
fcell-07-00015 February 15, 2019 Time: 17:48 # 1

PERSPECTIVE
published: 19 February 2019

doi: 10.3389/fcell.2019.00015

Edited by:
Dominic C. Voon,

Kanazawa University, Japan

Reviewed by:
Richard Wong,

Kanazawa University, Japan
Takaomi Sanda,

National University of Singapore,
Singapore

*Correspondence:
Philipp Gut

philipp.gut@rd.nestle.com

Specialty section:
This article was submitted to

Cell Growth and Division,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 03 October 2018
Accepted: 31 January 2019

Published: 19 February 2019

Citation:
Dickmeis T, Feng Y, Mione MC,

Ninov N, Santoro M, Spaink HP and
Gut P (2019) Nano-Sampling
and Reporter Tools to Study

Metabolic Regulation in Zebrafish.
Front. Cell Dev. Biol. 7:15.

doi: 10.3389/fcell.2019.00015

Nano-Sampling and Reporter Tools
to Study Metabolic Regulation in
Zebrafish
Thomas Dickmeis1, Yi Feng2, Maria Caterina Mione3, Nikolay Ninov4,5,6,
Massimo Santoro7, Herman P. Spaink8 and Philipp Gut9*

1 Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany, 2 Centre
for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, 3 Centre
for Integrative Biology, University of Trento, Trento, Italy, 4 DFG-Center for Regenerative Therapies Dresden, Cluster
of Excellence, Technische Universität Dresden, Dresden, Germany, 5 Paul Langerhans Institute Dresden, Helmholtz Zentrum
München, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,
6 German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany, 7 Department of Biology, University of Padova,
Padua, Italy, 8 Institute of Biology Leiden, Leiden University, Leiden, Netherlands, 9 Nestlé Research, EPFL Innovation Park,
Lausanne, Switzerland

In the past years, evidence has emerged that hallmarks of human metabolic disorders
can be recapitulated in zebrafish using genetic, pharmacological or dietary interventions.
An advantage of modeling metabolic diseases in zebrafish compared to other “lower
organisms” is the presence of a vertebrate body plan providing the possibility to
study the tissue-intrinsic processes preceding the loss of metabolic homeostasis.
While the small size of zebrafish is advantageous in many aspects, it also has
shortcomings such as the difficulty to obtain sufficient amounts for biochemical analyses
in response to metabolic challenges. A workshop at the European Zebrafish Principal
Investigator meeting in Trento, Italy, was dedicated to discuss the advantages and
disadvantages of zebrafish to study metabolic disorders. This perspective article by
the participants highlights strategies to achieve improved tissue-resolution for read-outs
using “nano-sampling” approaches for metabolomics as well as live imaging of zebrafish
expressing fluorescent reporter tools that inform on cellular or subcellular metabolic
processes. We provide several examples, including the use of reporter tools to study the
heterogeneity of pancreatic beta-cells within their tissue environment. While limitations
exist, we believe that with the advent of new technologies and more labs developing
methods that can be applied to minimal amounts of tissue or single cells, zebrafish will
further increase their utility to study energy metabolism.

Keywords: zebrafish, metabolomics, fluorescent reporter, nano sampling, nano scaling, live imaging, beta-cell,
diabetes

INTRODUCTION

Zebrafish (Danio rerio) have evolved from being a model organism primarily used for studies of
vertebrate development to a widely applied research tool, including its use in behavioral research,
genetics, physiology, disease modeling, toxicology, and drug discovery (Lieschke and Currie, 2007;
Kalueff et al., 2013; MacRae and Peterson, 2015; Gut et al., 2017). The growing use of zebrafish is
based on the presence of a vertebrate body plan and observations that tissue-specific physiological

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 February 2019 | Volume 7 | Article 15

