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Many functions of the immune system are impaired in neonates, allowing vulnerability to

serious bacterial, viral and fungal infections which would otherwise not be pathogenic to

mature individuals. This vulnerability is exacerbated in compromised newborns such as

premature neonates and those who have undergone surgery or who require care in an

intensive care unit. Higher susceptibility of preterm neonates to infections is associated

with delayed immune systemmaturation, with deficiencies present in both the innate and

adaptive immune components. Here, we review recent insights into early life immunity,

and highlight features associated with compromised newborns, given the challenges of

studying neonatal immunity in compromised neonates due to the transient nature of this

period of life, and logistical and ethical obstacles posed by undertaking studies newborns

and infants. Finally, we highlight how the unique immunological characteristics of the

premature host play key roles in the pathogenesis of diseases that are unique to this

population, including necrotizing enterocolitis and the associated sequalae of lung and

brain injury.

Keywords: necrotizing enterocolitis, toll like receptors, sepsis, intestinal epithelial barrier, lymphocytes, regulatory
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INTRODUCTION

Early maturation of the immune system is a complex process that involves molecular, cellular
and epigenetic programs. While in utero, the fetal immune system has traditionally been thought
to exist in a sterile environment with no antigenic exposure (1) with a need for modulation
to allow coexistence with the mother’s immune system. However, a growing body of evidence
suggests that the intrauterine environment may not be entirely sterile, as previously thought,
and that the formation of a neonatal microbiome may originate in utero (2–4). Bacterial DNA
has been found in the human placenta as well as amniotic fluid (5, 6), suggesting a unique
placental microbiome that might impact the immunity of the fetus. While this area is still
under active study, there is no question that the neonate becomes quickly exposed to a storm
of pathogens immediately following birth. Importantly, the infant is inoculated with varying
species of commensal microbiota as he or she passes through the birth canal. These initially
include facultative aerobes such as Escherichia and Enterococcus, and subsequently obligate
anaerobes, including Firmicutes such as Clostridia, Bacteroidetes, and especially Bifidobacteria
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(7). Evolution and variations in this commensal population play
a critical role in shaping immunity and allergy, food digestion
as well as brain and other bodily functions. Thus, the immune
systemmust be appropriately primed to fight potential infections,
while also modulating itself to allow for beneficial microbial
colonization and to avoid potentially harmful inflammation
and autoimmunity.

Initially, the innate immune system is mainly responsible
for surveillance in the neonate, involving cellular players
which include phagocytes, natural killer (NK) cells, antigen-
presenting cells (APCs), humoral mediators of inflammation,
and complement. This surveillance occurs while the components
of the acquired immune system mature and gain antigenic
experience. The importance of breastfeeding is evident, as
breastfed infants are able to receive antibodies and antimicrobial
components in breast milk that help prevent certain acute
infections (8, 9).

While the relevance of environmental factors such as
pathogens, commensals, and the maternal-fetal interface
to development of the early immune system is clear, it is
important to note that regulation of the immune response to
microbial and environmental cues takes place at the genetic
level. A large number of transcription factors control critical
aspects of immunity such as hematopoietic cell differentiation,
determination of myeloid and lymphoid cell fates, immune cell
activation, expression of antimicrobial proteins and cytokines,
expression of cell surface receptors, and the establishment of
memory, to name a few. These transcriptional networks are
well-characterized and involve factors such as GATA3, Tbet,
Bcl6, NFκB, STATs, IRFs, and AP-1. Overall, a multifactorial
mechanism prevails where both genes and environmental factors
interact in shaping the immune system. Furthermore, it is
now well-understood that post-transcriptional mechanisms
regulating transcription factor activity, nuclear architecture,
and epigenetic mechanisms are crucial in the development and
differentiation of immune system and related pathologies. These
mechanisms include DNA and histone protein methylation,
acetylation and other modifications, nucleosome remodeling, as
well as the formation of higher-order chromatin structures
(10). The consequences of these transcriptional, post-
transcriptional and epigenetic programs can be short-term
or have lifelong implications.

Given the above, this review aims to examine immune system
dysfunction in compromised newborns and the related increased
risk of complications such as necrotizing enterocolitis. Data from
studies investigating components of both the innate and adaptive
immune systems will be presented, as well as the effect of the
immature immune system on the risk of infections such as
necrotizing enterocolitis.

INNATE IMMUNITY

Innate protective mechanisms against pathogens are provided
by the skin, respiratory and gastrointestinal epithelia, and other
mucous membranes. These mechanisms are complemented
by humoral factors, such as cytokines and complement
components present in tissue fluids, blood, and secretions
such as tears and saliva. These factors are present at birth and

do not require gene rearrangements. The functions of innate
immunity need to be both rapid (to prevent spread of the
infection) and broad (enabling protection against multiple
diverse pathogens at the same time). Soluble (e.g., complement
and acute phase proteins) as well as cellular components
contribute to this first level of defense. Important but often
underappreciated determinants of immunity fall under this
broad category, including immunosuppressive erythroid
precursors, granulocyte/neutrophil function, and pattern
recognition receptor (PRR)-based responses (see Figure 1).

