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Abstract: Approximately 70% of people will experience a traumatic event in their lifetime,
but post-traumatic stress disorder (PTSD) will only develop in 3.9% and complex post-
traumatic stress disorder (CPTSD) in 1–8% of the population worldwide, although in some
countries (e.g., Poland and Northern Ireland) it will develop in a much higher percentage.
Stress-related disorders have a complex pathogenesis involving neurophysiological, genetic,
epigenetic, neuroendocrine and environmental factors. This article reviews the current
state of knowledge on the molecular aspects of selected PTSD symptoms: hypervigilance,
re-experiencing, emotion dysregulation and dissociation, i.e., the symptoms with strong
neurobiological components. Among analysed susceptibility factors are specific gene
polymorphisms (e.g., FKBP5, COMT, CHRNA5, CRHR1, 5-HTTLPR, ADCY8 and DRD2) and
their interactions with the environment, changes in the HPA axis, adrenergic hyperactivity
and disturbances in the activity of selected anatomical structures (including the amygdala,
prefrontal cortex, corpus callosum, anterior cingulate gyrus and hippocampus). It is worth
noting that therapeutic methods with proven effectiveness in PTSD (TF-CBT and EMDR)
have a substantial neurobiological rationale. Molecular aspects seem crucial when searching
for effective screening/diagnostic methods and new potential therapeutic options.

Keywords: stress-related disorders; post-traumatic stress disorder; complex post-traumatic
stress disorder; molecular mechanisms of PTSD

1. Introduction
1.1. Complex Symptomatology of PTSD and CPTSD

Post-traumatic stress disorder (PTSD) develops as a consequence of exposure to one
or more traumatic events, i.e., actual or threatened death, serious injury or sexual violence.
PTSD can be diagnosed in a person who has experienced such an event personally, has
been an eyewitness to it, has learned that a close family member or close friend has
died or been exposed to death as a result of violence or an accident, or has experienced
repeated or extreme exposure to details of traumatic events (e.g., firefighters, paramedics
and policemen). Symptoms of PTSD vary in type and severity from patient to patient.
They include recurrent, intrusive and involuntary memories, nightmares or flashbacks of
the traumatic event, dissociative symptoms, avoidance of memories and trauma-related
triggers, disturbances in emotional state (e.g., anxiety, anger, shame and lack of positive
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emotions) and cognitive functioning (e.g., negative beliefs about oneself or the world).
Changes in excitability and reactivity are also characteristic and can include aggressive
behaviour, risk-taking behaviour, hypervigilance and sleep disorders. The symptoms must
last for more than a month [1].

Individuals exposed to chronic victimisation have a different clinical presentation than
those with PTSD, hence the need to distinguish a new disorder [2–4]. Van der Kolk et al.
developed the concept of Developmental Trauma Disorder (DTD), which is characterised
by affect dysregulation (e.g., extremely negative affective states), dysregulation of attention
and behaviour (e.g., self-harm), somatic dysregulation (e.g., hypersensitivity to touch or
sounds), limited access to one’s own emotions and problems with expressing them (e.g.,
alexithymia), attachment disorganisation, distorted perception of oneself and the world,
problems in interpersonal relationships and decreased functioning [2,5].

While the DSM-5 does not recognise DTD, the ICD-11 has included a new diagnosis—
complex post-traumatic stress disorder (CPTSD)—which largely covers the DTD criteria
but applies also to adults. CPTSD is a disorder that develops because of exposure to
repetitive traumatic experiences that are difficult or impossible to escape (e.g., torture,
slavery, genocide campaigns, prolonged domestic violence, repeated childhood sexual or
physical abuse) [6]. Compared to PTSD symptomatology, CPTSD is additionally charac-
terised by severe and persistent problems with affect regulation, distorted self-image and
consistent emotionality (diminished, defeated and worthless), as well as problems with at-
tachment and maintaining relationships [6,7]. Childhood cumulative trauma is a predictor
of increased symptom complexity in adults with CPTSD [8]. There are many diagnostic in-
struments for PTSD and its specific domains. The gold standard for diagnosing PTSD is the
Clinician-Administered PTSD Scale for DSM-5 (CAPS-5), which is a structured interview
that takes into account all PTSD symptoms according to DSM-5 [9,10]. Another popular
instrument is the PTSD Checklist for DSM-5 (PCL-5) that can be used for screening (e.g., in
primary health care). It is a questionnaire examining 20 symptoms of PTSD according to
the DSM-5 [11,12]. The Short Post-Traumatic Stress Disorder Rating Interview (SPRINT)
consists of eight items relating to key symptoms of PTSD (intrusion, avoidance, arousal
and numbing), impairment of daily functioning, coping with stress, somatic symptoms,
as well as two items assessing dynamics of the disorder [13]. The International Trauma
Questionnaire (ITQ) is a self-report tool consisting of 18 items that allows for the assessment
of PTSD symptoms and disturbances of self-organisation, which together constitute CPTSD
according to the International Classification of Diseases 11 [14,15]. To assess and monitor
the severity of dissociative symptoms, the Dissociative Experiences Scale (DES-II) and the
Multiscale Inventory of Dissociation (MID-60) are used [16–18]. In the context of emotion
regulation disorders, the Posttraumatic Risky Behaviours Questionnaire (PRBQ), which
examines involvement in risky or self-destructive activities, may be useful [19,20].

1.2. Complex Pathogenesis of Post-Traumatic Stress Disorders

Pathogenesis of post-traumatic stress is not fully explained, with the specific nature
of this disorder (especially in the case of developmental trauma) sometimes making it
difficult to distinguish the cause from the consequences of the trauma [21]. It is known
that pathogenesis of PTSD includes abnormalities at the neuroanatomical [22–24], neuroen-
docrine [25–27], genetic [28–31] and epigenetic [23,29,32,33] levels, with these biological
factors interacting significantly with the environment [34].

