cognitive

deficits. J Gerontol A Biol Sci Med Sci. 2018;73(8):1078-1082.
41. Cedervall Y, Halvorsen K, Åberg AC. A longitudinal study of gait

function and characteristics of gait disturbance in individuals with

Alzheimer’s disease.Gait Posture. 2014;39(4):1022-1027.
42. BeauchetO,Allali G, BerrutG,HommetC,DubostV,Assal F.Gait anal-

ysis in demented subjects: interests and perspectives. Neuropsychiatr
Dis Treat. 2008;4(1):155-160.

43. Byun S, Han JW, Kim TH, et al. Gait variability can predict the risk of

cognitive decline in cognitively normal older people. Dement Geriatr
Cogn Disord. 2018;45:251-261.

44. Doi T, Shimada H,Makizako H, et al. Cognitive function and gait speed

under normal and dual-taskwalking among older adults withmild cog-

nitive impairment. BMCNeurol. 2014;14(1):67.
45. Buchman AS, Dawe RJ, Leurgans SE, et al. Different Combinations of

mobility metrics derived from a wearable sensor are associated with

distinct health outcomes in older adults. J Gerontol A Biol Sci Med Sci.
2020;75(6):1176-1183.

46. Higuma M, Sanjo N, Mitoma H, Yoneyama M, Yokota T. Whole-day

gait monitoring in patients with Alzheimer’s disease: a relationship

between attention and gait cycle. J Alzheimers Dis Rep. 2017;1(1):1-8.
47. Watson JL, Ryan L, Silverberg N, Cahan V, BernardMA. Obstacles and

opportunities in Alzheimer’s clinical trial recruitment. Health Aff (Mill-
wood). 2014;33(4):574-579.

48. Buckley C, Alcock L, McArdle R, et al. The role of movement analysis

in diagnosing and monitoring neurodegenerative conditions: insights

from gait and postural control. Brain Sci. 2019;9(2):34.

SUPPORTING INFORMATION

Additional supporting informationmay be found online in the Support-

ing Information section at the end of the article.

How to cite this article: Varma VR, Ghosal R, Hillel I, et al.

Continuous gait monitoring discriminates community-dwelling

mild Alzheimer’s disease from cognitively normal controls.

Alzheimer’s Dement. 2021;7:e12131.

https://doi.org/10.1002/trc2.12131

https://doi.org/10.1002/trc2.12131

	Continuous gait monitoring discriminates community-dwelling mild Alzheimer’s disease from cognitively normal controls
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Participants
	2.2 | Physical function covariates
	2.3 | Accelerometry measurement
	2.4 | Gait feature extraction
	2.5 | Cognitive status and psychometric test battery
	2.6 | Statistical analysis

	3 | RESULTS
	4 | DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTERESTS
	REFERENCES
	SUPPORTING INFORMATION