Physical Epithelial Barriers, Associated
Signaling, and the Microbiome
Neonatal skin is easily disrupted and lacks the advantage of
a protective lipid layer and acidic pH until ∼1 month of
postnatal age. This phenomenon is exacerbated in preterm
infants, in whom it takes longer for these features to develop
(11). The vernix caseosa, a naturally occurring biofilm that covers
fetal skin, functions as a barrier against water loss, regulating
temperature, and preventing microbial access. Development of
the vernix caseosa begins in the third trimester, hence, it is
often not fully developed in premature infants. It has also been
shown that neonatal skin keratinocytes, and particularly the
vernix, constitutively produce a broader array of antimicrobial
peptides (AMPs) compared to older infants and adults (12)
which provides an extra level of protection. AMPs generally
include α-defensins and β-defensins and the cathelicidin LL-37,
which have direct antimicrobial activity against gram-positive
and gram-negative bacteria and some fungi, as well as the
influenza virus, respiratory syncytial virus (RSV); and protozoa.
These defensins and cathelicidins destroy pathogens by insertion
into the membranes of a broad range of gram-positive and gram-
negative bacteria, fungi, protozoa, spirochetes, and enveloped
viruses (1). Once inside the microbial cell membrane, they form
pores allowing the passage of anions through themembrane, thus
depolarizing and killing the organism (13). The immaturity of
premature skin is exacerbated by the iatrogenic insults inflicted
as a part of lifesaving intensive care.

The neonatal skin epithelium is also rapidly colonized by a
normal flora of commensal bacteria following birth that help to
prevent colonization by pathogens (14, 15). Coagulase-negative
staphylococci such as Staphylococcus epidermidis, micrococci,
and other species constitute the majority of this flora, and have
been shown play a protective role in the skin by secreting
lipopeptides that bind to toll-like receptor 2 (TLR2) on neonatal
keratinocytes and stimulating them to produce the AMPs hBD-2
and hBD-3. These features are not functional in preterm infants
(16).

Like the skin epithelium, the epithelial surface of the neonatal
stomach also lacks an acidic pH, which is thought to facilitate
the establishment of commensal flora (14) mainly belonging to
the phyla Firmicutes and Proteobacteria (17). AMP-producing
Paneth cells are decreased in number in the small intestine
of preterm and, to a lesser degree, term neonates, which may
increase the risk of enterocolitis and invasion by pathogens.
Some animal models have demonstrated more robust production
of antimicrobial peptides by intestinal epithelial cells which
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FIGURE 1 | Diagrammatic overview of immune factors at their anatomic sites, illustrating how they interplay.

may counteract this phenomenon, but this has been yet to be
confirmed in humans in vivo (18).

In a full-term infant, enterocytes within the gut epithelium
sample and identify antigens introduced into the intestinal
lumen, signaling to intraepithelial lymphocytes via PRR (19–
21) such as toll-like receptors (TLRs) and nucleotide-binding
oligomerization domains (NODs). These receptors recognize
antigens on pathogenic bacteria and elicit an immune response
against infection.

It has been shown that higher levels of innate immune
receptor expression in premature neonates compared to full-
term controls lead to increased inflammation within the gut
epithelium, leading to loss of epithelial integrity, and subsequent
introduction of pathogens into circulation (22–24). This is often
in the setting of an increased number of activating mutations
in the signaling pathways associated with these receptors. For
instance, TLR4 hyperactivation in premature mice and humans
has been shown to lead to increased enterocyte apoptosis,
reduced enterocyte proliferation and migration, and the eventual
breakdown of the intestinal epithelium (25–28) that is a hallmark
of necrotizing enterocolitis (NEC). Further, we have shown that
TLR4 activation can reduce expression of endothelial nitric oxide

synthase (eNOS) in the intestinal endothelium, causing decreased
blood flow and ischemia that exacerbates the clinical course of
NEC (29).

The gut epithelium, similar to the skin, houses cells that
also produce defensins and cathelicidins. Intestinal epithelial
cells (IECs) secrete β-defensins (hBD1, 2, and 3) (30–32) while
Paneth cells secrete lysozyme, phospholipase A2, the AMPs,
defensins (α and β), and cathelicidins (33, 34) in response to
microbial or cholinergic stimuli. This creates a relative sterile
and protected intestinal crypt environment. Microscopic and
molecular analysis of tissue from non-viable fetuses and adults
has demonstrated that Paneth cells are normally present by
12 weeks gestation, antimicrobial defensins at 13 weeks and
lysozyme at 20 weeks (35–37). However, premature infants have
been shown to have few Paneth cells with decreased antimicrobial
producing function (36, 38).