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2019.00015
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2019.00015
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2019.00015&domain=pdf&date_stamp=2019-02-19
https://www.frontiersin.org/articles/10.3389/fcell.2019.00015/full
http://loop.frontiersin.org/people/13626/overview
http://loop.frontiersin.org/people/475964/overview
http://loop.frontiersin.org/people/59273/overview
http://loop.frontiersin.org/people/648426/overview
http://loop.frontiersin.org/people/59384/overview
http://loop.frontiersin.org/people/672680/overview
http://loop.frontiersin.org/people/569999/overview
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00015 February 15, 2019 Time: 17:48 # 2

Dickmeis et al. Nano-Scaling to Study Zebrafish Metabolism

processes are surprisingly similar between zebrafish and humans
(Schlegel and Gut, 2015; Gut et al., 2017). The conservation of the
core mechanisms has led to the development of genetic, dietary
and pharmacological models to study the principles of energy
metabolism under physiological and disease conditions (Santoro,
2014; Gut et al., 2017).

Metabolic diseases are systemic disorders driven by the failure
of single or multiple tissues to maintain homeostasis. Loss of
metabolic homeostasis occurs when specialized tissues have lost
their reserve capacity to react to daily metabolic challenges.
For example, the diagnosis of diabetes is preceded by years of
compensation during which a reduced number of functional beta
cells maintains normoglycemia after meal intake. With further
decline of beta-cell function during persistent metabolic stress,
a minimum threshold of functional beta-cell mass is reached,
causing elevated fasting and post-prandial glucose excursions and
ultimately leading to diabetes (Chen C. et al., 2017). Challenging
this reserve capacity to study the biochemical processes of cells
that protect or accelerate functional responses to metabolic
stressors are a cornerstone of metabolic research (Tschop et al.,
2012). Due to their small body size, many of the challenges
that are routinely done in larger laboratory animals can be
difficult to implement in zebrafish. A workshop on metabolism
at the 5th European Zebrafish Principal Investigator meeting
(March 20–23, 2018 in Trento1) was dedicated to discuss novel
solutions to remaining obstacles that prevent a wider and more
impactful use of zebrafish for metabolic studies. As a result of this
discussion, we summarize recent progress in “nano-sampling”
approaches for metabolomics studies that provide possibilities
to quantify metabolites with tissue-resolution in zebrafish larvae.
Furthermore, we outline strategies using reporter tools and
live imaging to study heterogeneity of cellular function within
the tissue environment, an avenue that holds great promise to
investigate the early cellular events leading to metabolic disease
with clear advantages of using translucent zebrafish.

RECENT ADVANCES IN NANO-
SAMPLING FOR METABOLOMICS

Metabolomics technologies have facilitated systematic studies
of energy substrates and their intermediates in response
to different metabolic states, as well as the contribution
of pathologically elevated metabolites to disease onset and
progression. Over the past years, metabolomics methods have
also been increasingly applied to zebrafish. Typically, samples
from pooled embryos/larvae and from adult tissues have been
analyzed by nuclear magnetic resonance (NMR) spectroscopy as
well as chromatographic or mass spectrometric (MS) methods
(Ong et al., 2009; Papan and Chen, 2009; Soanes et al., 2011). [For
recent examples by the workshop participants, see (Chatzopoulou
et al., 2015; Martano et al., 2015; Weger et al., 2016) and
below]. Targeted MS methods can reduce the amount of required
material to as few as five embryos at 3 dpf (Kantae et al.,
2016), but despite these efforts data interpretation remains

1http://events.unitn.it/en/ezpm2018

challenging considering that metabolites are determined from
pooled tissues. Efforts to increase tissue resolution have been
made by applying manual microdissection, for example to
determine the specific lipid composition of the embryo proper
vs. the composition of yolk lipids at different stages, thereby
separating two groups of tissues, but still using material from
15 embryos per sample (Fraher et al., 2016). To improve tissue
resolution with minimal input material, microneedle sampling
has been used to take yolk samples from single embryos for
the quantification of drug uptake by targeted UPLC-MS (Ordas
et al., 2015). Recently it also has become possible to draw blood
from larvae: small drops could be obtained from the posterior
cardinal vein at 5 dpf using a microneedle in conjunction with
imaging to calculate the sample volume (van Wijk et al., 2018).
Using this method the blood concentration, distribution volume
and clearance of paracetamol was estimated in response to
exposure from the water. Further optimization is required to
compare blood sampling from different anatomical locations
and to provide additional proof-of-concept examples beyond
paracetamol. The determination of pharmacokinetic properties
of a small molecule in a zebrafish larvae at nano-scale is a step
forward in making zebrafish a suitable complementary model for
drug discovery and development.