The heritable component of PTSD is polygenic, involving genes involved in the
hypothalamic–pituitary–adrenal (HPA) axis, serotonergic, dopaminergic, noradrenergic,
GABAergic, BDNF, NPY and APOE systems, among others [30,35–37]. Boscarino et al.
indicated that the number of specific alleles of genes associated with PTSD risk (among
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FKBP5, COMT, CHRNA5 and CRHR1) is related to the likelihood of PTSD during life,
as well as to the age of onset of first symptoms. Individuals with more high-risk alleles
and more exposure to trauma have an increased risk of PTSD and an earlier age of onset.
Individuals with no or few high-risk alleles are resilient to PTSD, regardless of trauma
exposure [36].

Furthermore, it is known that the risk of developing PTSD depends on gender, type
of trauma, developmental period, personality factors, ethnicity, level of education, history
of previous mental disorders (personal or in the family), cognitive abilities, coping and
response styles and other biographical factors [38–40]. Also, previous exposure to traumatic
events raises the risk of developing PTSD in the future [41].

1.3. Hyperarousal, Dissociation, Emotion Dysregulation and Re-Experiencing as Neurobiological
Processes Typical for Post-Traumatic Stress Disorder

In this article, we want to focus on molecular aspects of four particular symptoms of
PTSD, for which significant neurobiological correlates can be identified:

• Hyperarousal—defined as a high level of physiological arousal and excessive alertness
to possible dangers or difficulties. In the course of PTSD, hyperarousal becomes
dysfunctional because it automatically and uncontrollably connects with memories of
traumatic events [42,43].

• Dissociation—loss of continuity of subjective experience due to unwanted intrusions
associated with the traumatic memory, lack of access to information or control of
mental functions, or the experience of detachment from oneself or reality [1,44]. When
traumatic experiences are so difficult that they cannot be fully integrated, structural
dissociation of the personality can occur [45–47].

• Emotion dysregulation—closely related to dissociation, especially in people with
CPTSD [48]. This is a deficit of management of processes essential for emotional
control, most likely related to neurofunctional disturbances associated with chronic
traumatisation [48–50].

• Re-experiencing—a constant feature of stress-related disorders. It encompasses intru-
sive memories or images, flashbacks, repetitive dreams or nightmares thematically
related to the traumatic event [18,51].

The above phenomena will be discussed in terms of pathogenesis, modulators and
susceptibility to PTSD development.

2. Hyperarousal
During a traumatic event, being alert to alarm signals is a life-saving skill. Soldiers,

for example, can increase their chances of survival if they recognise signals of an incoming
air strike in time. Vigilance is even considered a part of a soldier’s ethos [52]. Individuals
who have been subjected to chronic trauma are focused on searching for alarm signals
because this can potentially protect them from harm (e.g., damage to health, injury or even
death). This type of automatic processing of threatening stimuli is crucial for survival,
but it persists even after the stimuli have ceased, playing a key role in the aetiology and
maintenance of anxiety disorders [53]. Such attentional bias can develop not only when
consciously processing threat but also with subliminal exposure to trauma-related stimuli.
In the study by Rabellino et al. [54], PTSD individuals showed increased activation of
the innate alarm system (i.e., the cerebellar–limbic–thalamo–cortical network), especially
with subliminal stimuli. In hypervigilant individuals, visual scanning and arousal are
higher not only when processing threatening stimuli, but also neutral ones, regardless
of self-reported anxiety [52]. This can also be considered as executive function disorders
with possible dysfunctions of the dorsal prefrontal networks [55] and irregularities in
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dopamine function [56]. Impairments in attention regulation and response inhibition are
among the most robust deficits in PTSD. They are both a risk factor and an element of
the clinical presentation and are related to the severity of symptoms [57]. Behavioural
inhibition in childhood (i.e., restraint in engaging with the world and tendency to scrutinise
the environment for potential threats) [1] may be associated with the development of
attentional bias in adolescents [58].

Individuals with PTSD function as if the trauma was still ongoing, which is reflected
also in their bodily reactions [59]. Traumatized individuals have altered stress response
systems and acute stress reactivity compared to healthy individuals [60–63]. In the Trier
Social Stress Test (TSST), individuals with PTSD had lower levels of cortisol and higher
levels of salivary alpha-amylase (sAA), the latter of which is considered a reliable marker
of autonomic nervous system activity [64]. There are neurofunctional connections here,
as sAA reactivity is linked to the activation of the right amygdala (lasting even 20 min
after the stressor) and the right dorsal anterior cingulate cortex [65]. Clear neuroimaging
lateralization has also been demonstrated: in response to stress stimuli, the salience network
is activated in the right rather than the left hemisphere, which confirms the hypotheses
of asymmetry in stress reactivity [66], stress sensitivity and the dominance of the right
hemisphere during the activation of traumatic memories [65]. The right hemisphere is
responsible for assessing the emotional significance of incoming information and the
subsequent regulation of hormonal and autonomic responses, while the left hemisphere is
responsible for cognitive analysis [67] and exerts an inhibiting effect on the activity of the
HPA axis [68]. When stress becomes chronic or is perceived as uncontrollable or impossible
to escape, a shift from the initial dominant activity of the left medial prefrontal cortex
(mPFC) to the right mPFC occurs, which activates a physiological stress response [68].
Also, numerous studies have shown that the size of the corpus callosum is significantly
smaller in people with PTSD (especially in maltreated children with PTSD) [69–71]. As the
corpus callosum is a structure connecting the two hemispheres, it is speculated that such
abnormalities may impair processing of new information, especially traumatic events [71],
and impair inhibitory callosal effects [72].

To understand the molecular differences that occur in people with hyperarousal-type
PTSD, it is worth referring to LeDoux’s classical model of emotion processing. According
to LeDoux, the amygdala plays a key role as a centre for assigning meaning to stimuli that
arrive from the environment and are registered in the thalamus. Stimuli that are assessed as
significant, e.g., those of an imminent threat, are processed via a preferential direct pathway
(the so-called ‘low pathway’). The amygdala instantly sends signals to the hypothalamus
and brainstem, which results in activation of the autonomic nervous system and secretion
of cortisol and catecholamines—key drivers of stress reactions. Only then does a conscious
interpretation of the stimuli take place, with the anterior cingulate cortex (ACC) and
prefrontal cortex (PFC) playing a key role [73–77]. Considering the prominent role of
the HPA axis and catecholamines in maintaining the state of hyperarousal, the molecular
factors associated with them were analysed, with attention to potential susceptibility factors.
Changes in glutamatergic transmission in the course of PTSD were also discussed as a key
factor regulating the HPA axis response in the state of stress.