Another parallel between skin and gut epithelium is the
presence of commensal bacterial flora. The immune system
is able to distinguish these microbes from harmful pathogens
in part by limiting the location of innate immune receptors.
For instance, in the full term gut, intestinal epithelial cells
normally express few or no TLRs on their luminal surface
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(22), where they are in contact with commensals. Pathogenic
microbes that invade through the epithelial cell layer are however
recognized by endosomal TLRs, cytosolic innate immune
recognition receptors, and TLRs located on the basolateral
surface of epithelial cells, triggering an inflammatory response.
On the other hand, commensal bacteria are able to inhibit
signaling and inflammatory mediator production downstream
of these receptors or induce anti-inflammatory cytokine
production, thereby actively suppressing gut inflammation.
However, the underdeveloped preterm intestinal epithelium is
highly permeable and more easily colonized by pathogenic
bacteria because of reduced gastrointestinal motility as well
as limited enteric nervous system function (39), all of which
set the stage for destructive dysbiosis, chronic inflammation,
and microbial translocation through the weakened intestinal
barrier, leading to potentially lethal diseases of prematurity.
Additionally, the premature intestinal epithelium expresses
high levels of TLR4, which causes an overreaction by the
host immune system to gut bacteria that leads to excessive
inflammation (25, 40). The elevated TLR4 expression in the
premature gut is explained by the non-immune role that we
discovered for TLR4 in the regulation of gut development,
through its activation of Notch and Wnt pathways (41–43).
Thus, in the relatively sterile environment of the fetus, TLR4
serves a predominantly developmental role, while the premature
infant, in which TLR4 expression remains persistently elevated,
mounts an exaggerated inflammatory response to bacteria upon
colonization of the intestine by microbes (44). This elevated
inflammatory state leads to mucosal barrier breakdown, bacterial
translocation and the development of NEC in the premature
host (45). Based upon these findings, we have embarked
upon a strategy of TLR4 inhibition for the prevention and
treatment of NEC, and have discovered a novel class of TLR4
inhibitors to serve as potential therapies (46, 47). We also
note that breast milk, which is a powerful material capable of
reducing NEC, is rich in molecules that inhibit TLR4 signaling,
explaining in part their mechanisms of action in achieving NEC
protection (48).

The respiratory epithelium is also known to express TLRs and
the AMPs, SP-A, and SP-D, which mature in the last trimester of
fetal development (49). Preterm infants therefore may lack these
defenses, which is exacerbated by reduced numbers of resident
alveolar macrophages compared to term infants. NEC-induced
lung injury is particularly severe as compared to the lung injury
that develops in premature infants who do not develop NEC.
We have shown that TLR4 expression on the lung epithelium
is required for the recruitment of proinflammatory neutrophils
into the lung through the upregulation of CCL25 (50, 51), and
that strategies to either inhibit TLR4 via the administration
of aerosolized inhibitors, or through genetic deletion, can
serve as novel lung protective strategies in the setting of
NEC (50).

Extracellular Components
In response to infection and inflammation, multiple mediators
in the plasma are activated to fight pathogens. These mediators
include the complement and kinin systems, mannose-binding

lectin (MBL), fibronectin, coagulation factors, arachidonic acid
metabolites, amines, and lysosomal enzymes. Many of these
mechanisms are known to be impaired in the neonate, and
more-so in compromised newborns.

Complement
The complement system, composed of three pathways
for pathogen recognition, subsequent permeabilization,
opsonization, and lysis of harmful microbes, also plays a
significant role in priming the adaptive immune system.
These include the classic, alternative, and the lectin pathways.
Complement expression may vary in newborns secondary to
common genetic variants as well as rare deficiencies. Fetal
complement synthesis is detected as early as 6 weeks gestation,
with gradual age-dependent maturation (52). Levels increase
after birth and reach adult levels between 6 and 18 months of
age (53). Serum complement activity is known to be decreased
in term newborns compared with adults and further diminished
in preterm infants. Levels of complement proteins in pre-terms,
specifically C3 and C9 have been measured to be as low as 10% of
adult levels, remaining low until up to 1 year of age (54). These
components are known to be responsible for recognition of
polysaccharide antigens and formation of the membrane attack
complex in bacterial lysis, respectively. On the other hand, the
complement activation product, C5a, a strong chemoattractant
peptide and a mediator of mesenteric ischemia/reperfusion
injury is found to be highly expressed in cases of NEC and
is under study for its utility as a clinical marker for diagnosis
of infants with NEC in combination with radiographical
findings (55).

The Lectin Pathway
The lectin pathway of complement recognizes conserved
carbohydrate moieties on pathogens, leading to opsonization and
phagocytosis in an antibody independent manner, and making it
an important pathway in neonates, who are relatively antibody
deficient. This pathway is mainly activated by mannose-binding
lectin (MBL) which serves as an opsonin for the ingestion
of gram-negative and gram-positive bacteria by neutrophils
and monocytes. Baseline polymorphisms are known to exist at
the MBL locus, leading to reduced circulating MBL levels in
approximately one-third of the population. However, levels of
serum MBL have been measured to be about 70% that of adults
in term infants and 5% that of adults in premature infants
(56). Low MBL levels have been associated with pneumonia
and sepsis in premature infants. Mannose-binding lectin (MBL)
recognizes microorganisms and activates the complement system
viaMBL-associated serine protease-2 (MASP-2), which in a small
case control study was found to be in higher concentrations
in cord blood levels in premature infants predisposed to NEC
and associated with a 3-fold increased risk to develop NEC
(57). Given that extremely low MASP-2 concentrations was
found in most premature neonates overall in the study, authors
concluded that MASP-2 deficiency may represent a protective
mechanism against excessive proinflammatory stimuli during the
neonatal period.
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Acute Phase Proteins
Acute phase proteins (APPs) are released by the liver, leukocytes,
epithelial cells, and mucosal sites (58) in response to infection
and trauma to resolve inflammation. Some of these APPs exhibit
antimicrobial activities similar to antimicrobial peptides (AMP).
APPs bind to pathogens and permeabilize their membranes. They
are also capable of binding and neutralizing microbial toxins
(59). Maturation of soluble APP is age-dependent, and preterm
newborns have been found to be deficient (60), as is the case with
levels of fibronectin, a glycoprotein that promotes neutrophil
adherence to endothelium as part of their migration from blood
to the tissues. This deficit likely results in reduced neutrophil
function and increased susceptibility to bacterial infections,
which is discussed further in the following section.