In another proof-of-concept study Xenopus embryos
were applied for nano-sampling using a microprobe single
cell CE-ESI-MS technique, which could determine about
70 metabolites from single blastomeres from the 32 cell stage
(Onjiko et al., 2017). As the sample volumes used in these
microneedle-based approaches are similar between zebrafish
[20–200 nL; whole 3 dpf larva∼290 nL (Kantae et al., 2016)] and
Xenopus (10–15 nL), the capillary sampling method might also
allow for untargeted metabolomics in the zebrafish.

Recent technical advances in single cell metabolomics with
cultured cells demonstrate the feasibility of reaching cellular
resolution also for cells smaller than early embryonic blastomeres
with subcellular sampling on the horizon (Esaki and Masujima,
2015); reviewed in Armbrecht and Dittrich (2017), Yang et al.
(2017), Qi et al. (2018). Although challenging, microdissections
using microneedles or capillaries on tissues from zebrafish will
be ideally suited for single cell metabolomics facilitated by the
rich resource of reporter transgenic lines for the identification of
embryonic and larval anatomical structures.

An alternative approach to nano-sampling is mass spectro-
metry imaging, which may achieve even higher spatial resolution
and give snapshots of in situ metabolite distribution. For
example, Dueñas et al. (2017) used MALDI imaging to map
phospholipid distributions in early zebrafish embryos (up to 16
cell stage) at about 10 µm resolution. However, a downside
of MALDI imaging is that it requires cryosectioning of the
embryos and has an analytical bias for lipids (Baker et al.,
2017; Emara et al., 2017). Secondary Ion Mass Spectrometry
(SIMS) achieves higher resolutions than MALDI imaging, but
is equally limited to fixed samples (Passarelli and Ewing, 2013;
Armbrecht and Dittrich, 2017).

Toward a better understanding of metabolite dynamics,
continuous recording of metabolome changes in vivo will
be required. In vivo Nuclear Magnetic Resonance (NMR)
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TABLE 1 | Nano-sampling approaches for metabolomics.

Method Tissue Description Amount of material used per sample References

Manual microdissection Yolk and embryo
proper

Separation of yolk and embryo body with
forceps and fine scalpel

Pooled tissues from 15 embryos Fraher et al., 2016

Microneedle sampling Yolk, blood Puncturing and suction of yolk or larval
vasculature with glass capillary

Yolk: 50 nL (range 20–200 nL) from 1 embryo
Blood: samples pooled from 15–35 individual
larvae

Ordas et al., 2015

Mass spectrometry imaging Early embryos
(1–16 cell stage)

Matrix assisted laser desorption/ionization
(MALDI) mass spectrometric imaging of
phospholipids on cryosections

Cryosections of 1 embryo, spatial resolution
10 µm

Dueñas et al., 2017

In vivo magnetic resonance
microscopy (MRM)/magnetic
resonance spectroscopy (MRS)

Adult brain Live MRM/MRS of adult fish in flowthrough
chamber of microimaging probe

1 adult fish, voxel size 1.5 mm3 Kabli et al., 2009

spectroscopy is a promising approach for such metabolic
monitoring, and a few pioneering studies have followed
metabolite changes during development and in response to
hypoxia or herbicide exposure in medaka embryos (Viant et al.,
2002, 2006; Pincetich et al., 2005). As spectroscopic analysis
can be combined with magnetic resonance (MR) imaging, also
spatial information on metabolite distribution is accessible to
these techniques. For example, Kabli et al. (2009) recorded high
resolution localized MR spectra from live adult zebrafish brains
with a voxel size of 1.5 mm3 and could detect several amino acids
and other metabolites. Further improvements of the instruments
are likely to increase both metabolite and spatial resolution as well
as sensitivity of these methods.

