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Abstract 
The identification of chemicals in articles has attracted a large interest in the biomedical scientific community, given its importance in drug devel-
opment research. Most of previous research have focused on PubMed abstracts, and further investigation using full-text documents is required 
because these contain additional valuable information that must be explored. The manual expert task of indexing Medical Subject Headings 
(MeSH) terms to these articles later helps researchers find the most relevant publications for their ongoing work. The BioCreative VII NLM-Chem 
track fostered the development of systems for chemical identification and indexing in PubMed full-text articles. Chemical identification consisted 
in identifying the chemical mentions and linking these to unique MeSH identifiers. This manuscript describes our participation system and the 
post-challenge improvements we made. We propose a three-stage pipeline that individually performs chemical mention detection, entity nor-
malization and indexing. Regarding chemical identification, we adopted a deep-learning solution that utilizes the PubMedBERT contextualized 
embeddings followed by a multilayer perceptron and a conditional random field tagging layer. For the normalization approach, we use a sieve-
based dictionary filtering followed by a deep-learning similarity search strategy. Finally, for the indexing we developed rules for identifying the 
more relevant MeSH codes for each article. During the challenge, our system obtained the best official results in the normalization and indexing 
tasks despite the lower performance in the chemical mention recognition task. In a post-contest phase we boosted our results by improving our 
named entity recognition model with additional techniques. The final system achieved 0.8731, 0.8275 and 0.4849 in the chemical identification, 
normalization and indexing tasks, respectively. The code to reproduce our experiments and run the pipeline is publicly available. 
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Introduction 
Over the years, researchers have published scientific articles 
in various venues such as journals, conferences and, more 
recently, public open archives. With the increasing pace of 
research, an enormous amount of new articles are now pub-
lished on a daily basis. For instance, in 2020 PubMed alone 
was responsible for the indexing of ∼1.5 million new arti-
cles (https://www.nlm.nih.gov/bsd/medline_pubmed_produc-
tion_stats.html), which corresponds to a publishing rate of 
nearly three new articles every minute. This rapid literature 
generation rate becomes, as noted by Landhuis et al. (1), a bur-
den to researchers who need to invest more time for keeping 
track of current literature while continuing with their ongoing 
research work. 

Automatic information extraction systems are viewed as 
possible solutions to aid researchers in tasks that deal with 
overwhelming volumes of data, as suggested by Grish-
man (2). Information extraction can (i) help researchers to 
quickly grasp the knowledge encoded in each scientific arti-
cle; (ii) help data curators to expedite their work or (iii) help 

automatic search systems to improve their performance by 
directly indexing extracted terms from scientific manuscripts. 
Specifically, the information extraction task of named entity 
recognition (NER) focuses on directly identifying entities in 
free text, such as names of diseases, chemicals or genes. Of 
particular interest is the identification of chemical names, 
which are among the most frequently searched entity types 
in PubMed (3), given the potential impact on tasks such as 
drug–drug interaction extraction and detection of adverse 
drug events and finally on drug development. In this context, 
it is also usual to normalize the identified chemical mentions 
by linking them to unique codes from a standard vocabulary, 
such as Medical Subject Headings (MeSH) (4). 

Despite the added value of using the extra information 
present in PubMed full-text articles, biomedical informa-
tion extraction systems have typically limited their scope to 
PubMed abstracts owing, on one hand, to the open availabil-
ity, and on the other, to the challenges stemming from the more 
complex writing style of the full-text content, which contain 
more detailed explanations and statements when compared 
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to abstracts. Herein we propose an end-to-end processing 
system for the extraction, normalization and indexing of 
chemical-related entities, operating over full-text articles. The 
system was designed as a cascaded pipeline that addresses 
each task in an isolated manner, containing the following three 
core modules: ‘Annotator’, ‘Normalizer’ and ‘Indexer’. Firstly, 
the ‘Annotator’ module aims to identify chemical entities in 
full-text articles, leveraging current advances in deep learning 
to create a neural model capable of recognizing chemical enti-
ties. Next, the ‘Normalizer’ uses a rule-based method based 
on dictionary lookup combined with a deep-learning-based 
approach for linking previously identified entities to their 
corresponding MeSH codes. Finally, the ‘Indexer’ explores a 
rule-based method and a term frequency–inverse document 
frequency (TF-IDF) approach for the selection of the most 
relevant MeSH codes to be indexed per article. 

Our system was originally developed and evaluated within 
the context of the BioCreative VII Track 2 (NLM-Chem) 
challenge (5), which aimed to bring together the text-mining 
community in order to improve the state of the art in chemi-
cal entity identification. The NLM-Chem challenge track was 
divided into two tasks: (i) chemical identification and (ii) 
chemical indexing. In the first task, the objective was to rec-
ognize chemical mentions (NER) in full-text scientific articles 
and link the predicted entities to their corresponding MeSH 
identifiers, also known as normalization. The second task 
aimed to predict the chemical MeSH identifiers that should 
be used to index each document, i.e., find the most relevant 
MeSH terms for each document. The proposed system was 
further improved in a post-challenge contribution, with higher 
emphasis being given to the NER module since it is the first 
piece of the end-to-end pipeline where improvements at the 
beginning of the pipeline cascade to the downstream modules. 

The present paper is structured as follows: in ‘Related 
work’ we contextualize our work with the current literature; 
in ‘Materials and methods’ we address all of the resources used 
in this work and provide a complete description of the pro-
posed end-to-end pipeline, detailing the methods developed 
within each module as well as post-challenge improvements; 
in the ‘Results and discussion’ section we show the results 
obtained in the BioCreative VII Track 2 challenge along with 
improved results obtained post-challenge and present impor-
tant insights together with some ablation studies that sup-
ported the choice of our methods; finally, in ‘Conclusions and 
future work’ we provide other existing possibilities for further 
improving the proposed solution at the three different levels 
of the pipeline. 

Related work 
The use of computerized solutions to ease the work of bio-
logical, clinical and medical researchers has been a field 
of growing investigation during the past decades (6, 7). 
In the life sciences field, information access platforms such 
as the PubMed Central (8) that are capable of retrieving 
pertinent documents according to the information needs of 
researchers are important to expedite and facilitate their inves-
tigations. Articles linked in PubMed are indexed by expert 
curators that use MeSH code identifiers to attribute con-
cepts of interest to each document. Information extraction 
systems have also been intensively researched and developed 

(9), allowing the automatic mining of key knowledge that 
helps to keep biomedical databases updated and alleviating 
the need for manual efforts (10, 11). For instance, previ-
ous research efforts on information extraction have focused 
on identifying biomedical entities such as genes, proteins, 
chemical compounds (12) and clinical entities including lab-
oratory procedures, diseases and adverse effects (13, 14). 
Identification of these entities of interest in the text is com-
monly paired with a normalization step, where the entities 
are grounded to unique identifiers from standard vocabular-
ies or databases. This avoids ambiguity which is in general 
accentuated in the biomedical domain (15), and it is a recur-
rent obstacle for text-mining methods. For example, genes 
and chemicals are commonly mapped using the Entrez Gene 
and ChEBI databases, respectively (16, 17). A further step 
of extraction using the identified entities is about extracting 
interactions between the mentions of interest. Past research 
work has addressed extracting gene–disease (18), protein– 
protein (19, 20), chemical–disease (21) and chemical–protein 
relations (22, 23). 

