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Abstract
Background: Germ cells are the only cell type that can penetrate from one generation to next
generation. At the early embryonic developmental stages, germ cells originally stem from
primordial germ cells, and finally differentiate into functional gametes, sperm in male or oocyte in
female, after sexual maturity. This study was conducted to investigate a large-scale expressed
sequence tag (EST) analysis in chicken PGCs and compare the expression of the PGC ESTs with
that of embryonic gonad.

Results: We constructed 10,851 ESTs from a chicken cDNA library of a collection of highly
separated embryonic PGCs. After chimeric and problematic sequences were filtered out using the
chicken genomic sequences, there were 5,093 resulting unique sequences consisting of 156 contigs
and 4,937 singlets. Pearson chi-square tests of gene ontology terms in the 2nd level between PGC
and embryonic gonad set showed no significance. However, digital gene expression profiling using
the Audic's test showed that there were 2 genes expressed significantly with higher number of
transcripts in PGCs compared with the embryonic gonads set. On the other hand, 17 genes in
embryonic gonads were up-regulated higher than those in the PGC set.

Conclusion: Our results in this study contribute to knowledge of mining novel transcripts and
genes involved in germline cell proliferation and differentiation at the early embryonic stages.

Background
Primordial germ cells (PGCs), the precursor of gametes,
have a unique migration activity in birds as well as in
mammals. They temporally reside in the extra-embryonic
tissue and localize into embryonic gonads. PGCs in mam-
mals are originally derived from the epiblast of the gastru-
lating embryo and move into embryonic gonads through
hindgut by amoeboid movement [1]. In contrast, in birds,
PGCs firstly appear from the epiblast in the blastoderm
and translocate to the hypoblast of the area pellucida

[2,3]. During the gastrulation, they circulate through the
vascular system and shuttle down into the gonadal anla-
gen [1]. Thus, avian PGCs can be collected from germinal
crescent [4,5] or blood vessel [6,7], and embryonic
gonads [8-10]. Recently, this unique migration pattern of
avian PGCs allowed producing germline chimeras by re-
transplantation of the PGCs into the blood vessel of recip-
ient embryos [9-11].
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Morphological and physiological features of avian germ
cells including PGCs have been well characterized and uti-
lized for further studies. However, there are only a few
reports on expressed sequence tag (EST) analysis and
functional genomic study for avian germ cells, especially
PGCs in the early embryonic developmental stages. PGC
is an important cell type, in which either gene expression
or suppression should be regulated temporally and spa-
tially during embryonic developments. According to gene
expression switching triggered by interactions with envi-
ronmental niche, PGCs could maintain their pluripotency
or differentiate into germ cells. However, due to technical
difficulties, no further progress has been made in func-
tional genomic study and massive novel gene mining in
avian PGCs as well as neighboring stroma cells.

Therefore, this study was conducted to investigate a large-
scale EST analysis in chicken MACS-separated PGCs and
compared the expression of the PGC ESTs with that of
embryonic gonad.

Results and discussion
Retrieval of chicken PGCs by MACS treatment
Embryonic gonads were retrieved from total 7,955 White
Leghorn (WL) embryos at 6.5 days of incubation and then
the retrieved gonadal cells were treated with magnetic acti-
vated cell sorter (MACS) for separation of PGCs in total
embryonic gonadal cells. PGC population ratio after
MACS separation increased 47.4 folds than that before
MACS (35.1% vs. 0.74%). Thus, we collected 7.7 × 106

PGCs from 7,955 embryos for total RNA preparation and
cDNA library construction. The population ratio of
chicken PGCs in embryonic gonads was approximately
0.74% [12]. So, it is difficulty and complicated to retrieve
a large number of chicken PGCs at the early embryonic
stages. Thus, in this study, gene expression profiling of
chicken PGCs was conducted and analyzed with MACS-
separated chicken PGCs. The morphological and physio-
logical properties of PGCs were unchanged even after
MACS separation [12]. MACS-separated PGCs has the
reactivity to germ cell-specific antibodies and the migra-
tion capacity into embryonic gonads after re-transplanta-
tion into the recipient embryos [12].