Another strategy to examine metabolism beyond steady
state levels is the application of tracer technologies to assess
flux rates through different pathways. Mugoni et al. (2013a,b)
used 13C isotope labeling to study prenyl lipid metabolism
in zebrafish embryos, showing reduced Coenzyme Q10 and
Q9 synthesis based on HPLC analysis of extracts from 25
embryos mutant for UbiA-domain containing protein 1 (ubiad1)
and their wild-type siblings. Combining such tracer studies
with the cellular and sub-cellular analysis methods currently
being developed should provide unprecedented insight into
metabolic pathways and their (patho-)physiological changes
in vivo. Table 1 summarizes methods that are relevant for nano-
sampling strategies in zebrafish.

Looking forward, key applications for metabolomics studies
in zebrafish include the investigation of cancer metabolism;
metabolic reprogramming is a hallmark described as an
intrinsic property of cancer and is based on the observation
that proliferating cells require a large amount of nutrients,
energy, and biosynthetic activity to produce the macromolecular
components of the newly generated cells. The zebrafish, with its
large collection of genetic models of cancers and the popular
transplantation assays, represents the ideal model system for
analysis of metabolism during cancer progression (White et al.,
2013). While the tools for studying changes in metabolism
in vivo are being developed, a number of studies have already
revealed altered metabolism in a zebrafish model of glioma
progression, including changes in glycolytic rate as well as lipid
and nucleotide metabolism (Bräutigam et al., 2016; Tan et al.,
2016; Zhang M. et al., 2018). Known oncogenes have been

reported to rewire metabolic pathways in zebrafish. For example,
Yap was found to reprogram glutamine metabolism to increase
nucleotide biosynthesis in a zebrafish model of liver hyperplasia
(Cox et al., 2016).

To provide a framework to compare metabolic changes
in response to reprogrammed metabolic pathways between
mammalian and fish metabolism, a metabolic network model
(MetaFishNet2) has been generated (Li et al., 2010) and
refined recently (Bekaert, 2012). Metabolic network models
integrate genetic, epigenetic and metabolic information and allow
predictions of cancer type-specific metabolic pathways, drug
targets and therapeutic strategies, and have been constructed
for a number of organisms and tissues [reviewed in Masoudi-
Nejad and Asgari (2015)]. The MetaFishNet model was used
to draw a comparison between human and fish metabolic
pathways, showing a large overlap, and to analyze gene expression
data in a zebrafish liver cancer model (Lam et al., 2006).
Several metabolic pathways were predicted to be misregulated
in zebrafish liver cancer (Li et al., 2010), and Wnt signaling
was found to remodel lipid metabolism in tumors induced by
overexpression of the oncogene Ras in hepatocarcinoma cells
and zebrafish liver tumors (Yao et al., 2018). Advances in nano-
sampling and metabolomics requiring low-input of materials will
provide powerful technologies to investigate cancer-type specific
metabolic changes in zebrafish cancer models.

TISSUE-RESOLUTION OF METABOLIC
REGULATION USING REPORTER TOOLS

An alternative to the direct quantification of metabolites in
tissues is the indirect visualization of physiological processes
(Gut et al., 2013), metabolite ratios (Panieri et al., 2017), or
signaling effects of metabolites (Niethammer et al., 2009) in
zebrafish using fluorescent probes [Reviewed in Santoro (2014)].
The transparency of zebrafish larvae and amenability to genetic
modification has enabled live imaging of these reporter tools
in tissues and single cells (Figure 1). Further advantages of
these strategies include the possibility to monitor processes
continuously and in response to challenges, such as in the

2http://metafishnet.appspot.com
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FIGURE 1 | Examples of fluorescent reporter tools used in zebrafish larvae to monitor metabolic responses in cells or tissues.

