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Abstract
Sympathetic nerve and vagus nerve remodeling play an important part in cardiac function post-myocardial infarction (MI). Increasing 
evidence indicates that neuregulin-1 (NRG-1) improves cardiac function following heart failure. Since its impact on cardiac function and 
neural remodeling post-MI is poorly understood, we aimed to investigate the role of NRG-1 in autonomic nervous system remodeling 
post-MI. Forty-five Sprague-Dawley rats were equally randomized into three groups: sham (with the left anterior descending coronary 
artery exposed but without ligation), MI (left anterior descending coronary artery ligation), and MI plus NRG-1 (left anterior descending 
coronary artery ligation followed by intraperitoneal injection of NRG-1 (10 µg/kg, once daily for 7 days)). At 4 weeks after MI, echocardi-
ography was used to detect the rat cardiac function by measuring the left ventricular end-systolic inner diameter, left ventricular diastolic 
diameter, left ventricular end-systolic volume, left ventricular end-diastolic volume, left ventricular ejection fraction, and left ventricular 
fractional shortening. mRNA and protein expression levels of tyrosine hydroxylase, growth associated protein-43 (neuronal specific pro-
tein), nerve growth factor, choline acetyltransferase (vagus nerve marker), and vesicular acetylcholine transporter (cardiac vagal nerve 
fiber marker) in ischemic myocardia were detected by real-time PCR and western blot assay to assess autonomous nervous remodeling. 
After MI, the rat cardiac function deteriorated significantly, and it was significantly improved after NRG-1 injection. Compared with the 
MI group, mRNA and protein levels of tyrosine hydroxylase and growth associated protein-43, as well as choline acetyltransferase mRNA 
level significantly decreased in the MI plus NRG-1 group, while mRNA and protein levels of nerve growth factor and vesicular acetylcho-
line transporters, as well as choline acetyltransferase protein level slightly decreased. Our results indicate that NRG-1 can improve cardiac 
function and regulate sympathetic and vagus nerve remodeling post-MI, thus reaching a new balance of the autonomic nervous system to 
protect the heart from injury.

Key Words: nerve remodeling; myocardial infarction; neuregulin-1; sympathetic nerve; vagus nerve; animal model; real-time PCR; western 
blot assay; cardiac function; echocardiography
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Introduction
Neuregulin-1 (NRG-1), a member of the epidermal growth 
factor family, plays an important regulatory role in the de-
velopment and repair of the nervous system (Murphy et al., 
2002; Lemmens et al., 2007; Melenhorst et al., 2008; Ding 
et al., 2014; Yamada et al., 2014). Moreover, some scholars 
believe that NRG-1 and its receptors (ErbB2, ErbB3, and 
ErbB4) are crucial in cardiac development (Mei and Xiong, 
2008; Pasca et al., 2014). NRG-1 has been found to be able 
to induce hypertrophy and inhibit cell apoptosis in rat 
ventricular myocytes (Zhao et al., 1998; Baliga et al., 1999; 
Rohrbach et al., 1999). Recent studies also found that NRG-
1 activates tyrosine kinase, thus causing various cardiovas-
cular biological effects, including regulating the structure 
and function of cardiomyocytes and its apoptosis and pro-
liferation, and promoting angiogenesis (Odiete et al., 2012; 
Mendes-Ferreira et al., 2013). Experimental studies in vivo 
have found that NRG-1 can significantly improve acute and 
chronic ischemic cardiomyopathy and myocarditis, and 
phase II clinical trials revealed that the short-term adminis-
tration of recombinant human NRG-1 can improve chronic 
cardiac function in patients with heart failure (Gao et al., 
2010; Jabbour et al., 2011). However, phase III clinical trials 
of recombinant human NRG-1 for heart failure are ongoing. 
Notably, in patients with breast cancer accepting anti-ErbB2 
monoclonal antibody trastuzumab treatment, heart failure 
occurred partially (Feldman et al., 2000; Schneider et al., 
2001). Therefore, NRG-1 and its receptors are being consid-
ered gradually for the cardiovascular system.

A large amount of norepinephrine is released from sym-
pathetic nerves during acute myocardial ischemia, and sym-
pathetic sprouting and sympathetic remodeling reach a peak 
at 1 week after myocardial infarction (MI) (Wu et al., 2012; 
Holmes et al., 2016; Prabhu and Frangogiannis, 2016). At 
the same time, sympathetic nerve reinnervated by budding 
results in sympathetic hyperinnervation, and this imbal-
anced innervation plays an important role in the occurrence 
of ventricular arrhythmias (Li et al., 2004; Zhou et al., 2004; 
Boogers et al., 2010; Alston et al., 2011). Meanwhile, vagus 
nerve injury, necrosis, regeneration, and reconstruction also 
occur post-MI (Suo et al., 2013).