cDNA library construction from chicken PGCs and EST 
sequencing
After in vivo excision with E. coli strain SOLR, insert sizes
of the cDNA libraries from PGCs were analyzed by PCR
and insert fragments ranged from 0.5 to 3 kb (n = 18).
Titer of primarily cDNA library was approximately 4.0 ×
106 pfu/ml on average. Subsequently, we massively
sequenced ESTs from PGC cDNA library and total 10,944
ESTs were sequenced. Of 10,944 ESTs, 96 sequences were
excluded due to low sequencing quality and after vector

sequence trimming. Thus, finally 10,848 were used for
computational analysis.

ESTs processing and assembling
We have sequenced 10,851 cDNA clones from MACS-sep-
arated chicken PGC population cDNA library generating
10,848 sequences. The EST data that are described in this
paper have been submitted to the NCBI dbEST under
accession nos. DR410159-DR421006. Assembling and
clustering of the EST data resulted in 8,914 unique
sequences with 242 contigs and 7,196 singlets. Filtering
out possible chimeric sequences with similarity search
against chicken genomic sequences were removed 86 con-
tigs and 2,259 singlets resulting in total 5,093 sequences
with 156 contigs and 4,937 singlets. Since the genomic
sequences do not have 100 % coverage and accuracy,
some of the filtered sequences might be genuine
sequences but did not correspond with the genomic
sequence draft. Average number of ESTs per contig was
about 3.9. On the other hands, clustering and assembling
of embryonic gonad ESTs (NCBI dbEST accession nos.
CV852525-CV862818) were resulted in total 5,751
unique sequences; 971 contigs and 4,780 singlets, respec-
tively. Average EST numbers per a contig were approxi-
mately 4.1 in assemblies of embryonic gonad ESTs. The
unique sequences of the two different sets described in
this paper are available at Chicken Primordial Germ Cell
ESTs [13].

Gene ontology annotation and putative novel transcripts
Figure 1 shows percentage distributions of gene ontology
terms, 2nd level GO terms according to the GO consor-
tium, of the two sets of non-redundant sequences. Pear-
son chi-square tests of independence between PGCs
versus embryonic gonad sets indicated that most of the
2nd level terms did not show any significance. Since the
MACS-separated PGC population was approximately
35.1% and ontology annotation was conducted non-
redundantly, it might be anticipated that distribution of
annotated genes in PGC population set would be similar
to gonad set and show no significance. In further experi-
ment, we will conduct large-scale EST analysis with highly
purified PGC population for discovering informative and
novel transcripts related to germ cells.

The number of putative novel transcripts obtained by
comparing with the GgGI (Release 10.0) was total 1,815
sequences with 31 contigs and 1,784 singlets. As it was not
a cross-species sequence comparison, strict criteria as
described in the method were applied to the cut-off val-
ues. For the same reason, identifying the putative novel
transcripts can be seen as non-strict criteria. The reason for
applying the strict threshold was to avoid blast hit with
paralogous sequences. Functional prediction and gene
ontology distribution on the basis of sequence similarity
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search against non-redundant protein database of the
NCBI are shown in Additional file 1 and Additional file
2a. Interestingly, Pearson chi-square test of independence
of 2nd level GO terms between PGCs and novel transcripts
data set indicates that a large portion of cellular compo-
nent unknown term in cellular components would be
involved in gene expression of PGCs [see Additional file
2b]. In addition, there were higher portion(s) of behavior
and development in biological process, and obsolete
molecular function and transporter activity in the novel
transcripts than those of PGC set.