background of genetically modified zebrafish, following the
treatment with drugs or toxins, or after exposure to tissue
damage. For example, the use of genetically encoded H2O2
sensor HyPer has revealed the critical function of H2O2 as a
chemoattractant released from the wound edge (Niethammer
et al., 2009). However, HyPer is also sensitive to changes in
pH and therefore requires careful control with pH sensors such
as SypHer (Roma et al., 2012; Weller et al., 2014). Further
pioneering work has been done using sensor probes for the
cellular redox state that are less sensitive to pH, such as
recently developed novel transgenic zebrafish lines expressing
the metabolic redox biosensors roGFP2-Orp1 and Grx1-roGFP2
(Morgan et al., 2011) in endothelial and myocardial cells (Panieri
and Santoro, 2017). These reporters rely on ratio-metric imaging
of the sensor for real-time imaging of hydrogen peroxide
(H2O2) levels and the redox potential of glutathione (EGSH)
in specific subcellular compartments (Panieri and Santoro,
2017). Specifically, imaging these sensors showed higher basal
levels of H2O2 in the mitochondrial matrix than other sub-
cellular compartments (Panieri et al., 2017). Similarly, the
mitochondrial matrix was characterized by more oxidizing EGSH
compared to the cytosol and the nucleus (Panieri et al., 2017).
Pharmacologic treatments suggest that the pentose phosphate
and glutathione biosynthetic pathways exert a protective
antioxidant role in vivo in endothelial cells and cardiomyocytes
(Panieri et al., 2017).

Similarly, transgenic expression of other ratio-metric
fluorescent biosensors for metabolites are on the way. Among
those, Perceval HR (Berg et al., 2009) for measuring ATP/ADP

ratio and Peredox for measuring NADH-NAD(+) ratio (Hung
et al., 2011) are widely used biosensors in mammalian systems.
Validation in zebrafish is lacking, but efforts to use them
in live larvae are ongoing (unpublished data; YF). Förster
Resonance Energy Transfer (FRET) based metabolite reporters
are also promising in their application in zebrafish live imaging.
Transgenic expression of the lactate FRET reporter. As more
genetically encoded metabolite reporters are developed (Jensen
et al., 2006; Gruenwald et al., 2012; Luddecke et al., 2017),
we envisage that many of these reporters can also be used in
zebrafish models to image and quantify metabolism at the cellular
and subcellular levels.

In addition to genetically encoded metabolite probes,
fluorescently labeled carbon sources such as glucose, lactate, and
lipids analogs can be used to trace their uptake into cells in vivo
in zebrafish embryos [(Marin-Juez et al., 2015; Anderson et al.,
2016) and unpublished data; YF]. There is also increasing interest
in developing novel fluorescent chemical probes for various
metabolites, ions and redox species. Some of these tools have
been successfully tested in zebrafish embryos such as a fluorescent
sensor to detect Nitric Oxide in liver cells of zebrafish (Zhang
et al., 2018a). Other probes include a polymer micelles-based
ratio-metric fluorescent probe for hypochlorous acid (HClO) to
monitor HClO generation during liver injury in vivo in zebrafish
embryos (Zhang et al., 2018b).

However, most metabolite sensors are developed and
optimized in mammalian tissue culture systems. Additional
efforts are required to validate their sensitivity and accuracy
in zebrafish embryos, which is particularly the case for FRET
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TABLE 2 | Selection of reporter tools to quantify metabolites.

Tool Method Description Validated in
zebrafish

Reference

Perceval Fluorescent biosensor Genetically encoded ratiometric fluorescent reporter for ATP/ADP ratios No Berg et al., 2009

GCaMP6s Fluorescent biosensor Genetically encoded intensiometric fluorescent reporter for calcium Yes Chen J. et al., 2017;
Singh et al., 2017;
Janjuha et al., 2018a

RoGFP2-Orp1 Fluorescent sensor Genetically encoded ratiometric fluorescent reporter for H2O2 detection Yes Panieri et al., 2017

Grx1-RoGFP2 Fluorescent sensor Genetically encoded ratiometric fluorescent reporter for GSH:GSSG redox
potential

Yes Panieri et al., 2017

Cyto-roGFP Fluorescent biosensor Genetically encoded ratiometric fluorescent reporter for Redox state
(Cytosol)