Table 1 summarizes the most important information about the molecular correlates
of hyperarousal.
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Table 1. Summary—neurobiological correlates of hyperarousal in PTSD and their consequences.

Mechanisms Consequences

‘Innate alarm system’ hyperactivation
↑ activation of cerebellar–limbic–thalamo–cortical network

↑ visual scanning
↓ attention regulation
↓ response inhibition

Left-to-right mPFC shift
↓ left mPFC activity
↑ right mPFC activity

↓ corpus callosum volume

↑ stress reactivity
↑ emotional analysis
↓ cognitive analysis

↓ inhibition of HPA axis

HPA axis hypoactivity
↑ number of GR receptors in pituitary gland

pituitary hypersensitivity to cortisol
↓ cortisol prolonged and ↑ arousal to threat

FKBP5 polymorphisms
↓ sensitivity of GR to cortisol

GABA/Glu imbalance
↑ Glu, ↓ GABA

hippocampal damage
pathological neuroplasticity in amygdala and PFC

↑ neuronal excitation
neurotoxicity

hyperactivation of amygdala

Adrenergic hypersensitivity
↓ alpha-2 autoreceptors
↑ noradrenaline secretion

↑ physiological stress response

COMT polymorphism (Val158Met)
↓ COMT activity

↓ hippocampal activation

↓ resilience to stress
problems in extinguishing fear

memory impairment

2.1. HPA Axis

PTSD is characterised by endocrine changes that are distinct from other mental dis-
orders. These differences are particularly evident in the HPA axis. Cortisol levels are low
in people with PTSD [26,78–80], which seems unintuitive because one would expect that
symptoms such as re-experiencing would maintain the stress response in the chronic stage,
stimulating hypercortisolism [78]. This phenomenon is explained by enhanced negative
feedback inhibition. Following the HPA axis from the top, both depression and PTSD are
associated with increased CRF secretion in the hypothalamus. In depression, according to
the classical stress response pattern, this leads to increased ACTH secretion and subsequent
hypercortisolism, which in turn inhibits the pituitary gland. In PTSD, however, despite
increased CRF secretion, there is no increased cortisol secretion [25,26,81]. Hypoactive
HPA axis leads to prolonged and elevated arousal to threat and hinders returning to base-
line [82]. It is believed that hypocortisolism after a traumatic event is a predictor of PTSD
development [83–86].

According to current knowledge, the most plausible explanation is that in traumatised
individuals, the response to ACTH is suppressed at the level of the pituitary gland. It is
assumed that the pituitary gland is hypersensitive to cortisol due to an increased number
of glucocorticoid receptors (GR). Studies using the dexamethasone suppression test have
confirmed that the key element responsible for the increased negative feedback axis are
processes at the pituitary level [85,87]. One of the extensively studied genes is FKBP5
encoding FK506 binding protein 5 which regulates glucocorticoid receptor sensitivity and is
involved in the regulation of the HPA axis [36,88–90]. Binder et al. studied polymorphisms
of this gene in the context of child-abuse trauma. Although SNPs of this gene did not
directly predict the occurrence of symptoms in non-child abuse, four SNPs together with the
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severity of child abuse did predict the level of PTSD symptoms in adults. The association
remained statistically significant when controlling for severity of depression, age, gender,
level of exposure to non-child abuse and family factors [90]. The gene is worth looking at
in a functional context. Its product binds to GR chaperone protein during maturation of
the GR complex. Polymorphisms of this gene are responsible for the reduced sensitivity
of GR to cortisol. In such a situation, the feedback loop in the HPA axis does not function
efficiently, which potentiates the physiological stress response [90,91]. The chronic nature
of the stress response is one of the key biological aspects of PTSD. The gene is subject to
environmental influences, being an example of gene–environment (GxE) interaction in the
pathogenesis of PTSD [36,92,93].

Further analysis of the HPA axis should also consider the polymorphisms of the
corticotropin-releasing hormone receptor gene (CRHR1 and CRHR2) [36,82]. In a study
of child accident victims, a polymorphism of CRHR1 was identified that increases sus-
ceptibility to acute PTSD symptoms and affects the course of symptoms in the future
(rs12944712) [94]. The variants rs12938031 and rs4792887, on the other hand, were asso-
ciated with the occurrence of PTSD in victims of the 2004 hurricane in Florida [95]. In
the context of exposure to chronic trauma, the study by Sanabrais-Jimenez et al. [96] is
particularly relevant, as they demonstrated the interaction of CRHR1 and CRHR2 with
childhood trauma and an increased risk of suicide attempts. This particularly applies to
the following types of trauma: physical neglect, emotional abuse and sexual abuse, which,
in combination with certain genetic variants, increase the risk of suicide.

2.2. Glutamatergic and GABAergic Activity

The HPA stress responses are integrated by glutamatergic and GABAergic systems.
The paraventricular nucleus (PVN) of the hypothalamus is densely innervated by gluta-
matergic and GABAergic neurons [97–100]. In a brain that is not subjected to severe stress,
depression (or some other disorders, e.g., autism spectrum disorder, schizophrenia or sub-
stance abuse), there are effective regulatory mechanisms that maintain a balance between
excitatory Glu and inhibitory GABA [101–103]. There are several pathways for the synthesis
of GABA from Glu, one of which is glutamic acid decarboxylase (GAD). In individuals with
PTSD, the balance between Glu and GABA is disrupted in favour of excitatory Glu. In an
animal model, it has been shown that chronic adverse stimulation reduces the expression
of one of the isoenzymes (GAD67) in the hippocampus, amygdala and PFC leading to
diminished inhibitory impulses to the PVN [104]. Another reason for reduced GABAergic
signalling to the PVN is glutamatergic damage to the hippocampus [104–107]. This leads
to a reduction in PVN inhibition, loss of precise control over the HPA axis and disrupted
termination of the stress response [104]. Hyperarousal is also caused by glutamate-induced
pathological neuroplasticity in the amygdala and PFC [108,109]. In the amygdala, excitabil-
ity increases, and the prefrontal cortex has weakened inhibition of the amygdala, which
means that it does not effectively inhibit stress responses [110,111]. NMDA receptors in the
amygdala promote neuronal changes that cause stress learning [112].