Digital gene expression profiling
While the comparison of the Pearson chi-square test of
particular GO terms is based on non-redundant data sets,
digital gene expression profiling is based upon quantita-
tive differences between two different datasets. Using the
Audic's test [14], digital gene expression profiling is
showed in Table 1. There were 2 genes expressed signifi-
cantly higher number of transcripts in PGCs compared
with embryonic gonads set. On the contrary, 17 genes in
embryonic gonads were up-regulated higher than those in
PGC set (Table 1). NADH dehydrogenase subunit 1 gene,
one of two PGC-highly expressed genes, was located in
chicken mitochondrial genome and its product was par-
tially related to sperm activity regulated by mitochondrial
functions [15], but 40S ribosomal protein SA was not
reported in germ cell expression yet. Interestingly, 40S
ribosomal protein SA or 37LRP/p40 was closely associ-
ated to invasive and metastatic activity in cancer cells [16].
During the formation of the undifferentiated gonads,
PGCs actively penetrate into gonadal epithelium through
blood vessel. Even after settled down in embryonic
gonads, they invade from cortical layer into medullar tis-
sue by active migration activity [1]. Thus, it might be
assumed that 40S ribosomal protein SA is involved in
active PGC mobility. However, further study should be
conducted to elucidate its function in PGCs.

Among 17 gonad-highly expressed genes, several genes
such as calmodulin, eukaryotic translation elongation fac-
tor 1 alpha, ribosomal proteins, thioredoxin, Ras
homolog, transforming growth factor beta, and vimentin
were previously characterize the expression patterns in
embryonic gonads as a supportive environmental niche
for PGC in other species. Abdallah et al. [17] reported that
the somatic form of eukaryotic translation elongation fac-
tor 1 alpha (EF-1 alpha) mRNA is virtually undetectable in
male and female germ cells of the adult gonad but is very
abundant in embryonic cells after the neurula stage in
Xenopus laevis. Moreover, the translation pattern of the
EF-1 alpha is coordinated translational regulation with
ribosomal proteins in Xenopus laevis during embryogen-
esis [18]. It is very reasonable result of the up-regulation
of antioxidant proteins, thioredoxin, in embryonic

Percentage distributions of 2nd level gene ontology termsFigure 1
Percentage distributions of 2nd level gene ontology terms. 
There were no significant p-values between primordial germ 
cells (PGCs) and embryonic gonad dataset in all of gene 
ontology terms when analyzed by using Pearson's chi-square 
test of independent. Overall significance level of alpha was 
given by the Bonferroni correction, alpha = 0.5/m, where m 
was 60 since 30 GO terms were compared between PGCs 
and embryonic gonad dataset.
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gonads because embryonic gonad is more susceptible to
oxidant induced damage than adult organs. Li et al. [19]
showed that in Drosophila, the receptor tyrosine kinase
Torso activates both STAT and Ras during the early phase
of PGC development, and co-activation of STAT and Ras
is required for PGC proliferation and invasive migration.
Members of the transforming growth factor (TGF) beta
family are pleiotropic cytokines with key roles in tissue
morphogenesis and growth and potential roles for TGF
beta have been identified in gonad and secondary sex
organ development, spermatogenesis and ovarian func-
tion [20]. Vimentin has been known as an immunohisto-
logical marker of Sertoli cells which shows over
expression during embryonic stage [21]. In mammalian
species, Ca2+-binding protein, calmodulin was well-
known as an activator of fertilized embryo and also was
closely related to regulation of interaction between germ
cells and neighboring environments at embryonic stages
as well as at sexual maturity [22,23].