Most studies focused on the roles of NRG-1 in nerve re-
pair and neurohumoral regulation of heart injuries (Monje 
et al., 2006; Calvo et al., 2010; Cahill et al., 2013), but the 
effects of NRG-1 on the neural remodeling post-MI remain 
unclear. We hypothesized that NRG-1 might play a role in 
neural remodeling following MI. Thus, we prepared a rat 
model of MI to investigate how NRG-1 impacts cardiac 
function and neural remodeling after MI.

Materials and Methods
Animals
Forty-five adult male Sprague-Dawley rats aged 12 weeks 
and weighing 250–300 g were provided by the Animal 
Experiment Center of Wuhan University in China (No. 
42000500005679). Rats were housed in temperature-con-

trolled and humidity-controlled large cages with sawdust 
bedding and given access to tap water and food ad libitum 
for 7 days. All animal care and experimental procedures 
were performed in accordance with the United States Na-
tional Institutes of Health Guide for the Care and Use of 
Laboratory Animals (publication no. 85-23, revised 1986). 
This research was approved by the Administration Commit-
tee of Experimental Animals, Hubei Province, China. Rats 
were randomized into three groups (n = 15 per group): sham 
operation group, MI group, and MI plus NRG-1 group.

Establishment of the MI model
The left anterior descending coronary artery of the rats in 
the MI and MI plus NRG-1 groups was ligated to establish 
the MI model, as previously described (Wang et al., 2014). In 
brief, after anesthesia with 3.6% chloral hydrate (1 mL/100 
g, Sinopharm Chemical Reagent Co., Ltd, Shanghai, China) 
was administered, the rats were connected to the electro-
cardiograph and then disinfected. We cut the skin along the 
left side of the sternum; separated fascia and muscle with 
hemostatic forceps; performed thoracotomy at the third and 
fourth ribs to expose the mediastinum and pericardium; 
found the left atrial appendage, pulmonary artery cones, 
and veins; identified the left anterior descending coronary 
artery and ligated it using a 5-0 (or 6-0) suture; and closed 
the chest and skin layer by layer. A successful MI model 
was confirmed when the color of the ischemic area became 
pale and ST-segment elevation was detected in leads I, II, 
and aVL by electrocardiography. In the sham group, rats re-
ceived the same procedures, except left anterior descending 
coronary artery ligation.

Experimental interventions
Rats in the MI plus NRG-1 group were given an intraperito-
neal injection of NRG-1 (10 µg/kg) after MI, once daily for 
7 consecutive days (Lemmens et al., 2011). At 4 weeks after 
MI, echocardiography was performed to evaluate cardiac 
function, and myocardial tissues from the infarct border 
zone were collected to detect the levels of tyrosine hydrox-
ylase (TH), growth associated protein-43 (GAP43), nerve 
growth factor (NGF), choline acetyltransferase (CHAT), and 
vesicular acetylcholine transporter (VACHT) in the assess-
ment of neural remodeling (Ajijola et al., 2015).

Assessment of heart function
Heart function was tested using the Philips IE33 ultra-
sound system (GE Healthcare, Milwaukee, WI, USA) at 4 
weeks post-MI. Each rat was measured under anesthesia, 
and the indexes included the left ventricular end-systolic 
inner diameter (LVESD), left ventricular diastolic diameter 
(LVEDD), left ventricular end-systolic volume (LVESV), left 
ventricular end-diastolic volume (LVEDV), left ventricular 
ejection fraction (LVEF%), and left ventricular fractional 
shortening (LVFS%) were recorded and measured. The fol-
lowing equation was used: LVEF% = (LVEDD3 – LVESD3)/
LVEDD3 × 100% and LVFS% = (LVEDD – LVESD)/
LVEDD × 100%.
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Measurements of the neural remodeling markers (TH, 
GAP43, NGF, CHAT, and VACHT)
Quantitative real-time polymerase chain reaction (qRT-PCR)
Approximately 100 mg of myocardial tissues from the in-
farct border zone were collected at 4 weeks after MI. Total 
RNA was extracted by Trizol reagent (15596-026; Invitro-
gen, Carlsbad, CA, USA), cDNA was obtained with the First 
Strand cDNA Synthesis Kit (FSK-100; Toyobo, Kita-ku, 
Osaka, Japan), and then the fragments were amplified with 
the SYBR Green-based assays kit (Invitrogen) according 
to the manufacturer’s instructions. Next, qRT-PCR was 
conducted using the StepOne™ Real-Time PCR System 
(ABI, Life Technologies, Rockville, MD, USA). RT-PCR 
conditions were 42°C/30 minutes and 80°C/5 minutes for 
reverse transcription; 95°C/60 seconds for pre-denature; and 
95°C/15 seconds, 58°C/20 seconds, and 72°C/20 seconds. 
All steps were performed for 40 cycles. The gene sequences 
are shown in Table 1. The mRNA expression levels of TH, 
GAP43, NGF, CHAT, VACHT, and GAPDH were detected, 
and GAPDH was used for normalization. The relative gene 
expression in the sample was calculated as 2-ΔΔCT. Experi-
ments were performed in triplicate.