Cellular Components
The workhorses of the innate immune system are comprised of
the cellular components that include granulocytes (particularly
neutrophils), monocytes, macrophages, dendritic cells (DCs),
and natural killer (NK) cells. The cells generally phagocytose
microbes, present antigens, and are responsible for killing
pathogenic organisms.

Monocytes and Macrophages
These innate immune system antigen-presenting cells that secrete
inflammatory mediators, perform their function by phagocytosis
of microbes and subsequent antigen presentation to T and B
cells, linking the innate and adaptive arms of the immune system.
Following release from the bone marrow, monocytes circulate in
the bloodstream and then differentiate into macrophages as they
enter tissues. They subsequently become resident throughout the
body, becoming specialized as distinct populations in the alveoli,
interstitial connective tissue, bone, brain, and liver (58). There,
they play the important roles of phagocytosis, killing microbes,
producing cytokines and AMPs, clearing dead host cells, and
antigen presentation. Neonates have comparable numbers of
monocytes to adults (61). However, preterm monocytes have
been found to be defective in their ability to be recruited to sites
of inflammation via chemotaxis (62).

In vitro analysis of cells derived from preterm neonates have
also demonstrated impairment in phagocytosis, as well as low
expression of costimulatory molecules such as MHCII, CD40,
and CD80 required for antigen presentation, a finding which
has been associated with increased incidence of sepsis (63, 64).
Other receptors such as TLR-4, CD14, andMD-2 which, together
as a complex on the extracellular surface of macrophages,
are involved in inflammatory signaling via LPS, an antigen
derived from the wall of gram-negative bacteria. Neonatal
cells appear to have normal levels of each of these molecules.
However, the consequences of TLR activation in preterm infants
and neonates are different compared to adults. Downstream
cytokine response from interaction of LPS with these molecules
in adults is consistent with a proinflammatory Th1 profile
leading to expression of interferon gamma (IFNγ), IL-12 and
tumor necrosis factor alpha (TNFα), which predominantly target
intracellular pathogens. This response is different in neonates
and especially preterm infants, where a Th17 dominant profile is

observed, with IL-6 and IL2-3, which defend against extracellular
bacterial and fungal pathogens, being produced. The anti-
inflammatory and immunoregulatory cytokine IL-10 is also seen
to play a dominant role. It is thought that this polarization
prevents excessive production of the proinflammatory cytokines
such as TNFα and IFNγ, which are associated with spontaneous
abortion and intrauterine growth retardation (65, 66). However,
this pattern of polarization nonetheless sensitizes preterm infants
and newborns to infection by a broad range of intracellular
micro-organisms which would normally require Th1 mediated
clearance, such as Listeria monocytogenes and herpes simplex
virus (HSV) (66). Interestingly, studies looking specifically at
the neonatal response to the latter pathogen have demonstrated
that an overly vigorous immune response via proinflammatory
cytokines IL-6 and IL-8 may also occur, which is associated with
an exacerbated clinical course (67, 68). In this regard, we have
found that TLR4 signaling on the premature newborn epithelium
leads to the differentiation of immature lymphocytes into Th17
cells, leading to the release of IL-17, and subsequent injury to
the intestinal mucosa (28). Accordingly, strategies which inhibit
IL-17 signaling were found to significantly attenuate NEC in
pre-clinical models (28).

Levels of early response cytokines produced by innate cells
such as macrophages are modulated by the neonatal metabolic
state. The preterm infant metabolic state is characterized by
stress induced by low oxygen tension that leads to increased
expression of proinflammatory cytokines such as IL-6 and IL-
8 via a HIF independent pathway (67). However, the response
to low oxygen levels also involves a rise in adenosine levels.
Adenosine is produced by cells in response to stress via
breakdown of adenosine triphosphate (ATP) and is hence found
to be elevated during hypoxia. This molecule has been well-
studied and been found to play an immunomodulatory role
through inhibition of TLR-mediated proinflammatory cytokines
including TNFα, IL-12, andMIP1α (69). Specifically, in pre-term
and term neonates, adenosine has been shown to downregulate
proinflammatory/Th1 cytokine responses, instead mediating an
alternative acute-phase response pathway via MBL, soluble
CD14, C-reactive protein, LPS-binding protein, and the anti-
inflammatory IL-10. Hence, in preterm neonates, adenosine
attenuates pathologic inflammation by downregulating the
inflammatory Th1 pathway. Recent studies have shown that
administration of a probiotic Lactobacillus reuteri increases
serum levels of adenosine and Tregs and results in lower
susceptibility to NEC in stressed newborn mice by inhibiting the
TLR4-mediated NFκB pathway (70–72).

Dendritic Cells
Like monocytes and macrophages, dendritic cells link the innate
and adaptive immune responses (73–75) by serving as the
main APCs for naïve T cells. DCs are classified into the
plasmacytoid DC (pDC) and conventional DCs (cDC) groups.
pDCs represent a small subset of DCs that circulate mainly
in blood and lymphoid, producing massive amounts of type
I IFN (IFNα/β) upon recognizing foreign antigens (74). They
then acquire the ability to present these antigens to T cells (76).
cDCs refer to all DCs other than pDCs. They mainly circulate in
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tissues, constantly acquiring antigens and have superior antigen
processing and presentation functions. They produce IL-12 p70,
which is strongly pro-inflammatory. DC-like cells are detected
in the human fetal thymus, liver and lymph nodes as early
as 12 weeks of gestation (77). In cord blood, the pDC: cDC
ratio is 3:1 compared to a 1:3 pDC-cDC ratio in adults (78).
Much like monocytes, DC populations in preterm infants and
neonates are found to express lower MHC-II, CD80, and CD86
compared to adult cells, reflective of their defective ability to fully
activate antigen specific T and B cell responses. As a consequence,
neonates and especially preterm infants have impaired immune
responses to most vaccines (74, 79, 80).