We also conducted the alternative serial experiment for
gene expression profiling using the massively parallel sig-
nature sequencing (MPSS) from PGCs and embryonic
gonads (Kim et al., submitted). Using a FDR cut-off of
0.05, we found 4,328 and 2,681 signatures were signifi-
cantly up-regulated in the PGCs and gonad sample,
respectively (data not shown). Exact binomial probabili-
ties for the situations of n out of n genes were calculated
in each sample using the standard binomial formula,
where the n is the number of genes identified using ESTs
in each sample, and the probability that the differentially
expressed gene of ESTs will exist in the same sample type
of the MPSS is the proportion of the DES among total
MPSS in each sample. Interestingly, the up-regulated sig-
natures in the PGCs contained the two genes identified
using ESTs in the PGCs. The exact binomial probability of
exactly 2 out of 2 was 9.3e-4 with given DES proportion in
the PGCs (3.05 %). The up-regulated signatures in the
embryonic gonads also contained all of the 17 genes iden-
tified using ESTs in the embryonic gonads. The exact bino-
mial probability of exactly 17 out of 17 was 5.01e-30 with
given DES proportion in the gonads (1.89 %). Thus,
although the differentially expressed genes identified with
ESTs data was relatively small number, the binomial prob-
abilities indicated that the MPSS result was very consistent
with the result from the ESTs data.

Conclusion
In this study, we could characterize expression gene pro-
filing and identify the significant transcripts expressed in
chicken primordial germ cells (PGCs) as well as embry-
onic gonads at 6.5 days. In the near future, serial experi-
ments will be needed to evaluate biological function(s)
and to elucidate interaction(s) in germ cells or a support-
ive stroma cells during the early embryo development.

Germ cell is not only a unique and important cell type
compared to other tissues, but also the only cell type that
can penetrate from one generation to next generation.
Furthermore, at the early embryonic developmental
stages, the onset of proliferation and differentiation, germ
cell is very tightly regulated by triggering or suppressing
the essential genes. However, collection of germ cells from
embryonic stages in aves is very difficulty and complicated
and so there are few reports on gene transcript profiling in
germ cells retrieved from the embryos to date. Thus, the
results in this study would be contributed to investigating
the reciprocal interaction(s) between genes during germ
cell proliferation and differentiation, and accelerating
novel gene mining in germ cells.

Methods
Retrieval of chicken embryonic gonads and MACS-
separation of chicken PGCs
Experimental animals provided for this experiment were
maintained at the University Animal Farm, Seoul
National University, and all experimental procedures
were performed at the affiliated laboratories of the univer-
sity. White Leghorn (WL) embryos at 6.5 days were freed
from the yolk by rinsing with calcium- and magnesium-
free PBS and then embryonic gonads were retrieved by
dissection of embryo abdomen with sharp tweezers under
a stereomicroscope [10]. Embryonic gonads were col-
lected from total 7,955 embryos. After collection, gonadal
tissues were dissociated by gentle pipetting in 0.05% (v:v)
trypsin solution supplemented with 0.53 mM EDTA. After
added 10% fetal bovine serum (FBS) for inactivation of
trypsin-EDTA and briefly centrifuged at 200 × g for 5 min,
total gonadal cells were loaded into MACS system
(Miltenyi Biotech, Germany) according to our standard
protocol [12]. Breifly, chicken gonadal cells were treated
with PGC-specific antibody, anti-stage specific embryo
antigen (anti-SSEA)-1 antibody for chicken PGCs (mouse
IgM isotype), for 20 min at the room temperature of 20–
25°C. Anti-SSEA-1 antibody developed by Solter and
Knowles [24] was obtained from the Developmental
Studies Hybridoma Bank developed under the auspices of
the NICHD and maintained by the University of Iowa,
Development of Biological Science. After washing with 1
mL MACS buffer, PBS supplement with 0.5% BSA and 2
mM EDTA, the supernatant was completely removed after
brief centrifugation. The cell pellet was mixed with 100 μl
MACS buffer containing 20 μl of rat anti-mouse IgM
microbeads for 15 min at 4°C. Treated cells were carefully
washed by the addition of 500 μl buffer and subsequently
loaded with MACS [12].