Western blot assay
Fifty µg of protein was extracted from the ischemic myo-
cardial tissues at 4 weeks after MI. The tissues were lysed in 
radioimmunoprecipitation assay (AS1004, Aspen, Wuhan, 
China), and lysis buffer and protein concentrations were de-
termined using the BCA kit (AS1086, Aspen). The proteins 
were used for sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis and then transferred to nitrocellulose mem-
branes. The membranes were blocked by incubation with 5% 
bovine serum albumin in a TBS-Tween buffer (10 mM Tris-
HCl, 150 mM NaCl, and 0.5% Tween-20) for 1 hour at room 
temperature, and subsequently, incubated with different pri-
mary antibodies: rabbit anti-TH (Santa, Shanghai, China), 
anti-GAP43 (1:1,000; Abcam, Cambridge, UK), anti-NGF 

(1:500; Abcam), anti-CHAT (1:500; Bioss, Beijing, China), 
anti-VACHT (1:500; Abcam), or anti-GAPDH (1:10,000; 
Abcam) overnight at 4°C. After the membrane was washed 
three times, the blots were incubated with secondary HRP 
conjugated goat anti-rabbit antibody (1:10,000; Pierce, 
Rockford, IL, USA) for 30 minutes at room temperature. 
Membranes were detected by enhanced chemiluminescence 
(Beyotime Biotechnology, Jiangsu, China) and exposed to 
film in the dark. The optical density intensity of each band 
was measured using AlphaEaseFC software (Alpha Innotech 
Corp., San Leandro, CA, USA). Results are shown as the op-
tical density ratio to GAPDH.

Statistical analysis
All data were analyzed by SPSS 16.0 (SPSS Inc., Chicago, IL, 
USA). Values are presented as the mean ± SD. The statistical 
significance of differences was analyzed using one-way anal-
ysis of variance with the Student-Newman-Keuls post hoc 
test for comparisons among groups. Values of P < 0.05 were 
considered statistically significant.

Results
Effect of NRG-1 on cardiac function
At 4 weeks after MI, echocardiography results showed sig-
nificant differences in LVESD, LVEDD, LVESV, LVEDV, 
LVEF%, and LVFS% among groups. Compared with the 
sham group, the MI group showed a significant deteriora-
tion in cardiac function; that is, LVESD, LVEDD, LVESV, 
and LVEDV were significantly increased, and LVEF% and 
LVFS% were significantly decreased (P < 0.05). After NRG-
1 injection, LVESD, LVEDD, LVESV, and LVEDV signifi-
cantly decreased; whereas, LVEF%, and LVFS% significantly 
increased (P < 0.05), suggesting a significant improvement 
in cardiac function (Table 2).

Effect of NRG-1 on the mRNA levels of neural remodeling 
markers
The mRNA expression levels of TH, GAP43, NGF, CHAT, 
and VACHT were significantly increased in the MI and MI 
plus NRG-1 groups compared with the sham group (P < 
0.05). Compared with the MI group, there was a significant 
decrease in mRNA expression levels of TH, GAP43, and 
CHAT in the MI plus NRG-1 group (P < 0.05). Simultane-
ously, there was a decreasing trend in NGF and VACHT 
mRNA expression levels (P > 0.05; Table 3).