2.3. Catecholaminergic Activity

Alterations in the adrenergic system are also of great importance in the pathomecha-
nisms of PTSD. Despite a lack of full consensus, it is assumed that people with PTSD have
elevated basal levels of catecholamines [78,113]. An increased psychophysiological and
hormonal response to trauma-related stimuli seems more important. As with the HPA
axis, individuals with PTSD show a certain hypersensitivity in the adrenergic system. This
may be due to a reduced number of alpha-2 autoreceptors, whose stimulation inhibits
the secretion of noradrenaline [78]. The administration of a selective alpha-2 receptor
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antagonist (yohimbine) led to an increased secretion of noradrenaline and triggered PTSD
symptoms [114]. With fewer alpha-2 receptors, the inhibition of noradrenaline secretion
is reduced.

COMT is the gene encoding catechol-O-methyltransferase, an enzyme involved in the
breakdown of catecholamines such as dopamine, epinephrine and norepinephrine [115,116].
These are neurotransmitters that play an important role in the stress response. In terms of
the genetic basis of PTSD, a SNP within codon 158 (substitution of valine for methionine)
resulting in a 3- or 4-fold reduction in enzyme activity appears to be relevant [117,118]. The
COMT Val158Met polymorphism is associated with reduced resilience to stress, reduced
ability to extinguish conditioned fear and the risk of developing PTSD after exposure to
multiple traumatic experiences. Kolassa et al. showed that greater exposure to multiple
traumatic events correlates with higher incidence of PTSD in a dose-dependent manner, but
this relationship is modulated by the COMT polymorphism, with Met/Met homozygotes
having the highest risk of developing the disorder [119]. The disturbed breakdown of
catecholamines resulting from this polymorphism appears to be relevant in different types
of trauma: urban violence [120], war trauma [121], natural disasters [122] and in different
age groups [123]. Furthermore, COMT polymorphisms appear to be associated with
hippocampal activation and memory impairment in people with PTSD, including those
with early childhood trauma. Val/Val homozygotes (i.e., non-mutant) experience increased
hippocampal activation in response to trauma, which correlates negatively with PTSD and
depression and promotes resilience. In contrast, carriers of two Met alleles respond with
reduced hippocampal activation [124,125]. One explanation for the greater susceptibility of
Met/Met homozygotes to PTSD may be that the Val158Met polymorphism is associated
with arousal in response to traumatic events. In contrast, individuals with Val/Val alleles
respond with depressive symptoms [123]. Met/Met homozygotes have major problems in
extinguishing the stress response [126].

2.4. Molecular Networks

Attempts are being made to explain the pathophysiology of PTSD using molecular
networks. This approach addresses the complexity of its pathogenesis, with multiple
interplays between genetic, neuroendocrine and other biological factors and environmental
exposure. Neylan et al. argue that PTSD symptoms should be treated as the visible
properties of complex molecular networks, as opposed to processes driven by a small
number of genes [127]. This approach uses a wide range of data, including DNA, RNA,
proteins, metabolites, clinical data, imaging data and available literature.

2.5. Dynamics of Changes After Childhood Trauma

When it comes to trauma experienced at a young age, neuroendocrine changes occur
gradually, as proven by Pervanidou et al., who conducted a longitudinal study on children
and teenagers after a motor accident [128]. They examined the cortisol and catecholamine
levels in serum of all subjects, as well as healthy volunteers, immediately after the accident,
one month after the accident and six months after the accident. In addition, cortisol levels
in saliva were measured five times a day at the three above-mentioned time points to
determine the circadian rhythm. In general, children with PTSD had significantly higher
levels of catecholamines and significantly higher levels of cortisol in their saliva in the
evening and afternoon one month after the accident than those who did not develop
PTSD and the control group. After 6 months, the cortisol level normalised, while the
noradrenaline level continued to increase, which may explain the relationship between
stress hormone levels in adults with chronic PTSD (normal or low cortisol level) [128,129].
This could potentially explain the latency in the occurrence of PTSD after a traumatic event.
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3. Emotion Dysregulation
Emotion dysregulation arises from disruptions in large neuronal loops involving the

amygdala, insula, hippocampus, ACC and PFC [130]. In neurofunctional imaging, people
with PTSD show an excessive amygdala response to negative stimuli (e.g., trauma recall),
which manifests itself in negative emotionality [130,131]. Greater activity to negative
faces and trauma-evoking images is also recorded in the insula. Importantly, increased
activity in this area is maintained even after patients are asked to relax, which may indicate
an inability to separate from traumatic memories, not only on an experiential level, but
also on a neuroanatomical level [132]. The ACC, which integrates incoming information
and determines the degree of amygdala involvement, is less active in people with PTSD.
Reduced activity can occur in the ventral part (vACC), resulting in altered emotional
judgement, or in the dorsal part (dACC), leading to problems with emotional conflict
resolution, or in both parts simultaneously [130]. The simultaneous increased activation
of the amygdala and hippocampus may promote better recall of traumatic events and
their better retrieval in the future. At the same time, the increased engagement of the
hippocampus in encoding trauma-specific images may be associated with a decreased
ability to accurately recall the content [133]. The most important consequence of increased
hippocampal activity is the over-generalisation of their personal response to negative
stimuli [130]. Regarding the PFC, PTSD patients show a reduced involvement of the
medial parts (dorsomedial prefrontal cortex, DMPFC, and ventromedial prefrontal cortex,
VMPFC), which are activated in response to emotional stimuli. The DMPFC is responsible
for self-regulation of emotions, while the VMPFC integrates information from subcortical
structures involved in emotion processing. Reduced activity of the medial prefrontal lobes
is associated with increased activity of the amygdala [131].