In parallel with the monocyte and macrophage populations
described above, TLR expression in preterm, full-term and adult
DCs have been found to be generally equivalent. However, in
response to stimulation, preterm infant DCs induce production
of the anti-inflammatory cytokine, IL-10 compared to term
infant DCs that produce elevated levels of IL-10, IL-6, and Th17
inducing IL-23 (81). This cytokine production in term neonates
declines over the first year of life while levels of pro-inflammatory
cytokines such as IL-1β and TNFα increase. Further, neonatal
pDCs exhibit severe defects in IFNα/β production upon
TLR activation.

Neonatal lungs have been found to contain fewer cDCs,
and a markedly lower number of pDCs in comparison with
adult lungs (82). In laboratory studies, neonatal pDCs responded
poorly to respiratory syncytial virus (RSV), a common pathogen
encountered by neonates. pDCs from premature neonates have
been found to mount a weaker response than those from full-
term neonates to both RSV and to TLR9 agonists (83). The
lower numbers of pDCs in preterm neonates likely translate into
compromised antiviral function.

A specific population of cDCs that express CD103 are known
to drive the induction of the chemokine receptor CCR9 and
alpha4 beta7 integrin, both known as gut-homing receptors.
CD103(+) DCs also contribute to control inflammatory
responses and intestinal homeostasis by fostering the conversion
of naive T cells into induced Foxp3(+) regulatory T cells. These
cells have been found to be missing in neonatal gut tissue,
resulting in susceptibility to Cryptosporidium parvum infections
(84) and increased prevalence of food allergies (85).

Neutrophils
Neutrophils belong to a group of white blood cells known as
granulocytes that have cytoplasmic granules containing cationic
AMPs. They are present in the fetal liver parenchyma as
early as week 5 of gestation (86). In response to stimulus,
neutrophils must travel from the bloodstream to the site
of inflammation, enter the tissue via diapedesis, phagocytose
the pathogen, and kill it in its phagolysosome. Preterm
neutrophils have been found to have deficiencies in each of
these functions (87). First, selectin mediated rolling occurs at
the vascular endothelium, which is required for neutrophil
entry from the bloodstream into tissues. Compared with adults,
neonatal neutrophils express <50% L-selectin on their cell
surface compared to adult neutrophils. Preterm endothelium
has decreased P-selectin expression compared to term infants

(88). β2 integrin expression is required for arrest of rolling and
adhesion to the endothelium but these are decreased on preterm
neutrophils and are unable to be upregulated in response to
stimulus (89). Diapedesis through the endothelial lining requires
that the neutrophil actin cytoskeleton undertake significant
structural reorganization, which neonatal neutrophils are unable
to achieve (90). Levels of opsonins such as immunoglobulin
G (IgG), complement, and their receptors required for antigen
recognition and phagocytosis are reduced in preterm neutrophils
(91, 92). This phenomenon of diminished opsonization in
preterm neutrophils has been demonstrated in in vitro studies
that show impaired adult neutrophilic phagocytosis following
incubation in preterm serum (93).

Pathogenic killing in the neutrophil phagolysosome occurs
primarily via an NADPH oxidase-dependent respiratory burst.
Term neonates have been shown to have a largely intact
respiratory burst, however preterm neonates, especially those
that are critically ill (94), display decreased respiratory burst and
killing on exposure to group B Streptococcus, Staphylococcus, and
Pseudomonas (95). Other bactericidal molecules normally found
in neutrophilic granules, such as lactoferrin, myeloperoxidase
and BPI are also decreased in quantity in neonatal neutrophils
(∼30–50% of adult levels) (11), and more so in preterm infants,
a phenomenon that has been correlated with increased risk
of NEC (96, 97). This is also thought to confer susceptibility
specifically to Pseudomonas aeruginosa, Staphylococcus aureus,
and some strains of group B streptococci based on in vitro assays
(98, 99). Neutrophils are able to form neutrophil extracellular
traps (NET) by extruding DNA, chromatin and antibacterial
proteins in order to sequester bacteria. NET formation has been
found to be diminished by inhibitors present in cord blood of
preterm and term neonates (100). Recent studies have examined
whether NETs play a role in NEC pathogenesis. For instance,
in one study, protein arginine deiminase (PAD) inhibited mice,
which are incapable of producing NETs, were found to be
protected from NEC compared to controls in a NEC model
(101). Similarly, human NEC intestinal samples appeared to have
increased neutrophil activation and NET formation.

Finally, neonates are unable to ramp up robust neutrophil
production in response to infection, mainly due to a diminished
bone marrow pool. This deficit is exacerbated in premature
infants (102), in whom neutropenia is a clinical indicator of
poor prognosis in cases of bacterial sepsis (103). Unfortunately,
clinical trials for granulocyte colony-stimulating factor (G-CSF)
or granulocyte-macrophage colony-stimulating factor (GM-CSF)
as either prophylaxis or therapy for neonatal sepsis resulted
in increased cell counts with no concurrent reduction in
mortality (104).