In this section we focus on reviewing past literature about 
the research problems that are addressed in this manuscript, 
including NER, entity normalization and indexing. The recog-
nition of named entities is considered a key component for 
information extraction (2), serving several purposes such as 
a lever for relation extraction (24), entity linking (25) and 
other text-mining purposes. NER is commonly treated as a 
sequence labeling problem, where (sub-)words need to be 
classified as a part of entity or not. For that purpose, the 
BIO (beginning, inside, outside) tagging schema is the most 
common option for token-level classification and has been 
extensively explored (26–28). Campos et al. (29) make an 
extensive survey of machine learning tools in biomedical 
NER. Habibi et al. (30) used a long short-term memory– 
conditional random field (LSTM-CRF) architecture using 
‘word2vec’ word embeddings (31) pre-trained on biomedical 
corpora (32) and evaluated their model on 33 datasets cov-
ering different entity types. Lample et al. (28) propose the 
use of bidirectional LSTMs (BiLSTMs) and CRFs, showing 
its effectiveness in deep-learning-based approaches for NER. 
More recent works have been addressing the NER task jointly 
with other tasks. Particularly, the joint extraction of entities 
and their relations has been a growing area of research. Major 
works, just to name a few, include the proposal of an end-
to-end neural model that uses LSTMs on sequence and tree 
structures (33) and the multi-head selection problem tackled 
with a BiLSTM-CRF model (34). 

Entity normalization, linking or grounding, is either fol-
lowed by NER in a pipeline fashion, or these two tasks can 
be jointly addressed in a multitask learning setup. In the 
biomedical domain, two of the most known tools for con-
cept normalization are MetaMap (35, 36) and cTAKES (37) 
which are mainly based on dictionary lookup techniques. 
Leaman et al. (38) addressed the normalization of disease 
mentions in PubMed abstracts using a machine learning 
approach, which was evaluated on the NCBI disease corpus 
(39). The SemEval 2015 competition (40) similarly addressed 
the task of disorder identification. For instance, one of the 
participating teams, Leal et al. (41), presented a chain of two 
modules: one for recognition based on CRFs and another 
for normalization based on dictionaries and heuristics. This 
approach is similar to our end-to-end system described in this 



   

   

 

   

   

 
 

 

   

   

   

   

   

 

   

   

   

   

 

 

   

   

   
   

 

  

  

 

  

manuscript, since we also use a CRF for mention recognition 
and dictionaries for entity linking. Leaman et al. (42) also 
used CRF models in the tmChem system for chemical identi-
fication and normalization, which combines two independent 
machine learning in an ensemble for recognizing the chem-
icals, whereas a simple lexical approach is employed for 
normalization. Leaman et al. (43) further investigated the 
application of machine learning models for disease normaliza-
tion in clinical narratives, since previous research had shown 
deteriorated performance in comparison to biomedical scien-
tific publications. Also, Leaman and Lu (44) proposed the 
first machine learning model that jointly tackled NER and 
normalization during training and inference and released the 
TaggerOne toolkit that can be applied to any entity type. The 
authors assessed their system in the NCBI disease (39) and in 
the CDR (45, 46) corpora. Perez-Miguel et al. (47) used the 
Unified Medical Language System (UMLS) Metatheusaurus 
for term normalization in clinical Spanish text. Luo et al. (48) 
created the Medical Concept Normalization corpus which 
targeted normalization of medical concepts found in the clin-
ical free-text notes of electronic health records and was used 
during the 2019 n2c2/UMass Lowell shared task (49). Our 
research group also participated in this challenge (50) employ-
ing the BioWordVec model (51) for representing clinical terms 
and showed the effectiveness of distributed word representa-
tions in entity normalization. Zhao et al. (52) proposed a deep 
neural multitask learning model, with explicit feedback strate-
gies, to jointly tackle medical NER and normalization, by (i) 
using the same representations for both tasks and (ii) using a 
parallel setup while maintaining the mutual support between 
them. The authors used BiLSTMs to improve the sequential 
modeling of text and convolutional neural networks (CNNs) 
to detect character-level clues such as Zolmitriptan, Zomig 
and Zomigon. Similarly, Kim et al. (53) present a neural 
NER and normalization tool for biomedical text, particu-
larly addressing the problem of overlapping entities which 
is frequently observed in text that is annotated with enti-
ties of multiple types (chemicals, genes, diseases and others). 
They developed probability-based decision rules to identify 
the types of overlapping entities and integrated various NER 
models, which helped in assigning a distinct identifier to each 
recognized entity. Their tool, named BERN, made use of 
BioBERT (54) NER models to improve the discovery of new 
entities. More recently, Luo et al. (55) developed the pack-
age pyMeSHSim for recognizing and normalizing biomedical 
named entities using MetaMap (36). Xu et al. (56) designed 
a sieve-based system based on Apache Lucene indices over 
training data and collected information from UMLS resources 
to generate a list of candidate concepts for each recognized 
entity. They then applied a listwise classifier based on the 
BioBERT neural network (54) to rank the possible identi-
fiers. Ruas et al. (57) developed a system for normalization 
of tumor morphology entities in Spanish health-related doc-
uments under the participation for the CANTEMIST com-
petition (58). The authors used a BiLSTM-CRF tagger for 
NER and adopted a graph-based model to rank concept can-
didates for each entity mention. Many other recent works 
have also tackled hybrid approaches (59) and edit patterns 
(60), analyzed the problem of ambiguity (61), explored trans-
former networks trained via a triplet objective (62) and multi-
task frameworks (63) and experimented using large-scale 
datasets (64). 

Early efforts in MeSH indexing include the ‘Gene Indexing 
initiative’ by the National Library of Medicine, which was 
analyzed by Mitchell et al. (65) concluding that it was helpful 
for the life sciences research community. Since then, sev-
eral methods for automatic indexing in biomedical scientific 
literature have been proposed. Jimeno-Yepes et al. (66) 
compared and combined several MeSH indexing approaches. 
Liu et al. (67) proposed the MeSHLabeler framework that 
integrates multiple evidence from machine learning classi-
fiers, pattern matching and other predictions. Peng et al. (68) 
proposed DeepMeSH, making use of sparse and dense seman-
tic representations. Irwin and Rackham (69) performed an 
extensive study about the time-to-indexing PubMed docu-
ments in different journals. Mao and Lu (70) proposed MeSH 
Now that first ranks the candidate identifiers and then uses 
a post-processing module to select the highest-ranked MeSH 
terms. Dai et al. (71) proposed FullMeSH, which makes use 
of full-text and gives distinct importance to different sections 
of the article. You et al. (72) introduced BERTMeSH, a 
full-text and deep-learning-based MeSH indexing method. 
Costa et al. (73) explored MeSH headings to index health 
news. Finally, Rae et al. (74) present a new neural text rank-
ing approach based on PubMedBERT for automatic MeSH 
indexing. 