No Waypa et al., 2010

Matrix-roGFP Fluorescent biosensor Genetically encoded ratiometric fluorescent reporter for Redox state
(Mitochondrial Matrix)

No Waypa et al., 2010

GPD-roGFP Fluorescent biosensor Genetically encoded ratiometric fluorescent reporter for Redox state
(Mitochondrial Innermembrane space)

No Waypa et al., 2010

Pyronic FRET biosensor Genetically encoded ratiometric fluorescent reporter for pyruvate No San Martin et al., 2014

Laconic FRET biosensor Genetically encoded ratiometric fluorescent reporter for lactate No San Martin et al., 2013

pHRed Fluorescent biosensor Genetically encoded intensiometric fluorescent reporter for pH No Tantama et al., 2011

Peredox-mCherry FRET biosensor Genetically encoded intensiometric fluorescent reporter for NADH/NAD ratio No Hung et al., 2011

iNap1 Fluorescent biosensor Genetically encoded ratiometric fluorescent reporter for NADPH Yes Zou et al., 2018

SoNar Fluorescent biosensor Genetically encoded fluorescent reporter for NADH Yes Zhao et al., 2016; Zou
et al., 2018

HyPerRed Fluorescent biosensor Genetically encoded intensiometric fluorescent reporter for H2O2 Yes Zou et al., 2018

probes that often have been optimized to function at 37◦C.
Once a reliable imaging protocol is established, these sensors
will be invaluable tools to monitor dynamic metabolic changes
in specific tissues, cells and sub-cellular compartments in
physiology and disease conditions. Table 2 summarizes reporter
tools that can be used to quantify metabolites and includes
information whether these tools have been tested in zebrafish
yet. Although these tools will not be able to replace traditional
biochemical approaches on sampled tissues, the live observation
of metabolites and signaling events in vivo can provide invaluable
insights into metabolic regulation.

REPORTER TOOLS TO SHED LIGHT
INTO CELLULAR HETEROGENEITY
OF BETA-CELLS

A pertinent example for employing reporter tools to
understand the function of individual cells within their
tissue-context comes from studies of pancreatic beta-cells.
Insulin-secreting beta-cells play a central role in glucose
homeostasis, as their loss or malfunction can lead to the onset
of diabetes. Beta-cells show a high plasticity in response
to metabolic challenges or in pathological conditions,
increasing interest in studying beta cell turnover and
function at cellular resolution (Ninov et al., 2013; Chen C.
et al., 2017). Studies on beta-cell biology in zebrafish so
far have mainly used fluorescent reporter lines to study
the processes of beta-cell differentiation and regeneration
(Prince et al., 2017). These studies have defined the progenitor
lineages for beta-cell formation during development and

regeneration using genetic lineage-tracing techniques (Hesselson
et al., 2009; Wang et al., 2011; Ninov et al., 2013; Delaspre
et al., 2015). In addition, they have revealed novel signaling
pathways that regulate beta-cell differentiation, proliferation
and regeneration (Andersson et al., 2012; Tsuji et al., 2014;
Wang et al., 2015) as well as the importance of inter-organ
communication (Lu et al., 2016) and the gut microbiota for these
processes (Hill et al., 2016).

However, several critical aspects of beta-cell biology that
have taken a central stage in the mammalian pancreas field
require monitoring of functional read-outs, and await to be
examined in zebrafish. For example, the process of maturation
of beta-cells toward glucose-stimulated insulin secretion has
not been investigated extensively in the zebrafish pancreas.
Addressing functionality is important as recent studies in mice
have shown that beta-cell death might not be the primary
reason for the loss of functional beta-cells in diabetes. Instead,
beta-cells in diabetic conditions lose their identity and undergo
a process of dedifferentiation, in which they stop expressing
beta-cell markers (Bensellam et al., 2018). Thus, it will be
necessary to establish models in zebrafish that recapitulate
the dedifferentiation of beta-cells observed in mouse and
human islets.