People with PTSD show higher availability and greater stability of mGluR5 in the
PFC compared to healthy controls [134]. This promotes contextual fear conditioning after
stress, fear memory generalization and correlates with the severity of avoidance symp-
toms [134–136]. Avoidance, in turn, is considered a factor that exacerbates the course
of PTSD and impairs functioning [137,138]. It has been suggested that mGluR5 dys-
regulation in the orbitofrontal cortex may explain the higher prevalence of impulsive
behaviours (i.e., self-harm, aggression and alcohol abuse) as well as suicidal ideation in
individuals with PTSD, indicating a role for glutamatergic excitation in emotional dysregu-
lation [134,139,140].

There are genetic factors involved in emotion dysregulation [141]. Serotonin trans-
porter linked polymorphic region (5-HTTLPR) polymorphisms can contribute to affect
dysregulation because they influence the magnitude and duration of serotonergic neuro-
transmission and are also responsible for 10% of the variance in amygdala activity [142].
There are three variants of the 5-HTTLPR allele (the short (S) allele, the long rs25531(G)
(La) allele, and the long rs25531(A) (La) allele) [143]. The S allele reduces the effectiveness
of transcription of the 5-HTT gene promoter and 5-HT uptake in lymphoblasts, and at
the clinical level, it is responsible for 7–9% of the hereditary variance of anxiety-related
personality [144]. Individuals with the S allele and long rs25531(G) (Lg) have reduced
serotonin transporter mRNA transcription, which correlates with the severity of emotion
dysregulation. They also show prolonged cortisol activity after stressor exposure. In ad-
dition, individuals with the S allele have an increased risk of developing a disorganised
attachment style [141].

Another genetic correlate of emotion dysregulation is the polymorphism of ankyrin
repeat and kinase domains of the D2 receptor gene (DRD2). Children with the Taq1
allele showed greater sensitivity and emotionality to negative feedback and also tended to
downplay their own successes [145]. In children, the SNP (T allele in rs4675690) near the
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CREB (cAMP response element-binding protein) gene can change the response to negative
stimuli, correlating with greater activity in the anterior dorsal cingulate gyrus, the right
putamen, the right caudate nucleus and the left anterior temporal pole in a state of sadness.
This can increase the risk of emotion dysregulation in adulthood [146].

Emotion dysregulation is significantly associated with the chronic course of PTSD,
regardless of comorbid factors such as depression, exposure to interpersonal trauma or
the presence of PTSD symptoms at the time of the trauma. This means that emotion
dysregulation is a traceable risk factor that can be evaluated to select the most vulnerable
individuals [147]. Identifying individuals with high levels of emotion dysregulation at
the time of trauma and implementing treatments designed to improve emotion regulation
could aid in decreasing the development of chronic PTSD among these at-risk individuals.

Table 2 summarizes the most important information about the molecular correlates of
emotion dysregulation.

Table 2. Summary—neurobiological correlates of emotion dysregulation in PTSD and their
consequences.

Mechanisms Consequences

↑ amygdala activity negative emotionality
excessive response to negative stimuli

↑ hippocampal activity inaccurate recollection of memories
over-generalization of response to negative stimuli

↑ insular response to negative stimuli inability to separate oneself from traumatic memories

↓ ACC activity altered emotional judgement (vACC)
problems with emotional conflict resolution (dACC)

↓ mPFC activity impaired emotional self-regulation
impaired information integration

↑ mGluR5 availability and stability
fear generalization

↑ avoidance
impulsive behaviours

5-HTTLPR polymorphism
↓ 5-HTT mRNA transcription

↓ 5-HT reuptake in lymphoblasts

problems with extinguishing stress reactions
↓ affect regulation

↑ risk of disorganized attachment style

DRD2 polymorphisms
↑ dorsal cingulate gyrus activity

↑ right putamen activity
↑ right caudate nucleus activity

↑ left anterior temporal pole activity

↑ sensitivity to negative stimuli
underestimating one’s achievements

4. Dissociation
Dissociation is a common part of the clinical picture of PTSD and is considered one of

the strategies for surviving traumatic experiences from which there is no escape [148–151].
Its manifestations can include “negative” symptoms such as depersonalization, derealiza-
tion, emotional numbing, analgesia, immobility as well as “positive symptoms” (intru-
sions) [44,150,152]. In CPTSD a more complex structural dissociation occurs [45,47]. Due
to a different clinical and biological picture, a dissociative subtype of PTSD is sometimes
distinguished [153–156]. Compared to the non-dissociative subtype, people with severe
dissociation show a different pattern of neuronal activity at the level of cortical and subcor-
tical structures involved in emotion processing and cognitive processes. In particular, they
show enhanced activity in the PFC areas involved in emotion regulation and inhibition
of the limbic system [157]. In the study by Hopper (2007) et al., which used responses
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to script-driven imagery scale (RSDI), dissociation primarily correlated positively with
activation of the left mPFC and negatively with activity of the right insular cortex. The
authors associate this with passive mental disengagement or detachment from emotional
processing [158]. Importantly, the responses are different when processing conscious fear
and unconscious fear. As Felmingham et al. showed, during processing of unconscious fear,
people with dissociation have significantly increased activation in both amygdalae, while
the non-dissociative type is characterised by an increased response in the right rostral ACC
(rACC). When processing conscious fear, the dissociative group showed significantly lower
activity in the right dorsomedial superior frontal gyrus, left middle frontal gyrus, right me-
dial frontal gyrus and right inferior frontal gyrus, as well as a significantly greater response
in the left ventral ACC. In addition, people with high dissociation had significantly higher
activity in some subcortical structures (left pallidum, both amygdalae, both insular cortices
and the left thalamus). They showed markedly high activation in the ventral PFC that is
responsible for regulating emotions [159]. This shows that patients with dissociative PTSD
have a different neural profile, with a predominant response from the ventral PFC in con-
scious processing and a response from the amygdala in non-conscious processing [157–160].
As discussed above, increased activation of the amygdala is associated with increased
arousal, which, combined with the fact that it is a reaction to non-conscious fear, gives some
insight into experiences and difficulties of people with dissociative PTSD. Dissociation has
a negative impact on functioning [161–163], correlates with severity of symptoms [164,165]
and suicidality [161], but it does not determine worse therapy outcomes and reduces the
chances of successful therapy [166,167].