Materials and methods 
This section introduces the data used for training and evalu-
ating our system, specifies the adopted evaluation metrics and 
lastly provides a detailed description on the development of 
the three core modules of the end-to-end pipeline. 

Data 
The data used in this work—NLM-Chem BioCreative VII 
corpus—was developed for chemical identification and index-
ing in full-text articles and consisted in three parts as 
explained in detail by Islamaj et al. (75): 

• The NLM-Chem200 corpus contains 204 full-text 
PubMed articles that were manually annotated with 
chemical entities (both mention boundaries and normal-
ization identifiers) and indexing codes. The training set 
consists of 150 documents, whereas the remaining 54 doc-
uments were used for official evaluation of the chemical 
identification task;

• Extended collection from previous BioCreative challenges 
comprising 11 500 PubMed abstracts from the CDR (46) 
and CHEMDNER (76) datasets from past BioCreative 
editions, which were enriched with chemical indexing 
codes;

• The chemical indexing testing dataset was composed of 
1 387 PubMed articles annotated with indexed MeSH 
codes. Since this dataset had a significantly higher number 
of documents compared to the 54 articles used to evaluate 
the chemical identification task, it enabled a more solid 
evaluation of indexing solutions and hindered manual 
annotation by the participants during the challenge. 

The NLM-Chem dataset was composed of two parts: a 
first one for system development (training set) and another 
for official evaluation of challenge submissions (final test 



 

 

 

   

 

 

 

   

 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

 

 

 

 

  

set). The training set was additionally partitioned by the 
organizers in three subsets: ‘train’, ‘dev’ and ‘test’. The 
NLM-Chem final test set differed according to the task 
under evaluation. The ‘Chemical Identification’ task used a 
NER test set containing 54 documents with gold-standard 
chemical annotations, whereas for ‘Chemical Indexing’ a test 
set containing 1387 documents with indexed MeSH codes was 
employed. 

Task organizers provided additional datasets to encour-
age teams to use more training data: (i) the CDR corpus 
(46) was used in the BioCreative V challenge for text min-
ing on chemical–disease relations and (ii) the CHEMDNER 
corpus (76) was employed in BioCreative IV for chemical 
mention recognition. Although both corpora contain PubMed 
abstracts annotated with chemical entities and MeSH index-
ing codes, only the CDR corpus has entities linked to MeSH 
codes for normalization. 

To train our NER deep-learning model we used all the 
datasets made available by the organizers. Furthermore, 
we explored other chemical-related datasets during initial 
experiments for the official submissions for BioCreative chal-
lenge, namely the CRAFT, BioNLP11ID, BioNLP13CG and 
BioNLP13PC datasets prepared by Crichton et al. (77). How-
ever, due to computational limitations and the lack of sig-
nificant benefits from using these datasets, we opted to drop 
them in the post-challenge experiments described within this 
manuscript. For further details about the use of these datasets 
in our former experiments we point the reader to the pro-
ceedings paper describing the system used in official challenge 
submissions (78). Also, we note that these datasets were 
not annotated following the CHEMDNER annotation guide-
lines (76), which could deteriorate NER performance on the 
NLM-Chem dataset. In contrast, chemicals in the CDR and 
CHEMDNER corpora were annotated using the CHEMD-
NER guidelines, and NLM-Chem was similarly annotated 
using specific guidelines (79) that were based on these. The 
BioCreative VII edition also held the DrugProt track (23), 
which addressed the extraction of relationships between drugs 
(chemical compounds) and proteins (genes). We also explored 
the DrugProt dataset since it contained gold-standard chem-
ical entities that were annotated following the CHEMDNER 
guidelines. 

Detailed statistics on the aforementioned corpora are pre-
sented in Table 1. Regarding the NLM-Chem corpus, the final 
NER test set contained approximately twice the number of 
chemical mentions present in ‘test’ subset of the training set. 
We hypothesize this may be due to the fact that the selected 
articles contained more chemicals or that text from these 
articles was overall longer. As expected, it is also noticeable 
that corpora containing only abstracts have a few number of 
chemicals per document (∼ten chemicals per abstract) in com-
parison to the full-text NLM-Chem corpus (around 200–400 
chemicals per document). Regarding indexing annotations, 
the NLM-Chem training set has an average of 2.43 MeSH 
indexed codes per document, whereas the NLM-Chem final 
test set has an average of 2.87 MeSH indexed codes. We 
suspect that this increase in the number of MeSH indexing 
identifiers in the final test set (around 18%) can be justi-
fied in part by the higher number of chemicals present in the 
documents. 

Finally, inspired by the work of Kim et al. (80), which 
obtained the highest official NER result, a synthetic dataset 

Table 1. Dataset statistics with the number of documents, chemicals and 
MeSH indexing identifiers. PMID: PubMed identifier. 

Documents 
Chemical 
mentions 

Indexing 
identifiers 

NLM-Chem 
Training set (total) 

‘train’ subset 
‘dev’ subset 
‘test’ subset 

Final evaluation set 
NER test set 
Indexing test set 

150 
80 
20 
50 

54 
1387 

38 339 
21 218 
5349 

11 772 

22 942 
– 

364 
204 
51 

109 

– 
3980 

CDR (total) 
‘train’ subset 
‘dev’ subset 
‘test’ subset 

1500 
500 
500 
500 

15 943 
5205 
5349 
5389 

3461 
1166 
1198 
1097 

CHEMDNER (total) 
‘train’ subset 
‘dev’ subset 
‘test’ subset 

10 000 
3500 
3500 
3000 

84 331 
29 462 
29 523 
25 346 

21 565 
7692 
7666 
6207 

DrugProta (total) 
‘train’ subset 
‘dev’ subset 

2180 
1781 
399 

33 866 
27 720 
6146 

– 
– 
– 

a The DrugProt dataset was filtered to discard repeated documents (sharing 
the same PMID) already annotated in other corpora. The test set partition 
of DrugProt was not used because at the time of experiments the DrugProt 
organizers did not release it to the public domain. 

was generated from the training set of the NLM-Chem cor-
pus, here denoted as NLM-Chem-Syn. Similarly, we employed 
their approach based on synonym replacement (81) which 
consisted in replacing chemical mentions by their synonyms 
present in the Comparative Toxicogenomics Database (82). 
We created several synthetic datasets using the different par-
titions of the NLM-Chem training set, with distinct sizes 
(1–4 times larger than the original set), and several values 
for the synonym replacement ratio (0.1, 0.3, 0.5 and 0.7), 
i.e. the probability of replacing a chemical mention with one 
of its synonyms. However, due to limitations in computational 
power we could not experiment every NLM-Chem-Syn vari-
ant. Instead, we empirically selected and experimented with 
only one synthetic dataset, using a dataset two times larger 
than the original one with a probability of 0.5 for synonym 
replacement. 

Performance evaluation 
The BioCreative VII NLM-Chem organizers considered the 
precision, recall and F1-score metrics for evaluation purposes, 
using the F1-score as the final metric to rank all partici-
pating teams in the three different tasks: entity recognition, 
entity normalization and MeSH code indexing. Challenge 
organizers defined two variants for each metric: a strict and 
an approximate version. Strict F1-score was used as the key 
ranking factor, whereas approximate F1-score was used to 
disambiguate rankings in the event of tied strict F1-scores. 