Myeloid-Derived Suppressor Cells
Related to neutrophils and monocytes are a population known
as myeloid-derived suppressor cells (MDSCs), which have been
found to play a major regulatory role in inflammation and
immune function in many pathological conditions (105–108).
They are distinct from the former immune cell populations in
their morphological, phenotypic, and functional heterogeneity.
They produce high levels of ROS, NO, arginase (ARG1), an
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immunosuppressive enzyme as well as prostaglandin E2 (PGE2).
They have also been found to highly express a number of anti-
inflammatory cytokines, including IL-10, all of which mediate
their potent inhibition of immune responses from T cells, B cells,
and NK cells (109–111).

A recent in vivo study examining PBMC from preterm and
term neonates determined that the levels of MDSCs in the blood
of preterm infants was substantially lower than that observed
in full-term infants (112). More so, low numbers of MDSCs
in preterm infants was associated with the development of
NEC. MDSC levels were also correlated with serum lactoferrin
levels. Finally, in vitro treatment of newborn neutrophils and
monocytes with lactoferrin converted these cells to MDSCs.
These lactoferrin-induced MDSCs improved survival following
treatment of newborn mice. Taken together, these findings
suggest an important clinical and therapeutic role for MDSCs in
disorders such as NEC.

Natural Killer Cells
NK cells play a significant role in defense to virus-infected and
malignant cells by expressing receptors that mediate killing of
these harmful cells. The percentage of NK cells in cord blood
from preterm and term neonates is often slightly lower than in
the blood of children and adults; however, the absolute number is
slightly higher, due to overall higher lymphocyte count in infancy
(113). Fetal and neonatal NK cells are mainly deficient in IFNγ

and TNFα production and exhibit reduced cytotoxic function
compared to adult cells.

Like cytolytic CD8+ T cells, NK cells mediate cytotoxicity,
though they differ in accomplishing this via an MHC
independent mechanism (114). CD56 is an NK cell-specific
marker whose presence on the cell surface reflects cytolytic
function. About half of neonatal NK cells do not express CD56,
corresponding to a 50% capacity of full-term and premature
infant cord blood NK cells to mediate cytolysis (measured
at 15–60% in various studies) compared to adult NK cells
(115–117).

NK cells kill infected target cells that are coated with IgG
antibodies in a process known as antibody-dependent cellular
cytotoxicity (ADCC) (117). Neonatal NK cell ADCC activity has
been measured at ∼50% that of adult NK cells. This phenotype
is rescued upon addition of cytokines such as IL2, IL12, IL15,
and IFNγ in vitro (118). Similarly, when exposed to HSV, IFNγ

production is identical in neonatal and adult NK cells (119).
These studies suggest the neonatal NK cell ADCC activity in
vivo may be comparable to adult levels in the setting of an
appropriate stimulus.

In general, there is scarcity of data examining the role of NK
cells in NEC, however, one small prospective study found that
preterm infants with NEC showed a reduction in their NK cell
proportion compared to controls (120).

ADAPTIVE IMMUNITY

The adaptive immune system consists of a cell-mediated response
involving T helper cells (CD4+) and cytotoxic T cells (CTL,

CD8+), humoral responses involving immunoglobulins and
immunoregulatory actors including T regulatory cells (Tregs).

T Cells
CD4+ T cells, known as “helper cells,” function by activating
other lymphocytes to kill infected cells. After being presented
with antigens by MHC class II molecules expressed by APCs,
they produce cytokines that regulate the immune response.
Depending on the kind of stimulus and resulting cytokine
environment, they may differentiate into Th1, Th2, Th17, or
Treg cells. Th1 cells mediate cellular immunity, Th2 cells are
involved in humoral immunity, while Th17 cells produce the
proinflammatory cytokine IL-17. Tregs are immune suppressor
cells. CD8+ or cytotoxic T cells kill infected cells and cancer cells
directly via antigen recognition using class I MHC molecules.

There are several features of preterm T cells which limit
their function. First, preterm neonates have been found to
have marked lymphopenia (up to 50% reduction) with a
significant decrease in the percentage of total, CD4+, and
CD8+ lymphocytes compared with full term infants (121). The
reduction is most notable among the CD8+ population, resulting
in an increased CD4/CD8 ratio.

DC and macrophages induce the production of IL-12
after encountering antigens. IL-12 in turn stimulates NK
cells and induces naive CD4+ T cells to become Th1-type
effector cells which produce IFNγ, initiating the expression of
proinflammatory cytokines, such as IL-1β, TNFα, and further
upregulation of IL-12 production (122, 123). Preterm naive
CD4+ T cells have reduced activation and impaired early
Th1 differentiation including IFNγ production (124). Upon
encountering stimuli, these T cells express a Th2 and Th17
polarization, weak Th1 polarization, and low innate antiviral
type 1 interferon responses (65, 125). They are therefore referred
to as Th2 skewed (126). IFNγ production by stimulated naive
cord blood CD4+ T cells has been measured as 5 to 10-fold
less relative to adult CD4+ T cells, resulting in susceptibility to
viral infections such as human cytomegalovirus (HCMV) and
HIV (127). The transcription factors T-bet, GATA3, and RORγt,
regulate differentiation into Th1, Th2, and Th17 phenotypes,
respectively. Accordingly, recent studies have shown that the
proportion of T-bet expressing CD4+ T cells is reduced within
the preterm T cell population (121).