Effect of NRG-1 on the protein levels of neural 
remodeling markers
The protein expression levels of TH, GAP43, NGF, CHAT, 
and VACHT were significantly increased in the MI and MI 
plus NRG-1 groups compared with the sham group (P < 
0.05). The protein expression levels of TH and GAP43 in 
the ischemic myocardia in the MI plus NRG-1 group were 
significantly lower than those in the MI group (P < 0.05); the 
protein expression levels of NGF, CHAT, and VACHT were 
slightly lower in the MI plus NRG-1 group than those in the 

Table 1 Gene sequences

 Gene Primer sequence (5′ to 3′)

TH Sense: CGT GTT TCA ATG CAC CCA GTA T
Antisense: CTG GGA GAA CTG GGC AAA TG

GAP43 Sense: GAG CCT AAA CAA GCC GAT GTG
Antisense: CTC ATC CTG TCG GGC ACT TT

NGF Senser: GAT AAG ACC ACA GCC ACG GAC
Antisense: TGA GTC GTG GTG CAG TAT GAG TT

CHAT Sense: GAA GGC TGA GGT GGA AAT GTT C
Antisense: TGA TGT TGT CCA CCC GAC CT

VACHT Sense: CGC TCA CCA CTT GTA ACA TTC C
Antisense: CAG AGT CCG CAG AGC GAG AC

GAPDH Sense: CGC TAA CAT CAA ATG GGG TG
Antisense: TTG CTG ACA ATC TTG AGG GAG

TH: Tyrosine hydroxylase; GAP43: growth associated protein-43; 
NGF: nerve growth factor; CHAT: choline acetyltransferase; VACHT: 
vesicular acetylcholine transporter; GAPDH: glyceraldehyde-3-
phosphate dehydrogenase.
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MI group (P > 0.05; Table 4 and Figure 1).

Discussion
Some studies have shown that in the NRG-1 knockout  
mouse model of MI, cardiac systolic function was signifi-
cantly impaired, but it was improved significantly after 
NRG-1 intervention (McCormick et al., 2015; Vandekerck-
hove et al., 2016; Yasui et al., 2016; Zhang et al., 2016). In an 
MI model, mitochondrial dysfunction and apoptosis were 
obviously reduced after intravenous administration of NRG-
1, thereby reducing left ventricular remodeling post-injury 
(Guo and Wang, 2012). Gu et al. (2010) found that NRG-1 
significantly up-regulated cardiac myosin light chain kinase 
and myosin light chain phosphorylation post-MI; the values 
of LVEF%, LVFS%, LVEDD, and LVESD were significantly 
increased, and cardiac function was significantly improved. 
In the current study, we observed that NRG-1 improved 
cardiac function post-MI.

NRG-1 can promote the proliferation of Schwann cells 
and increase the density and area of dendritic spines of 
neurons (Limpert and Carter, 2010). For peripheral nerves, 
NRG-1 promotes myelination and plays a significant role in 
axonal degeneration, axonal regeneration, remyelination, 
and innervation (Gambarotta et al., 2013; Shin et al., 2014). 

Table 2 Effect of NRG-1 on cardiac function in rats after MI

Group LVESD (cm) LVEDD (cm) LVESV (mL) LVEDV (mL) LVEF (%) LVFS (%)

Sham 0.35±0.015 0.62±0.021 0.11±0.015 0.55±0.047 80.46±4.35 43.97±4.52
MI 0.56±0.04* 0.77±0.023* 0.41±0.08* 0.92±0.12* 53.28±0.48* 23.8±0.21*

MI+N 0.42±0.017† 0.6±0.035† 0.18±0.02† 0.70±0.02† 73.8±4.19† 38.0±3.72†

All values are expressed as the mean ± SD (n = 15 rats in each group). *P < 0.05 vs. sham group; †P < 0.05, vs. MI group (one-way analysis of 
variance with the Student-Newman-Keuls post hoc test). MI: Myocardial infarction; N or NRG-1: neuregulin-1; LVESD: left ventricular end-systolic 
inner diameter; LVEDD: left ventricular diastolic diameter; LVESV: left ventricular end-systolic volume; LVEDV: left ventricular end-diastolic 
volume; LVEF: left ventricular ejection fraction; LVFS: left ventricular fractional shortening.