Regarding the entity recognition subtask, a predicted 
chemical entity was considered a true positive (correct) if its 
boundaries matched the gold standard annotation, otherwise 
it was considered a false positive (incorrect). A false nega-
tive consisted in a case where the system failed to predict 



 

 

 
 

 
 

 

 

 
 

 

  

  
  

 
 

  

 

  
 

 
 

 
 

 

 

 

 

   
    

  
   

  
 

  

a gold-standard chemical annotation. To evaluate the sys-
tem performance in the entity normalization subtask, the 
organizers only considered the set of distinct MeSH codes 
predicted for each document, disregarding the frequency of 
occurrence of each MeSH code (i.e. MeSH codes appearing 
once or multiple times within a document are attributed the 
same relevance in this evaluation process). Finally, similarly 
to the entity normalization subtask, indexing systems were 
evaluated considering the set of MeSH codes predicted to be 
indexed. 

For simplicity purposes, in the development of our sys-
tem we only used strict evaluation since it is simpler and 
more common, and its improvement is also reflected in the 
approximate evaluation metrics. 

System pipeline 
The conceptualization of our system was highly influenced by 
the BioCreative VII NLM-Chem track, where the organizers 
decided to split the problem into two main tasks: (i) ‘chem-
ical identification’ and (ii) ‘chemical indexing’. However, the 
first task was further divided into two individual subtasks, 
(A) ‘chemical recognition’ and (B) ‘normalization’, leaving (C) 
‘chemical indexing’ as a final task. Considering this division 
in three separate tasks, our system was developed as a three-
stage cascade pipeline where in each stage we address each 
of the previous well-defined tasks. More precisely, in the first 
stage of the pipeline, the ‘Annotator’ module is focused on 
(A) chemical recognition and its respective annotation. The 
next piece in the pipeline is the ‘Normalizer’, which tackled the 
(B) chemical normalization task by linking each of the previ-
ously recognized entities to a standard code within the MeSH 
vocabulary. The final piece of this pipeline is the ‘Indexer’, 
whose objective is to select the most relevant chemical MeSH 
codes present in an article, thus addressing the (C) chemical 
indexing task. 

Annotator 
The ‘Annotator’ module has the objective of detecting the 
boundaries for chemical mentions in the raw document text. 
This task is well known in literature as NER and can be for-
mulated as a sequence classification problem, where for each 
text token one must assign the most probable label according 
to the BIO (beginning, inside, other) tagging schema. For-
mally, let us consider x = {𝑥1,𝑥2,…,𝑥𝑁} as a sequence of text 
tokens, where xi corresponds to the i-th token in the text and 
N to the total number of tokens (length of the text); y = 
{𝑦1,𝑦2,…,𝑦𝑁} as a sequence of labels, where 𝑦𝑖 ∈ {𝐵,𝐼,𝑂} 
corresponds to the label of token xi; and 𝑃 (y|x) as the proba-
bility of a sequence of tokens x being labeled according to the 
sequence of labels y. Then, the objective is to find the most 
probable sequence of labels, y*, for any given input text, x, 
which mathematically corresponds to y* = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃 (y|̂ x), 

y ̂ ∈ Y 
where y ̂ represents a predicted label sequence and Y consists 
in the set containing all possible label sequences for x. 

Considering the previous description, it is necessary to 
know how to estimate 𝑃 (y|x). According to existing litera-
ture it is possible to consider the independence assumption, 
which states that each label yi can be independently estimated 
based on the whole sequence, x, as presented in Equation 1. 

 
     

 

However, under the scope of this problem the indepen-
dence assumption is flawed since there is a dependency 
between the entity token tags in the BIO tagging schema. For 
instance, after an O (Outside) tag it is impossible to have an 
I (Inside) tag, it must be a B (Beginning) or another O tag. 
Therefore, by also taking into consideration the previous 
label prediction, the model can more faithfully respect the 
BIO schema while gaining access to more context informa-
tion when estimating a label probability yi given sequence 
x. An important note here is to distinguish between inde-
pendent prediction and (in)dependent representations, as it is 
common to use LSTM networks or transformers to estimate 
𝑃 (𝑦𝑖|x), which already imply that each token representation 
is contextualized by its surrounding tokens. However, this 
does not ensure that the prediction is dependent of the con-
text (neighboring token labels), instead it ensures that the 
model has access to contextualized information to then make 
an independent prediction. Considering the aforementioned, 
Equation 1 was reformulated into Equation 2. 

 
      

 

Here, 𝑃 (𝑦𝑖|x) is the probability of a label yi being assigned 
to token xi given the complete sequence x, and 𝑃 (𝑦𝑖|𝑦𝑖−1) is 
the probability of yi being estimated given the previous pre-
dicted label, i.e. it accounts for the likelihood of a label being 
chosen given the previously predicted label. Fortunately, this 
is already a well-studied problem in literature, and if we con-
sider the text as a simple directed graph, Equation 2 can be 
directly implemented as a linear-chain CRF, as described in 
Equation 3. 

𝜃 𝜃t u 
model learns during the training phase, f is the unary func-u 
tion parameterized by 𝜃 that computes the so-called unaryu 
potentials, i.e. it computes the score of each label being 
assigned to token xi while considering the whole sequence, 
and f t is the transition function that simply corresponds to 
a transition matrix, being parameterized by 𝜃t and having its 
score obtained by looking up the (𝑦𝑖−1,𝑦𝑖) entry in the matrix. 
Lastly, 𝑍(x) is known as the partition function and acts as a 
normalizing factor to obtain a probabilistic distribution over 
all sequences. 

To define f we relied on the current state-of-the-art Bidi-u 
rectional Encoder Representations from Transformers (BERT) 
model for creating contextualized word representations that 
are then forwarded through a multilayer perceptron (MLP) 
to compute the unary potentials. Particularly, we adopted the 
PubMedBERT (83) variant that reports the state-of-the-art 
results in almost every biomedical natural language processing 
task. As previously mentioned, this method produces contex-
tualized unary potentials since the whole sentences are fed to 
PubMedBERT. 

Due to the large size of BERT-based models (the base ver-
sion has 110 million of parameters), these models cost a lot of 
time and computational resources to train and infer results. 
With this in mind, we devised a caching mechanism where it 



 

 

  

 

 

  

 

  

 

  

Figure 1. Named entity recognition deep learning model. Example text from PMC 1 253 656. 

Figure 2. Diagram showing how token sequences are shifted in order to be fed into BERT. 

is possible to define the number of trainable layers from the 
BERT model, while the remaining ones become frozen and 
have their output stored in disk so that it can be reused during 
training. By leveraging this caching mechanism, we effectu-
ally produce a much lower memory footprint while massively 
speeding up training, at the cost of restricting the degrees of 
freedom from the model. 