Although the occurrence of dissociation is inherently related to exposure to a trau-
matic experience, a biological predisposition is also postulated. Genetic factors that have
been linked to dissociation are the SNPs in FKBP5, SLC6A4 and COMT, described above.
The GWAS analysis conducted by Wolf et al. also indicated the SNP rs263232 in the
adenylate cyclase 8 (ADCY8) gene [168]. This gene codes for a Ca2+/calmodulin-sensitive
isoform of adenylate cyclase 8 (AC8), which catalyses the conversion of ATP into cAMP.
cAMP is important for synaptic plasticity, memory formation and the regulation of the
HPA axis [168–171]. Although the SNP did not meet the GWAS significance criterion (i.e.,
p < 5 × 10−8), it is worth noting and addressing in further research. Among individuals
lacking the risk allele, 17% had positive scores on Clinician-Administered PTSD Scale
(CAPS) items related to dissociation, compared to 34% of individuals with one or two
copies of the risk allele. AC8 deficiency can prevent or impair the consolidation of in-
formation and decoding of memories, thus causing dissociative reactions. Animals with
AC8 deficiency were insensitive to risk, context and experience, and also had a dysregu-
lated HPA axis [168,171]. The SNPs in K1AA1456 and KAT2B also seem to be related to
dissociation. Basing on the report that the density of K1AA1456 in the dorsolateral PFC
is lower in schizophrenia [172], Wolf et al. suggest that K1AA1456 may contribute to the
dysregulation of epigenetic processes in the PTSD dissociative subtype, which seems to be
an interesting concept that requires further research. KAT2B has not been associated with
mental disorders so far [168].

Emotion dysregulation may mediate the relationship between PTSD symptoms and
dissociation. In particular, two dimensions of emotion regulation—alexithymia and the
inability to use emotion regulation strategies—are predictors of dissociation [173]. One
possible approach to this problem is abnormal stimulus discrimination [174], which seems
to follow logically from the hyperarousal and attention bias discussed above.

Table 3 presents the most important information about the molecular correlates of
dissociation.
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Table 3. Summary—selected neurobiological correlates of dissociation in PTSD and their
consequences.

Mechanisms Consequences

↑ left mPFC activity
↓ right insular cortex activity detachment from emotional processing

↑ amygdalae activity in unconscious fear ↑ arousal

↑ left vPFC activity in conscious fear emotional detachment

ACDCY8 polymorphism
AC8 deficiency

impairment of memory consolidation
HPA axis dysregulation

5. Re-Experiencing
Re-experiencing is considered an example of pathological over-engagement at the

neurobiological level [158] with involuntary and uncontrollable sensory impressions and
the sense of “nowness” [175] and embodied components of self-experience [176,177]. In
imaging studies, the severity of re-experiencing has been correlated with the activity of
the right insular cortex. This area is responsible for somatic aspects of emotional states,
including acute stimulation of the sympathetic nervous system. At the same time, a negative
correlation with the activity of the left rACC has been demonstrated, which may indicate
emotion dysregulation [158]. Under physiological conditions, rACC inhibits the reactivity
of the amygdala. Similar correlations have been achieved in other studies with regard to
the diminished mPFC activity during recollection of stressful events in individuals with
PTSD [177].

Changes in the glutamatergic system also appear to play an important role in the de-
velopment of re-experiencing. Increased glutamate levels found in individuals with PTSD
correlate with decreased levels of the hippocampal neuronal marker N-acetylaspartate,
resulting in an increased Glu/NAA ratio. Rosso et al. demonstrated a correlation between
the Glu/NAA ratio in the right hippocampus and re-experiencing [106]. The hippocam-
pus was studied because re-experiencing is thought to be one of the manifestations of
hippocampal atrophy caused by glutamate excitotoxicity. Glutamate damages hippocam-
pal neurons, leading to deficits in memory and associative learning, which is one of the
underlying causes of re-experiencing [106,178,179]. The search for genetic correlates of
re-experiencing is a very current topic among researchers. This symptom is associated with
facilitated conduction in the cAMP pathway. In mice studies, it has been suggested that
upregulation of cAMP signalling transduction enhances the retrieval and maintenance of
fear memories. Transcriptome analysis in mice and humans showed that increased severity
of re-experiencing symptoms occurs in people and mice with reduced mRNA expression
of phosphodiesterase 4B (PDE4B). This is an enzyme that breaks down cAMP. Reduced
mRNA expression correlated positively with reduced methylation of the corresponding
locus. Research by Hori et al. shows that facilitated signalling of the cAMP pathway
(with PDE4B downregulation) enhances traumatic memories [180]. In turn, GWAS studies
conducted on more than 160,000 veterans identified eight regions that may play a role
in re-experiencing, three of which had p < 5 × 10−10. These were CAMKV, CRHR1 and
TCF4. CRHR1 has already been described as a gene involved in steroid signalling and the
stress response. Another important locus identified is HSD17B11, which encodes hydroxys-
teroid 17-beta dehydrogenase 11, another enzyme in the steroid metabolism pathway. The
connection of the TCF4 gene, which encodes transcription factor 4, and MAD1L1 (MAD1
Mitotic Arrest Deficient Like 1) with re-experiencing was also demonstrated, which is
interesting because until now these loci were associated with schizophrenia [181,182] and
schizophrenia and bipolar disorder [181,183], respectively. This indicates a certain similar-
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ity between re-experiencing and hallucinations. This hypothesis seems to be supported
by the effectiveness of risperidone in individuals with re-experiencing [184]. However,
it is worth noting that auditory hallucinations are not reserved to schizophrenia, as they
may be present in individuals with post-traumatic, affective, personality, dissociative and
eating disorders alike [185,186]. Gelernter et al. also point to the role of calcium signalling,
e.g., at CAMKV (CaM Kinase Like Vesicle Associated) loci. These results were statistically
significant only for one part of the sample (European American soldiers, EAs), while no
significant associations were found in the African American (AAs) group [181].