Table 3 Effect of NRG-1 on relative mRNA levels (/GAPDH) of neural remodeling markers in rat ischemic myocardia

Group TH GAP43 NGF CHAT VACHT

Sham 1.04±0.252 1.21±0.453 1.00±0.095 0.91±0.121 1.00±0.205
MI 4.78±0.505* 4.94±0.452* 4.85±0.450* 3.60±0.797* 4.13±0.890*

MI+N 3.59±0.280† 3.95±0165† 4.22±0.382 2.14±0.466† 2.97±0.424

All values determined by real-time polymerase chain reaction are presented as the mean ± SD (n = 15 in each group). *P < 0.05, vs. sham 
group; †P < 0.05, vs. MI group (one-way analysis of variance with Student-Newman-Keuls post hoc test). MI: Myocardial infarction; N or NRG-
1: neuregulin-1; TH: tyrosine hydroxylase; GAP43: growth associated protein-43; NGF: nerve growth factor; CHAT: choline acetyltransferase; 
VACHT: vesicular acetylcholine transporter; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

Table 4 Effect of NRG-1 on protein levels (/GAPDH) of neural remodeling markers in rat ischemic myocardia

Group TH GAP43 NGF CHAT VACHT

Sham 0.185±0.076 0.124±0.062 0.237±0.092 0.409±0.149 0.231±0.096
MI 0.678±0.102* 0.837±0.043* 0.981±0.174* 1.129±0.450* 0.749±0.176*

MI+N 0.364±0.141† 0.445±0.043† 0.642±0.156 0.812±0.231 0.693±0.141

All values determined by western blot assay are presented as the mean ± SD of optical density of target protein relative to GAPDH (n = 15 per 
group). *P < 0.05, vs. sham group; †P < 0.05, vs. MI group (one-way analysis of variance with Student-Newman-Keuls post hoc test). MI: Myocardial 
infarction; N or NRG-1: neuregulin-1; TH: tyrosine hydroxylase; GAP43: growth associated protein-43; NGF: nerve growth factor; CHAT: choline 
acetyltransferase; VACHT: vesicular acetylcholine transporter; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

Figure 1 NRG-1 injection regulated protein levels of neural 
remodeling markers in rat ischemic myocardia.
Target protein expression was analyzed by western blot assay with 
antibodies against TH, GAP43, NGF, CHAT, and VACHT relative to 
GAPDH. MI: Myocardial infarction; N: neuregulin-1; TH: tyrosine 
hydroxylase; GAP43: growth associated protein-43; NGF: nerve growth 
factor; CHAT: choline acetyltransferase; VACHT: vesicular acetylcho-
line transporter; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.
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It has been reported that sympathetic nerve hyperinnerva-
tion and denervation result in neural remodeling, but gener-
ally, sympathetic nerve remodeling is also accompanied with 
vagus nerve remodeling (Yu et al., 2010). Additionally, our 
study found sympathetic and vagus nerve remodeling after 
MI, which was expressed as a significantly increased GAP43 
level, as well as increased CHAT and VACHT levels.

TH was generated by norepinephrine and located in the 
cytoplasm of adrenergic nerve fibers. GAP43, a kind of neu-
ronal specific protein, exists in axons, which marks neuronal 
growth by neuronal synthesis. NGF can promote the growth 
of neuritis and induce cardiac sympathetic hyperinnerva-
tion (Lu et al., 2012). Chen et al. (2014) reported that TH, 
GAP43, and NGF significantly increased post-MI as con-
firmed by western blot analysis and immunohistochemistry, 
and aerobic exercise inhibited the cardiac sympathetic nerve 
sprouting and restored B1-AR/B3-AR balance. Our study’s 
results also showed that the expression levels of TH, GAP43, 
and NGF were significantly increased post-MI, but after 
the NRG-1 intervention, their expression levels decreased, 
suggesting that NRG-1 can inhibit sympathetic remodeling 
post-MI. CHAT is a vagus nerve marker. Suo et al. (2013) 
found that CHAT-positive nerve fiber density and its mRNA 
expression level were higher post-MI. Besides, VACHT is 
a cardiac vagal nerve fiber marker. Xi et al. (2004) reported 
that vagal innervation density appeared to significantly in-
crease after MI. In the current study, after the NRG-1 inter-
vention, the expression levels of CHAT and VACHT were 
not significantly different when compared with those in the 
MI group post-MI, except the mRNA level of CHAT, im-
plying that NRG-1 may not inhibit vagus nerve regeneration 
and repair following MI.

In summary, NRG-1 intervention effectively down-reg-
ulates sympathetic nerve mRNA and protein expression 
levels, thus inhibiting the sympathetic nerve remodeling 
post-MI, which reaches a new equilibrium of the autonomic 
nervous system to protect cardiac function by reducing sym-
pathetic nerve tension. But the further mechanism of nerve 
remodeling is not involved in the current study, and we will 
explore the possible mechanisms in the further research.
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