Furthermore, since we aimed to take full advantage of the 
contextualization power of the transformer architecture, we 
decided to set our input size to 512 tokens of which only 
the 256 tokens in the middle are forwarded to the MLP, 
whereas the remaining 256 tokens (128 to the left and 128 
to the right) are only used for context. For visual refer-
ence, Figure 1 presents the full neural flow pipeline of the 
‘Annotator’ module. Moreover, full-text documents from the 
NLM-Chem dataset are divided into passages, e.g. abstract, 
introduction, methods and others. Thus, each passage may 
comprise several sentences or paragraphs, which can surpass 
the BERT input limit of 512 tokens. To account for that, 
we split a passage into successive sequences shifted by 256 
tokens (left-and-right context is kept), and each sequence is 
fed into PubMedBERT, as shown in Figure 2. An advantage 
of this method is that we can sequentially feed each passage 
of the document without performing any additional splitting 
such as sentence or paragraph segmentation. However, this 
method comes at a cost of computational time, since of the 
512 tokens that are fed to the model, only the 256-centered 
are used for classification. Nevertheless, we employed this 
approach since it achieved the best preliminary results. Fur-
thermore, we leave to future work to study the trade-off 

between the number of context tokens and tokens used for 
classification, since this can be viewed as an optimization 
step. 

For model training, we adopted the modern AdamW opti-
mizer to minimize the negative log likelihood of Equation 3 
and used the non-monotonic Mish activation function for 
the MLP. Additionally, we also experimented with training 
the last layer of the PubMedBERT model and using addi-
tional datasets (some from Table 1). In terms of programming 
technologies, we implemented our deep-learning models in 
Python using an in-house library that works over TensorFlow 
(v2.3+), HuggingFace transformers library, and integrates the 
W&B (Weights & Biases) platform (84) to fully track and log 
the developed experiments. 

Post-challenge enhancements 
Above, we described the ‘Annotator’ module used in the sys-
tem that was evaluated within the BioCreative VII Track 2 
challenge. However, posterior to the challenge, we con-
tinued studying the ‘Annotator’ behavior and theorized a 
set of potential improvements for this module, with some 
improvements being focused on efficiency and others on 
performance metrics. Below we present the main proposed 
and implemented changes along with the intuition behind 
them. 

Masking CRF 
As previously mentioned in this manuscript, we decided to fol-
low the BIO tagging scheme to define the labels that the model 
could predict for each token. An interesting property of this 



  

   

 

 

 

 

   

 

 

 

  

scheme is that it encodes some structure in the sense that under 
no circumstance the model should predict an I (Inside) tag 
after an O (Outside) tag. Because, by definition, the first label 
of an entity should always be a B (Beginning) tag, only the B 
tag can appear after an O tag. This problem was naively solved 
in the original implementation by replacing the I tag with B 
whenever there was a preceding O tag. However, we argue 
that the model should also encode this property in its formu-
lation, since by doing so the sequence label decoding would 
be more accurate, i.e. the most probable sequence y* should 
also consider this restriction. To accomplish that we manually 
added a mask to f t , where all the impossible transitions have 
a large negative weight, which according to Wei et al. (85) is 
equivalent to only considering the valid set of paths. In our 
case, we set 𝜃[O,I] = −10000, i.e. when the previous tag was𝑡 
O the score of the current tag being I will be subtracted by 
10000. This weight value was empirically chosen and larger 
negative values did not alter the results in preliminary experi-
ments, which indicated that −10000 is a large enough weight 
for our type of sequences. Although it does not fully prevent 
this error from occurring, it drastically mitigates the problem 
leading to better model generalization as demonstrated in the 
‘Results and discussion’ section. 

Discarding passage splitting 
In the original system, we adopted the data split format per-
formed by the track organizers, where each article section was 
considered as an entire passage. However, we noticed that this 
caused the existence of shorter passages, for instance the title 
passage, and in more severe cases passages comprised only a 
single word, e.g. ‘Abstract’. This resulted in the creation of 
certain heavily padded samples, meaning that the model was 
not being efficiently used since given the high requirements of 
the transformer architecture, the amount of useful contextu-
alized representations obtained from the transformer should 
be maximized. To accomplish this idea, we discarded the orig-
inal passage data split and considered the whole document as 
an entire sequence of tokens that was fed to the model using 
the previously described methodology (Figure 2). As expected, 
this change produced much less samples per document, thus 
speeding up training and inference. An important note here 
is that by having less samples per document, there are less 
updates per epoch during model training, which must also be 
reflected in the learning rate. 

Data augmentation 
As a general rule of thumb in deep learning, the more data 
are available better the results can become. Unfortunately, 
human annotated data are expensive and require massive 
efforts to be obtained. Therefore, in deep learning it is com-
mon to see the use of data augmentation techniques, which 
use heuristics and randomness to increase the quantity of 
available data with the expectation that the new data points 
can help approximating the underlying real data distribution. 
Considering this, we experimented with two different data 
augmentation techniques. The first technique is inspired by 
Erdengasileng et al. (86), where the authors propose to ran-
domly replace chemical entities and nonchemical tokens with 
random strings. The intuition to replace a chemical entity with 
a random string is to force the model to explore the con-
text when predicting an entity as chemical, since the only 
way to correctly predict that random string as an chemical 
entity is with the help of the context. Additionally, to mitigate 

model bias on predicting random strings always as chemical 
entities, we also selected nonchemical tokens to be randomly 
replaced. 

Despite the simplicity of the previously described method, 
it was not possible to directly implement it in our training 
pipeline owing to the pre-computed contextualized embed-
dings that we use for efficiency purposes. Therefore, we 
implemented a slight variation of the first data augmentation 
mechanism, where instead of replacing tokens with random 
strings we replace contextualized embeddings by random 
embeddings. We propose two different mechanisms for gen-
erating random embeddings: the first one is to shuffle the 
dimensions of the original entity sub-token embedding, which 
ensures that the embeddings are statistically equivalent but 
due to the curse of dimensionality will probably have a mean-
ingless space position, and the second method is to generate 
a random embedding from a Gaussian distribution that has 
the same statistics of the BERT embeddings. Besides this aug-
mentation technique that only relies on randomness to expand 
the datasets, we also explored a second data augmentation 
technique which followed a similar approach to Kim et al. 
(80), where the authors used the CTD table of synonyms to 
randomly replace some chemical entities. 

Document-level agreement 
Also inspired by Kim et al. (80), we experimented building 
a post-processing mechanism that assures entity annotation 
agreement throughout the whole document. For that, we fol-
lowed their majority voting idea that accepts or rejects entities 
based on the majority voting of the model predictions in the 
full-text document. 

Ensemble 
As another rule of thumb in deep learning, using aggre-
gated predictions of multiple models usually outperforms the 
predictions of a single model. This technique is known as 
ensemble models. Therefore, we first implemented a simple 
majority voting ensemble mechanism at the tagging level. 
More precisely, when considering multiple model predictions, 
we count the labels that were assigned for each token in the 
document, and in the end we choose the most voted label. In 
case of a draw, we prioritize the O and, then, B tags. How-
ever, since this technique may produce some inconsistent BIO 
sequences (an I tag may appear after an O tag), we propose 
a second majority voting technique that works at the entity 
level instead of the tag level, hence being aware of the enti-
ties already discovered by each of the individual models. The 
entity-level majority voting ensemble gathers the entities pre-
dicted by multiple models and identifies as correct predicted 
entities only the ones that appear in the predictions of most 
models. 