Table 4 presents the most important information about the molecular correlates of
re-experiencing.

Table 4. Summary—selected neurobiological correlates of re-experiencing in PTSD and their
consequences.

Mechanisms Consequences

↑ right insular cortex activity ↑ somatic symptoms of emotional stress

↓ left rACC activity emotional dysregulation
↓ inhibition of amygdala

↑ Glu/NAA in right hippocampus
inaccurate recollection of memories
over-generalization of responses to

negative stimuli

↑ insular response to negative stimuli inability to separate from
traumatic memories

↓ PDE4B expression
↑ cAMP signalling transduction ↑ retrieval of traumatic memories

6. Biology—Environment Interplay
Since the late 1990s, there has been extensive research in the search for genetic corre-

lates of PTSD. A number of studies have noted a higher prevalence of PTSD in monozy-
gotic twins than in dizygotic twins, indicating that there is a genetic component to the
disorder [25,187,188]. It has also been noted that PTSD is more common in families of
people diagnosed with PTSD, e.g., children of Holocaust survivors are more likely to have
PTSD [189–192]. Interestingly, a stronger predictor than a parent’s diagnosis of PTSD itself
was the parent’s exposure to traumatising events [192]. This was a landmark study on the
transgenerational nature of trauma, but it did not allow for direct inference regarding the
genetic component of the disorder. Indeed, a separation of genetic susceptibility from the
influence of shared environmental conditions proves to be a major methodological problem.

In the study by Stein et al., it was shown that the magnitude of environmental factors
is the same among women and men, although environmental factors per se remain gender
specific. It also appears that the magnitude of the genetic component is different depending
on the type of trauma (assaultive vs non-assaultive) [193]. Assaultive trauma develops
as a result of being intentionally harmed by another person, e.g., military combat, rape,
kidnapping, captivity, torture, being shot at, being stabbed, sexual violence other than
rape, robbery, being threatened with a weapon and physical assault. Non-assaultive
trauma is in turn a result of events that do not involve intentional harm from another
person. These include for example natural disasters, car accidents, witnessing a traumatic
event, learning about traumatic events experienced by a loved one or sudden death of
a loved one [194,195]. Non-assaultive trauma was mainly dependent on environmental
factors, while assaultive trauma could best be explained by the interaction of genetic
and environmental factors [188]. Such results were achieved in both combat stress and
assaultive trauma studies. The best explanatory model for non-assaultive trauma was
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shared environment (e.g., family) (39%) and unique environment (61%). For assaultive
trauma, genetic factors appear to significantly influence the likelihood of being exposed to
trauma. This is explained by the fact that genetic factors condition the way an individual
responds to environmental factors [196].

This strong GxE covariance seems fully consistent with the complexity of pathogenesis
and symptomatology of PTSD. In the case of CPTSD, the importance of environmental
factors gains even greater significance, as the specificity of this disorder is chronic exposure
to traumatic events from which there is no escape. These events often originate in childhood,
when the individual is practically deprived of the opportunity to independently choose
their environment, and their emotionality, personality and attachment style are formed.

Pervanidou et al. emphasise the impact of early childhood trauma on neuroendocrine
regulation. Psychological trauma in childhood, adolescence or even foetal life can affect
the developing central nervous system, including the areas involved in stress reactions
(the PFC, hippocampus and amygdala). The risk of increased neuronal loss and delayed
myelination has been demonstrated in animal models [197]. Repeated exposure to trau-
matic triggers causes dysregulation of the sympathetic nervous system and the HPA axis,
which predisposes to mental and somatic disorders (e.g., type 2 diabetes, atherosclerosis,
osteoporosis, immune system disorders, obesity, schizophrenia, anxiety disorders, depres-
sion and borderline personality disorder) [198–202]. The typical neuroendocrine profile
of children who have experienced a traumatic event is hypoactivation of the HPA axis
(low cortisol) and hyperactivation of the noradrenergic system (increase in circulating
catecholamine levels), which is distinctive for PTSD [85].

The serotonin transporter gene (5-HTT and SLC6A4) seems to be an important risk
factor for the development of PTSD and, at the same time, a clear example of GxE inter-
action. In this context, the critical part of the gene is the 5-HTT linked polymorphism
region (5-HTTLPR) located in the promoter region. Having the short variant of the 5-
HTTLPR is linked to greater sensitivity to stress stimuli and, under unfavourable envi-
ronmental conditions, a predisposition to the development of certain mental disorders,
including depression [203,204]. The mediating role of 5-HTTLPR between environment
and genotype is emphasised, especially since the gene is subject to significant epigenetic
modifications [205,206]. Individuals with two risk factors (S allele and adverse prenatal or
early childhood events) have significantly lower serotonin transporter mRNA expression
than individuals without risk factors. Such molecular changes constitute a vulnerability
factor for the development of PTSD in the event of adverse environmental factors. In
the case of childhood abuse, this risk was 56.3% higher [207]. The S/S polymorphism is
much more common in patients with PTSD [208]. Although the unfavourable 5-HTTLPR
genotype (one or two S alleles) does not in itself determine the occurrence of PTSD, it
increases the risk of developing the disorder when combined with traumatic experiences
in childhood and/or adulthood. The risk is highest in people who have experienced both
early childhood and adult trauma and have the 5-HTTLPR polymorphism [209]. Similarly,
Stein et al. have shown that individuals with S alleles and higher exposure to maltreatment
have significantly higher anxiety sensitivity, which is understood as a predisposition to
develop anxiety disorders, including PTSD, and depression [210].