Given the relatively preserved Th2 response, preterm T
cells are still able to provide help to newborn B cells for
antibody synthesis. CD8 function is also relatively intact in
the preterm infant, with IFNγ production by stimulated naive
cord blood CD8+ T cells comparable to adults’ (127). It is
unclear if the marked reduction in CD8+ T cell frequency,
contributes to the increased risk of infections in these extremely
premature neonates.

Tregs, which suppress fetal anti-maternal immunity and
persist at least until early adulthood are abundant in the
peripheral blood and tissues of the human fetus and preterm
infant. In vitro studies looking at cord blood have shown no
quantitative differences within the Treg compartment between
full term and preterm neonates. However, Tregs are also involved
in T cell migration to tissues such as skin and gut in a process that
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depends on the expression of the homing receptors CCR9/α4β7
and CCR4, respectively. CCR9 signaling is also known to regulate
the immune response by inhibiting Treg development (128).
The preterm Treg cell compartment has been shown to have
lower frequency of α4β7-expressing but higher proportions of
CCR4- and CCR9-expressing cells compared with full-term
infants. This reflects an altered homing capacity of T cells to
their target tissues in preterm infants compared to full-term.
The premature newborn intestinal mucosa is characterized by
an abundance of proinflammatory IL-17-producing Th17
cells which comes at the expense of anti-inflammatory
Foxp3+ Treg cells, and the relative skew toward a pro-
inflammatory state contributes to the excessive inflammatory
response that leads to development of neonatal necrotizing
enterocolitis (28).

B Cells and Immunoglobulins
The B cell receptor is made up of antibodies specific for antigen
detection. Upon binding of the antigen to the receptor, the former
is endocytosed, processed, and presented on the B cell surface
by MHC-II proteins which bind to a helper T cell. This triggers
T cell activation, cytokine release to induce B cell proliferation
and differentiation into antibody-producing plasma cells or
memory cells. Antibodies that encounter antigens neutralize the
associated pathogens and/or attract macrophages or killer cells to
attack them.

Passive transfer of antibodies to the fetus and newborn
occurs via transfer of maternal IgG from the placenta or
secretory IgA (IgA) from breast milk. In utero, fetal serum
immunoglobulin concentrations are significantly low until 18–
20 weeks of gestation. Concentration of fetal immunoglobulins
rises with the transfer of maternal immunoglobulin G (IgG)
across the placenta during the third trimester of pregnancy.
Preterm infants at <22 weeks gestation have 10% the level of
maternal antibodies, increasing to 50% by 28–32 weeks, and
elevating to 20–30% above maternal levels by term (129). This
lower level of IgG compared to term neonates is likely due
to less time for transfer, lower production levels and impaired
placental transport. Antibodies from these infants therefore
demonstrate low opsonic activity for all types of organisms (130).
IgG concentrations may drop further after birth in these preterm
infants due to the normal physiologic hypogammaglobulinemia
that occurs in all infants. However, breast milk from mothers
of preterm infants have been found to have higher levels of
sIgA compared to term mothers’ milk (131–133). Clinical trials
evaluating the effect of oral immunoglobulin administration
in preterm infants (134) have found no effect of oral
immunoglobulin administration on risk of immune mediated
conditions such as NEC. This is of interest, given that a recent
study using a mouse NEC model showed that secretory IgA
from maternal milk was protective for NEC (135). This data was
correlated with levels of secretory IgA levels from preterm infant
fecal samples.

In spite of limitations in the quality and quantity of
immunoglobulins, even premature infants as young as 24
weeks gestation respond vigorously to protein vaccines (136,
137) such as tetanus and diphtheria toxoids, hepatitis B

surface antigen, and OPV (138, 139). In contrast, responses
to polysaccharide, T cell-independent antigens, such as the
capsular polysaccharides of Haemophilus influenzae type b
or Group B streptococci, are severely blunted in both
preterm and term neonates until ∼18–24 months (140).
Pneumococcal and H. influenzae conjugate vaccines were
designed as a solution to this phenomenon of poor response to
polysaccharide antigens. In complexing polysaccharide antigens
to immunogenic proteins, a T cell mediated mechanism is
required (141).

IMMATURE IMMUNITY AND DISEASE

As discussed above, the lack of maturation of intestinal innate
and adaptive immune defense mechanisms in premature
infants explains their susceptibility to diseases of infectious
and inflammatory etiology such as NEC (see Table 1).
As demonstrated, the components of adaptive immunity
regulate the innate immune system which can cause disease
when allowed to respond unchecked. Preterm infants, who
are born with underdeveloped adaptive immunity also
have reduced transfer of maternal antibodies, especially
formula fed infants (142) placing them at greater risk for
inflammatory diseases such as NEC. The role of dysfunctional
TLR4 signaling and other immature immune activation,
compromised barrier function as well as deficits in humoral
and cellular immunity have been discussed elsewhere in
this article.

Because infants with immature host innate and adaptive
immune systems also have abnormal patterns of colonizing gut
bacteria, there is disruption of bacterial homeostasis referred to as
dysbiosis, which causes gut bacteria over-reactivity that may lead
to further inflammation. The resulting high proinflammatory
and pro-oxidant stress inevitably leads to irreversible damage to
vital organs, including brain and intestine that often results in
neurodevelopment impairment (143). Systemic inflammation
during the first weeks of life is predictive of neonatal cerebral
white matter injury (144), microcephaly (145), and cognitive
impairment at 2 years of age (146). We have recently shown
that NEC-induced brain injury, which is more severe than the
brain injury that occurs in age-matched premature infants who
do not develop NEC, and is characterized by significant white
matter injury leading to cognitive impairment, develops as a
result of cytokine release from the injured intestinal epithelium,
which causes microglial activation, and the release of ROS
(147). Accordingly, strategies which target the microglia and
dampen the ROS response were shown in pre-clinical models
to protect against the development of histologic NEC-induced
brain injury, and importantly to prevent the development
of cognitive impairment even in the setting of severe
NEC (147).