Hyperparameter search 
Finally, we employed a vast hyperparameter search to find a 
better configuration for our model and also to quickly under-
stand the impact of some of the post-challenge modifications. 
To perform this hyperparameter search, we relied on our in-
house training library that uses optuna (87) as backend. In 
more detail, we adopted the Tree-structured Parzen Estima-
tor (88) sampler as the searching procedure and also used a 
median prunner to quickly discard bad performing trials at an 
early phase of training. The complete set of hyperparameters 
that were tuned are presented in Table 2. 



 

 
 

 

   

 

 

 
 

 

 

  

Table 2. NER hyperparameters using optuna on the NLM-Chem training 
set (‘train’ and ‘dev’ subsets). Boolean variables are True (used) or False 
(not used). Tests made with a maximum of 30 epochs. 

Hyperparameter Range of values Best value 

Trainable BERT layersa [1, 3] 3 
Sample weights Boolean False 
Learning rate [0.00001, 0.001] 0.0003 
Random data augmentation Shuffle, noise or none Noise 

Eb [0.1, 0.95] 0.66 
NEb [0, 1-E] 0.33 

Gaussian noise [0.01, 0.2] 0.15 
Dropout [0.0, 0.6] 0.3 
MLP dense units [64, 1024] 900 
MLP dense activation ReLU, SeLU or Mish Mish 

a Last layers of the model. 
b E: probability of changing an entity token representation. NE: probability 
of changing a non-entity token representation. 

Normalizer 
After detecting chemical entities using the previous NER 
approach, a named entity normalization process was devel-
oped to convert entities to their corresponding MeSH codes. 
This normalization workflow was divided in two major com-
ponents: (i) a rule-based system and (ii) a deep-learning 
solution based on transformers. 

To supply both normalization components with curated 
concept-code mappings, two dictionary files were created by 
filtering and restructuring the 2021 MeSH and Supplementary 
Concept Records (SCR) files. During this filtering procedure, 
the MeSH file only retained concepts belonging to the ‘Drugs 
and Chemical’ MeSH headings subcategory, i.e. all Dxx coded 
categories, as these were within the scope of the present 
challenge. 

Rule-based component 
The rule-based component attempts to map entities to their 
corresponding MeSH codes through exact matching mech-
anisms. The development of this component followed an 
incremental workflow as described next. 

For the first iteration of the rule-based system, a simple 
dictionary was configured that strictly used the base MeSH 
mappings, i.e. the DescriptorUI-DescriptorName mappings, 
from a subset of the MeSH 2021 filtered file. This subset com-
prehended mappings from the following MeSH subcategories: 
D01 - Inorganic Chemicals, D02 - Organic Chemicals, D03 -
Heterocyclic Compounds and D04 - Polycyclic Compounds. 
Exact matching was then performed with this dictionary 
using raw text entities and lowercased entities, with the latter 
providing better results. 

Next, to assess the impact of the mapping dictionary in sys-
tem performance, the dictionary was expanded to incorporate 
a greater range of mappings. For that, each DescriptorUI-
DescriptorName mapping from the previous dictionary was 
expanded, integrating related mappings from Concept Chem-
ical Abstracts Type N1 Name (ConceptCASN1Name), which 
is the systematic name used in the Chemical Abstracts Chemi-
cal Substance and Formula Indexes, and also from associated 
entry terms, which are alternate forms or closely related terms 
present in the MeSH record that can be used interchangeably 
with the preferred term (DescriptorName) for indexing and 
retrieval purposes. Using the previously described procedure 

for augmenting the coverage of the mapping dictionary 
resulted in an improved performance. 

As it is common to find plenty of abbreviations within 
biomedical literature, an abbreviation expansion step was 
added to the rule-based system through the integration of the 
Ab3P tool (89). This step was added in two different configu-
rations, the first storing a list of previously seen abbreviations 
per document and a second storing the same list per cor-
pus. When using the corpus variant, the system firstly iterates 
through all extracted entities and stores existing abbreviations 
along with their expanded form and only then it executes the 
exact matching pipeline. Although the document-level variant 
did not impact on the system performance, the inclusion of 
an abbreviation expansion procedure at a corpus level led to 
an overall improved entity-code mapping process across all 
training data splits. 

Since there was still a significant amount of entities that 
the system could not map, a partial matching mechanism was 
added to process and map the remaining non-mapped enti-
ties. To accomplish this, the MetaMap (36)-based pyMeSH-
Sim (55) Python package was integrated in the rule-based 
system. However, this partial matching mechanism was 
unsuccessful as (i) pyMeSHSim was very slow and thus unus-
able considering the large size of the test dataset and (ii) 
pyMeSHSim yielded numerous false positives, consequently 
downgrading the rule-based system performance. As a result, 
this partial matching mechanism was removed from the 
solution. 

Due to the insuccess of the partial matching approach, 
another iteration focused on dictionary expansion was 
performed to further narrow down the list on unmapped 
entities. Since the previously selected list of MeSH subcat-
egories (D01–D04) did not provide a complete coverage of 
the MeSH codes present in the gold-standard training anno-
tations, the previous procedure of extracting mappings from 
the DescriptorName, ConceptCASN1Name and entry terms 
was repeated but considering all Dxx subcategories. 

The previous procedure effectively increased MeSH code 
coverage, leading to increased recall without harming pre-
cision and demonstrating that the exact matching mecha-
nism was performing as intended. Although using the whole 
‘Drugs and Chemical’ subcategory allowed for a wider span 
of curated MeSH code mappings, it still did not manage 
to fully capture the MeSH codes present in the training 
dataset. Therefore, with the objective of addressing the exist-
ing gap between MeSH codes in the dictionary versus MeSH 
codes in training annotations, additional mappings for entry 
terms and headings related to each DescriptorName in the 
SCR file were added to the mapping dictionary. By explor-
ing this novel source of information, the rule-based sys-
tem obtained improved results throughout all training data 
splits. 

At this state, the mapping dictionary already provided 
a large coverage of the MeSH codes present in training 
gold-standard annotations, with the remaining unmapped 
codes being mostly related with multi-word expressions that 
mapped to multiple MeSH codes. The remaining set of map-
pings was addressed with a final augmentation procedure, 
where complex mappings present in the gold-standard anno-
tations (e.g. entities with multiple MeSH codes) were added 
to the source dictionary, ultimately improving its coverage. 
Finally, in the event of the rule-based mechanism failing 



 

   

  

  

Figure 3. Named entity normalization deep-learning model. 

to normalize all extracted entities, a deep-learning compo-
nent was used to process the remaining unmapped entities as 
described next. 