An unfavourable GxE interaction can promote impaired functioning from early child-
hood. Fox et al. conducted a longitudinal study in which the social functioning of children
aged 14 months and 84 months was assessed in relation to social support perceived by the
mother. Children with the S allele and low social support showed social inhibition and
shyness at the age of 7 [211]. Even more important than social support seems to be the
responsiveness of the mother, which translates into the development of attachment style.
In children with a low genetic risk (LL alleles), there is no significant relationship between
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maternal responsiveness at 7 months and attachment style. In contrast, children with at
least one S allele have a high risk of developing insecure attachment if they are raised by
unresponsive mothers [212]. Longitudinal studies on distress intolerance in adolescents
have shown that individuals with two S alleles have a lower stress resilience, and that
emotional abuse in childhood is a moderator of this relationship [213]. The interplay be-
tween genetic susceptibility and the environment is consistent with changes at the neuronal
and endocrine level. Homozygous S/S individuals with a history of stressful life events
(SLEs) show increased arousal in the right amygdala and increased cortisol secretion in
response to fearful faces. Alexander et al. detected increased functional coupling between
the right amygdala and the hypothalamus, which may represent a link between neuronal
and endocrine hyperactivity in S’S’/high SLEs [214].

7. Conclusions
Disorders associated with stress seem to be very distinct from other mental disorders.

Their prominence has been recognised in the ICD-11, with the distinction of CPTSD being
an innovation within category 06 (mental, developmental and behavioural disorders). As
we have attempted to show, PTSD is a widely researched topic but also a huge scientific chal-
lenge due to its very complex psychopathology, which is sometimes difficult to distinguish
from the effects of traumatisation at earlier stages of life. This is particularly problematic in
the case of early childhood trauma and complex trauma, as it is hardly possible to separate
the influence of the environment from innate susceptibility. Nevertheless, knowledge
about the molecular and environmental characteristics of PTSD and CPTSD offers hope
for more effective treatment of this problem. Advances in genetic diagnostic techniques
can potentially facilitate screening those at risk of developing PTSD (e.g., descendants of
trauma survivors or victims of childhood abuse). Analysis of neuroendocrine parameters
of the HPA axis and catecholaminergic system can not only serve as a component of PTSD
risk assessment but also lay the groundwork for interventions to prevent other common
diseases (e.g., cardiovascular diseases). Considering the high prevalence of PTSD and
CPTSD and their personal and social burden, there is a need for continuous research that
can improve patients’ quality of life.

Trauma-focused interventions such as trauma-focused cognitive-behavioural therapy
(TF-CBT), prolonged exposure therapy and eye movement desensitization and reprocessing
(EMDR) are the most evidence-based therapeutic methods [215,216]. Of these, TF-CBT and
EMDR lead to the greatest reduction in CPTSD symptoms in veterans, refugees and victims
of domestic violence [217]. It is worth emphasising that these methods treat PTSD as a
biologically based disorder [218–220], which suggests that understanding the molecular
basis of these disorders seems essential for organising an effective diagnostic process and
therapeutic interventions.

The molecular approach is also crucial in terms of developing effective pharma-
cotherapy options for PTSD and CPTSD. The medications used include selective serotonin
reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, atypical antidepressants
(mirtazapine, trazodone and nefazodone), alpha-adrenoreceptor antagonists (prazosin),
atypical antipsychotics (risperidone and quetiapine), benzodiazepines and mood stabilising
medications (lamotrigine, tiagabine and topiramate) [67,221,222]. Of these, only sertraline
and paroxetine are registered by the Food and Drug Administration for PTSD [222,223], and
no medication has high quality evidence [224]. Monotherapy with paroxetine, sertraline
and venlafaxine has moderate recommendation. Also, no augmentation or combination
has a strong evidence base at this time [224].

The variety of symptoms in each patient requires an individual approach. Attempts to
find an effective combination of drugs can be a long process and can often prove ineffec-
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tive. The potential new therapeutic targets include the molecular anomalies discussed in
this article [225]. Ketamine, as an NMDA receptor antagonist, is attracting considerable
attention as a potential new drug. Several studies have indicated that ketamine may be a
rapid and effective pharmacological intervention for PTSD [226–230]. One of its potential
advantages is supporting the extinction of original trauma memories and thus the reduction
in re-experiencing [231]. However, the current state of knowledge does not allow ketamine
to be introduced as a common drug for PTSD. Extensive longitudinal studies are needed
to assess the usefulness of ketamine in the pharmacotherapy of PTSD [232,233]. Attention
should be drawn to potential undesirable effects of ketamine on specific PTSD symptoms;
for example, it has been suggested that ketamine may promote dissociation [234]. Good
results were also observed in adjunctive treatment with lamotrigine (especially in terms
of self-harm and aggression) [235–238] and with memantine [239,240]. Lamotrigine is a
sodium channel blocker that stabilizes cell membranes and reduces presynaptic gluta-
mate release [241], and memantine is an uncompetitive NMDA antagonist [242]. These
findings seem to confirm the potential of drugs targeting the glutamatergic system in the
pharmacotherapy of PTSD.

The main limitation of this review is heterogeneity of the analysed studies in terms
of methodology, especially sample selection. Researchers used different inclusion and
randomization criteria, e.g., structured interviews according to different protocols vs.
different self-report questionnaires. Moreover, people with different types of trauma (e.g.,
early childhood trauma, war trauma, sexual assault and accident), age at the time of the
traumatic event, and duration of the disorder took part in studies, which may distort the
understanding of molecular processes in the course of PTSD. The multitude of factors that
can cause PTSD makes it very difficult to draw universal conclusions about the biological
basis of this disorder.

At the same time, it should be recognized that we are constantly exposed to the risk
of personal psychological injuries as well as mass events that can lead to PTSD. Examples
of the latter are the 9/11 attacks, the Utøya massacre, wars in Ukraine and the Middle
East, the COVID-19 pandemic, or the earthquakes in South-East Asia. Researchers and
clinicians should strive to deepen their understanding of PTSD both at the biological
and psychological levels, as few mental disorders are as complex as this one in terms of
biology–environment interactions.
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