Toward this end, it was recently shown that beta-cells
in zebrafish larvae show glucose-stimulated calcium influx
and expression of markers of mature beta-cells, opening an
avenue to use the zebrafish as a model to address the final
step of beta-cell differentiation and maturation (Singh et al.,
2017). Specifically, the genetically encoded calcium indicator,
GCAMP6s, was expressed under the insulin promoter to
quantify influx of calcium into beta-cells. Calcium binds to
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GCaMP6s and activates a conformational change leading to the
emission of green fluorescence. Since calcium influx in beta-
cells correlates with insulin secretion (Bergsten et al., 1994),
this system makes it possible to visualize the function of beta-
cells with single-cell precision. When combined with lineage-
tracing of different beta-cell populations, this approach revealed
the presence of a functional heterogeneity and a trade-off
between proliferative potential and maturity among beta-cells
(Singh et al., 2017). Further efforts and new tools will be
necessary, however, to visualize the actual release of insulin
from zebrafish beta-cells, which remains an outstanding goal
in the field.

Moreover, the interactions between the immune system and
beta-cells play a critical role in diabetes pathogenesis, yet these
processes have not been modeled in the zebrafish pancreas.
Implementing models of beta-cell inflammation and auto-
immunity would allow one to study how these interactions
are controlled in response to metabolic stress and aging
(Janjuha et al., 2018b). A recent study applied the zebrafish
genetics and transgenic reporter for activated inflammation
to reveal the presence of an inflammatory clock that marks
the proliferative-decline of beta-cells with age. In this clock,
beta-cells that activate inflammatory NF-kB signaling also
prematurely upregulate socs2, an age-related gene that inhibits
their proliferation (Janjuha et al., 2018b). This work suggests
that certain aspects of beta-cell biology such as their capacity
to proliferate depend on interactions with the islet-resident
innate-immune cells. However, it will be necessary to further
validate the zebrafish as a model to investigate the complex
crosstalk of metabolism, immunity and organ function. In
this regard, two recent papers showed that foxp3 marks
regulatory T-cells (Tregs) in zebrafish and that foxp3 mutants
display systemic inflammation, suggesting an involvement of
these cells in the maintenance of immune tolerance (Hui
et al., 2017; Kasheta et al., 2017). These results recapitulate
in part the situation in humans where mutations in FOXP3
predispose to multi-organ autoimmunity (Sugimoto et al., 2017).
In the future, it will be important to investigate whether
aberrant selection of immune cells during T-cell maturation
or prolonged exposure to self-antigens in combination with
genetic and environmental risk factors can be applied to
model certain aspects of autoimmune diseases such as type 1
diabetes in zebrafish. The repertoire of zebrafish immune cells
is not fully understood and one needs to carefully consider
differences in immune cell and cytokine profiles between
zebrafish and mammals. However, models are emerging that
can be used to monitor T-cell development and migration
within their niche (Tian et al., 2017; Aghaallaei and Bajoghli,
2018), and will help to further characterize the zebrafish
immune repertoire.

Being able to assess beta-cell activity under metabolic and
inflammatory stress is critical to identify small molecules that
prevent the loss of its function in diabetes. We propose that
some of the above-mentioned tools allowing to quantify the
rate of ROS production or the metabolic state of cells can be
applied to beta-cells as well. These tools, in conjunction with
small molecule screening, can facilitate the discovery of novel

therapeutic interventions that intervene at different levels in the
cascade responsible for beta-cell stress and dysfunction.

CONCLUSION AND FUTURE
APPROACHES

Progress has been made to exploit the advantages of zebrafish
for studying the control of energy metabolism at tissue, cellular
and subcellular resolutions. Achieving this level of resolution
is critical considering the specialization of metabolically active
tissues that often show different, and in some cases even
opposite, homeostatic responses to metabolic challenges.
Performing whole-larval transcriptomics metabolomics or
proteomics analyses therefore provides limited information.
The community should apply nano- or micro-sampling
approaches wherever possible, facilitated by an active exchange
of protocols and access to state-of-the art technologies. The
same is the case for the use of reporter tools that often require
experience and an optimized set-up, but once implemented
provide powerful technologies to perform metabolic studies
within the context of a live organism in physiological or
pathological states.
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