Deep-learning component 
Following the deep-learning trend of using transformer mod-
els, we also built a complementary component relying on a 
dense retrieval technique to rank possible MeSH codes for 
each of the remaining unmapped chemical entities. Then, we 
apply a naive approach to decide what MeSH codes should 
be assigned from the ranked list. This method consists of 
constructing dense representations, i.e. embeddings, for each 
MeSH code and every predicted entity. MeSH code repre-
sentations are saved in a dictionary that is stored in disk. 
Then, we compute the cosine similarity between the entity 
representations and all of the pre-computed MeSH code repre-
sentations from the saved dictionary. This produces a ranked 
list of MeSH codes where the most similar MeSH codes for 
each entity take the higher positions within the ranked list. To 
select MeSH codes from the ranked list, a simple strategy is 
followed that (i) returns the MeSH code that is above a spe-
cific threshold or (ii) returns the top MeSH code if it is below 
the threshold but the difference between it and the second 
MeSH code is higher than another specific threshold. Note 
that this method does not ensure that all of the unmapped 
chemical entities are assigned a MeSH code, since it is possi-
ble to return no MeSH code if the scores do not surpass the 
defined threshold. 

Here, we leveraged another BERT-based model to create 
the dense representation for the MeSH codes and for the 

chemical entities. More precisely, we adopted the publicly 
available SapBERT (90) model that was specifically fine-tuned 
for creating biomedical entity representation by clustering 
similar biomedical terms. Despite the fact that this model was 
not directly trained on the MeSH vocabulary, we hypothe-
size that the domains are closely related and thus we used 
it in a zero-shot fashion. To create dense representations, 
the detected chemical mentions and MeSH DescriptorNames 
were fed to SapBERT and the produced [CLS] embedding 
was taken as the dense representation for each chemical entity 
and MeSH code, respectively. These could then be compared 
by cosine similarity. Figure 3 presents a schematic of the 
deep-learning normalization model. 

Post-challenge enhancements 
Due to existing computational limitations, it was only pos-
sible to partially evaluate the deep-learning complementary 
component. More precisely, only two of the five submit-
ted runs in the BioCreative VII Track 2 challenge used the 
complementary DL component after the rule-based compo-
nent. Therefore, in a post-challenge phase we performed 
a deeper assessment of the DL component to evaluate its 
potential impact in the performance of the ‘Normalizer’ 
module. 

Indexer 
The last stage of this workflow involved selecting and index-
ing the MeSH codes of interest, which were previously 
extracted and normalized within the proposed pipeline. This 



 

 

 

 

  

 

 

  

task was devised in two approaches: (i) a rule-based system 
and (ii) a system based on TF-IDF scores. 

Rule-based approach 
The original rule-based approach consisted of a two-stage 
pipeline focused on indexing MeSH codes and was based on 
MeSH code location within the document, namely the title, 
abstract and all the captions from tables and figures. We 
hypothesized that these three elements of the document would 
contain the most relevant MeSH codes for establishing the 
document scope. Therefore, the initial stage gathers all of the 
previously extracted codes that were found in these locations. 

The second stage uses this set of codes and evaluates the 
percentage of occurrence in the complete document. This 
procedure was used to narrow down the previous list of 
codes, which reflected positively in the precision metric on 
the training datasets. Rules applied in this stage had different 
weights for each part of the document, i.e. MeSH codes recog-
nized in the title section required a percentage of occurrence 
equal or superior to 10%, MeSH codes detected in captions 
needed a percentage of occurrence of at least 20% and finally 
MeSH codes detected in the abstract required an occurrence 
threshold of 7%. 

TF-IDF approach 
This approach was inspired on the inner workings of a tra-
ditional information retrieval (IR) system, with the intuition 
that ultimately an IR system would be used to retrieve the 
documents by exploring the respective indexed MeSH codes. 
Therefore, we hypothesize that the indexing task can be 
viewed as an optimization problem of finding the limited set 
of MeSH codes that maximize an IR system ranking score. 
Furthermore, given that not every MeSH code contributes 
equally to the final document ranking score, we can select 
only the top-k codes that contribute the most as the rep-
resentative MeSH codes for the document, i.e. the MeSH 
codes that would be indexed in order to find that a specific 
document. 

For modeling the importance of each MeSH code we 
adopted the usual TF-IDF weighting schema with different 
SMART variations (91). More precisely, the TF-IDF schema 
models MeSH code importance as a function of its nonlinear 
frequency times its rarity. After computing the TF-IDF impor-
tance of each MeSH code per document, the next task was to 
select the most relevant codes. This was accomplished by using 
a simple-threshold-based method to select the most important 
MeSH codes. 

Post-challenge enhancements 
In a post-contest phase, the rule-based approach was modi-
fied to support the inclusion of an additional rule, responsible 
for evaluating MeSH codes identified in the conclusion section 
of the documents, when available. The augmented rule-based 
approach was used in an ‘unofficial’ post-contest submission, 
using a different set of occurrence thresholds where percent-
ages of occurrence of 6%, 16%, 17% and 6% were selected 
for the title, captions, abstract and conclusion rules, respec-
tively. Although these modifications resulted in improvements 
in terms of F1-score of approximately ∼5 percentage points 
across all data splits from the training dataset, the improved 
system could not surpass our official results in the test dataset, 
leading in fact to a small performance degradation. 

However, after closing the post-contest submission phase, a 
more extensive analysis was performed to discover the impact 
of each rule. This analysis evaluated the impact of using each 
rule independently and of using groups of rules and was used 
to find the optimal occurrence thresholds for each rule. To 
increase the size of the development dataset, we merged the 
‘train’ and ‘dev’ partitions of the training dataset, and system 
performance was evaluated on the ‘test’ partition of the same 
dataset. The best performance metrics achieved in the ‘test’ 
partition of the training set were obtained using a combina-
tion of the four rules and the following occurrence thresholds: 
2% for the title, 22% for captions, 10% for the abstract 
and 10% for conclusion. The final system performance was 
evaluated on the actual test dataset from the NLM-Chem 
track. 

Results and discussion 
Herein, we provide a summarized view of the official sub-
mitted runs in the NLM-Chem track of the BioCreative VII 
challenge, present more detailed results obtained during the 
development of the original and improved versions of the pro-
posed end-to-end system, discuss the impact of performed 
experiments and finally perform an error analysis on the 
resulting system. 

Submitted runs 
Table 3 presents the results of our official submitted runs in 
the different subtasks and includes additional official metrics 
shared by the organizers. In the normalization subtask, Runs 
1, 4 and 5 used the rule-based method alone, while Runs 
2 and 3 used the rule-based method followed by the deep-
learning method. In the indexing subtask, Runs 1 and 5 used 
the rule-based approach, whereas Runs 2, 3 and 4 used the 
TF-IDF-based approach. The presented results demonstrated 
a superior performance from Run 4 in NER and normaliza-
tion, meaning that it was beneficial to train in several datasets 
if then fine-tuned on the NLM-Chem dataset (78). 

Another interesting observation was that in the normaliza-
tion subtask, the rule-based method seemed to achieve high 
precision values while being competitive in terms of recall 
when compared to the median of the challenge for that sub-
task, giving us a comparable higher F1 measure. In terms of the 
last task, the rule-based approach managed to achieve com-
petitive results, outscoring the benchmark by > 4% points. On 
the other hand, TF-IDF did not manage to beat the bench-
mark, showing an overall poor performance, which may 
disprove the main hypothesis behind the idea or that the naive 
approach is too simple to model this problem. 

For a more detailed technical description of the submitted 
runs for each subtask, please refer to our proceedings paper 
(78). 