The link between the gut and lung microbiome’s development
is an area of active study. Gut and lung microbiota participate
in a complex interaction that shapes the host immune system,
evidenced by the bidirectional association of gut dysbiosis with
lung disease. For instance, infants with early life asthma have
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TABLE 1 | Summary of differences in development between preterm infant, term infant and adult immune components.

Preterm infant Full term infant Adult

Skin epithelium Thin epidermis More developed Normal

No lipid layer Lipid layer present Normal

Neutral pH Acidic pH Acidic pH

Vernix caseosa develops late Vernix caseosa present Not present

– Broad array of AMPs Less AMP diversity

Keratinocytes underdeveloped Commensal bacteria interact with keratinocytes

to make AMPs

–

Gut epithelium Higher levels of PRR expressed on epithelial

cells

Fewer PRR Normal levels

Few Paneth cells; decreased AMPs Paneth cells make lysozyme and AMPs Paneth cells make lysozyme and AMPs

Epithelium more permeable to pathogenic

bacteria

Epithelium more resistant to pathogenic bacteria Normal

Complement Low levels Increased levels High levels

High level C5a fragment Lower levels Low levels

MBL Low 5% 10% 100%

APPs Low soluble APP Increased High

Monocytes Comparable levels Comparable levels Comparable levels

Cannot be recruited to tissue Recruited to tissues, but fewer tissue

macrophages than adult

Normal

Poor phagocytic ability Normal phagocytic ability Normal

Low receptor levels Normal receptor levels Normal levels

Trigger Th17 response Trigger Th17 response Th1 response

Metabolic state Low O2 tension Low O2 tension Normal O2 tension

Proinflammatory cytokines Proinflammatory cytokines No cytokine stress response

High adenosine levels → Immunomodulation Lower adenosine levels –

Dendritic cells – High plasmacytoid DC (pDC:cDC ratio 3:1) in

serum

High conventional DC (pDC:cDC ratio 1:3) in

serum

Low receptor levels Low receptor levels Normal

Impaired vaccine response Impaired vaccine response Normal response

Very low levels in tissues Low levels in tissues Higher levels in tissues

Induce anti-inflammatory IL-10 Induce IL-10, IL-6, and IL-23 Induce IL1β and TNFα

Poor antiviral response Improved antiviral response Intact antiviral response

Poor induction of Foxp3(+) Treg Poor induction of Foxp3(+) Treg Normal induction of Foxp3(+) Treg

Increased allergy prevalence Increased allergy prevalence

Neutrophils Very low levels of L-selectin Low levels of L-selectin <50% Normal

Low β2 integrin Low β2 integrin Normal

Unable to diapedese Poor diapedesis Normal

Diminished opsonization Improved opsonization Normal

Impaired respiratory burst Intact respiratory burst Normal

Very low levels of bactericidal molecules in

neutrophilic granules

Low levels of bactericidal molecules in

neutrophilic granules

Normal

Poor NET formation Poor NET formation Normal

No reserve in the setting of infection No reserve in the setting of infection Normal

MDSC Low High Low

NK cells Normal to slightly higher number Normal to slightly higher number Normal

Deficient in IFNγ and TNFα production Deficient in IFNγ and TNFα production Normal

About 50% do not express CD56; reduced

cytotoxic function

About 50% do not express CD56; reduced

cytotoxic function

Normal

Unknown 50% ADCC compared to adults Normal

T cells 50% lymphopenia compared to full term Higher counts Normal

Low CD8 count, but CD8 cytolytic activity

intact

Normal counts;

Intact CD8 activity

Normal

(Continued)
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TABLE 1 | Continued

Preterm infant Full term infant Adult

Impaired Th1 differentiation, favor Th2 and

Th17

Impaired Th1 differentiation, favor Th2 Th1 differentiation intact

Normal Treg levels Normal Treg levels Normal Treg levels

Impaired homing of T cells to target tissues – Normal homing capacity

Serum Maternal

IgG

10–50% of maternal levels 20–30% above maternal levels –

Low opsonic activity Low opsonic activity Normal

sIgA Low in Serum Higher in serum –

High in Mother’s breastmilk Lower in mothers breastmilk –

been found to have increased levels of Clostridia and reduced
Bifidobacteria in the gut (148).

SUMMARY

The response of the compromised neonate to potential infection
reflects a pattern of unique features of the premature host,
that stem in part from a variety of under-developed innate and
adaptive immune responses. Such responses leave the premature
neonate vulnerable to significant infection, while also playing an
important role in the pathogenesis of diseases that are unique

to this population, including necrotizing enterocolitis, as well as
the sequelae of lung and brain injury. A greater understanding
of the genetic, cellular, hormonal and metabolic regulation of the
immune pathways of the newborn is likely to yield novel insights
into how this population responds to infection and develops
disease, and will hopefully unlock new avenues for prophylaxis
and therapy of newborn septic disorders.
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