For counting cell number, chicken PGCs before or after
MACS treatment were fixed with 1% (v:v) glutaraldehyde
for 5 min and rinsed with 1× PBS twice. The anti-SSEA-1
ascites fluid diluted 1:1,000 in PBS was added and subse-
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quent steps were carried out using DAKO universal LSAB®

kit, Peroxidase (DAKO, USA) according to the manufac-
turer's instruction.

cDNA library construction from chicken PGCs and EST 
sequencing
Total RNA was extracted from MACS-separated PGCs
using TRIzol reagent, and poly(A) mRNA was purified
using the Promega PolyATract mRNA isolation system
(Promega, WI). The cDNA libraries were synthesized
using the ZAP®-cDNA synthesis method (Stratagene, CA).
The cDNA was prepared, size-fractionated, and inserted
into the Uni-ZAPXR vector using an XhoI linker-primer
and EcoRI adaptor. After in vivo excision with E. coli strain
SOLR, the cDNA libraries from PGCs contained inserts
ranging from 0.5 to 3 kb (n = 18).

After white/blue selection, colonies were picked randomly
from rectangular plates (23 × 23 cm) and transferred to
384-well plates using a Q-bot (Genetix, UK). The plas-
mids were purified using a Montage Plasmid Miniprep 96
kit (Millipore, MA). The sequencing reactions were per-
formed and analyzed on ABI 3700 automated DNA
sequencers (PE Applied Biosystem, CA) using the manu-
facturer's protocols. Macrogen (Seoul, Korea) performed
all the procedures.

ESTs processing and assembling
ESTs processing and assembling was performed as previ-
ously described (Shin et al., manuscript submitted).
Briefly, in order to obtain high quality unique sequences
set, relatively strict threshold criteria were applied to proc-
ess the EST data. In addition, the chicken genomic
sequences were used to screen out possible chimeric
assembles at the final step. The chicken EST trace data
were processed using the Phred [25], vector-clipped by
cross match [26] and cleaned with SeqClean program at
TIGR software tools [27]. The ESTs were clustered and
assembled using the TIGR Gene Indices clustering tools
(TGICL) [28]. To filter out chimeric assembles at the final
step, the unique sequences were aligned against the
chicken genomic sequences of the University of California
Santa Cruz (UCSC) Genome Bioinformatics [29] using
BLAT program [30]. In case of embryonic gonad ESTs, we
used our previous data set (Shin et al., manuscript submit-
ted, NCBI dbEST accession nos. CV852525-CV862818).

Gene ontology annotation and identification of putative 
novel transcripts
As previously described (Shin et al., manuscript submit-
ted), GO annotation and identification of putative novel
transcripts of unique sequences was conducted on the
basis of sequence similarity with the Tentative Consensus
(TC) sequences of the GgGI release 10.0 (January 28,
2005) at the TIGR. The sequences with no Blast hits were

represented as putative novel transcripts. GO annotation
of the novel transcript was based on blast best hit against
non-redundant protein database of the NCBI down-
loaded from NCBI blastdb download (June 29, 2005)
[31]. Pearson's chi-square test was applied to test signifi-
cance which GO terms were enriched in a data set but rel-
atively depleted in the other. As described by Zhong et al.
[32], a particular GO term can be viewed as a function,
which maps gene G in go(G) = 0 or 1, according with the
corresponding GO term. The null hypothesis of no associ-
ation between gene lists and a particular GO term is trans-
lated into equal distributions of binary random variables.
Only the list of genes annotated with GO terms was
counted for the test. Bonferroni correction [33] was
applied to correct the multiple test problems.

Digital gene expression profiling
Significance test of gene expression profiles between a pair
of the cDNA libraries was performed using Audic's [14]
test. Since there was a multiple test problem, Bonferroni
correction [33] was applied for the test. Number of a set of
ESTs assembled into a contig was considered as the
number of read of the gene. A singlet was considered as
single read of the gene. Expression comparison of the gene
was performed with the number of reads of the gene of
two datasets. The stand alone Blast program, blastn, was
used to cluster a pair of sequences between two datasets
with minimum 300 bp and 95% identity.
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