Chemical recognition 
As previously mentioned, the ‘Annotator’ is responsible for 
addressing the chemical recognition problem, acting as the 
first stage of our system pipeline. As a consequence, any 
error produced by the ‘Annotator’ is forwarded to down-
stream modules, lowering the system’s overall performance. 
Therefore, a significant part of this work was invested on 
the evaluation of several configurations with the objective of 



 

  

  

 

 

   

 

 

 

  

  

  

Table 3. Official obtained results on the final NLM-Chem test set (evalu-
ation dataset). All the results presented use the strict evaluation method. 
Our top score results are highlighted in bold. 

Precision Recall F1-Score 

Chemical mention recognition 
Run 1 0.8354 0.8429 0.8392 
Run 2 0.8421 0.8350 0.8386 
Run 3 0.8505 0.7662 0.8062 
Run 4 0.8394 0.8515 0.8454 
Run 5 0.8372 0.7416 0.7865 

Median 0.8476 0.8136 0.8373 
Benchmark 0.8440 0.7877 0.8149 

Chemical normalization to MeSH IDs 
Run 1 0.8582 0.7641 0.8084 
Run 2 0.8221 0.7898 0.8056 
Run 3 0.8124 0.7760 0.7938 
Run 4 0.8621 0.7702 0.8136 
Run 5 0.8310 0.7411 0.7835 

Median 0.7120 0.7760 0.7749 
Benchmark 0.8151 0.7644 0.7889 

Chemical indexing 
Run 1 0.5351 0.4133 0.4664 
Run 2 0.4882 0.3284 0.3927 
Run 3 0.4910 0.3236 0.3901 
Run 4 0.5173 0.3236 0.3981 
Run 5 0.5308 0.3812 0.4437 

Median 0.5173 0.3284 0.3981 
Benchmark 0.3134 0.6101 0.4141 

building an efficient yet performing NER model. Here, we 
firstly present a summary of the experiments conducted dur-
ing NER model development for the BioCreative VII Track 2 
challenge, followed by the new post-challenge modifications 
and their impact on the official test set. 

Table 4 presents a brief summary of the incremental 
changes made to the NER model that contributed to the most 
substantial improvement of the validation metrics recorded 
over the NLM-Chem ‘test’ subset of the training set. In 
short, we began with the plain PubMedBERT contextualized 
embeddings (PubMedBERT was not trained) and trained a 
linear classifier on the NLM-Chem ‘train’ and ‘dev’ subsets. 
This approach provided us the baseline F1-score of 0.7140. 
Next, we tried to increase the complexity of our classifier 
by replacing the linear classifier by a MLP or CNN. In the 
end, we found that the MLP classifier led to better perfor-
mances, achieving an F1-score of 0.7539. Up to this point 
our NER model was using the independence assumption to 
estimate tags (Equation 1). However, as aforementioned, that 
assumption does not hold under this problem. Thus, following 
Equation 3, a CRF classifier was added after the MLP, leading 
to a performance gain of 4.8% points in F1-score, bringing 
our best result to 0.8020. The final considerable improve-
ment was achieved once we started training the last layer 
of PubMedBERT. Additionally, since each transformer block 
contains millions of parameters, we built a larger training cor-
pus to prevent the model from overfitting on the NLM-Chem 
dataset, which also provided more previously unseen chemi-
cal entities for the model to explore. With more detail, the full 
corpus contained datasets from well-known chemical datasets 
for NER, and the complete list can be consulted in our pro-
ceedings paper (78). At last, we pre-trained our model on 

Table 4. NER ablation study conducted during the BioCreative VII track 2 
challenge in the NLM-Chem training set (‘test’ subset). 

F1-score 

PubMedBERT (frozen) + Linear classifier 0.7140 
+ MLP classifier 0.7539 
+ CRF classifier 0.8020 
+ PubMedBERT (unfrozen last layer) + pre- 0.8584 

train and fine-tunea 

a Pre-training corresponds in firstly training the model in entity recogni-
tion using several chemical NER datasets described in our challenge paper 
(78). Then, the fine-tune step corresponds in further training the model for 
5 epochs on the NLM-Chem dataset (‘train’ and ‘dev’ subsets). 

the previously collected datasets with the exception of NLM-
Chem, which was used for fine-tuning. This model achieved 
a new best result of 0.8584 of F1-score, and it was the model 
used in our best submission to the BioCreative VII Track 2 
challenge (Run 4). 

Post-challenge enhancements analysis 
With the objective of further improving the model in a post-
challenge stage, a set of changes was defined that could lead 
to gains in terms of efficiency and performance metrics. 

Firstly, we proposed the addition of a mask to the CRF 
classifier transition matrix to penalize impossible transitions, 
for instance the appearance of an I tag after an O tag. To mea-
sure the impact of this technique, we performed an experiment 
where the same model was trained under the same conditions 
except for the presence or absence of the aforementioned CRF 
mask. Figure 4 presents the results of this experiment, where 
we evaluated the F1-score on the NLM-Chem test subset and 
counted the number of times that the model wrongfully pre-
dicted an I tag after an O tag. As observable, using a CRF mask 
not only led to consistently higher F1-score, but more interest-
ingly it drastically reduced the number of times that the model 
predicted an I tag after an O tag, effectively demonstrating 
the success of the mask in mitigating this error. This result 
also shows that by directly learning how to avoid this mistake 
the model was able to better generalize, as suggested by the 
consistently higher F1-score. It is also important to mention 
that in both models our decoding mechanism automatically 
converted the incorrect I tags (which appear after an O tag) 
to B tags. However, this mechanism seems to be more biased 
toward the model that did not use CRF mask, since the model 
is not penalized in terms of F1-score in situations where it 
wrongly predicts an I tag after an O tag instead of a B tag. 
Nevertheless, even with the presence of such bias the model 
with CRF mask managed to consistently outscore the model 
without it. 

Next, Table 5 compares the adopted strategy for convert-
ing full-text articles into individual samples that the model can 
process, which was named as data generator. The first row 
presents the number of samples produced by the data genera-
tor used during the official challenge, whereas the second row 
refers to the post-challenge version that discards the passage 
splitting step. It is noticeable that the previous data generator 
produced over 2.5 times more samples than the new version. 
This difference means that our model can now process the 
same amount of data, but 2.5 times faster. Furthermore, it is 
also important to consider that each training epoch now has 
2.5 times less samples, corresponding to less training updates 
and meaning that certain adjustments have to be performed 



 

 

  

 

 

 

  

Figure 4. Performance comparison between the use or absence of a CRF mask. The measurements were taken during the five initial training epochs of 
the exactly same model and training configuration. The only variable that changed was the CRF mask. 

Table 5. Comparison between the data generator used during the BioCre-
ative NLM-Chem challenge and the post-challenge improvement that pro-
poses to discard the document passage split and directly use full-text. This 
shows the number of samples produced by each method in each subset 
of the NLM-Chem training set. 

Number of samples for 
each NLM-Chem subset 

Train Dev Test Total 

Previous data preparation 
+ Discard passage split 

6299 
2351 

1472 
572 

3858 
1338 

11 629 
4264 

to train the model with this new data generator. Finally, we 
did not notice any significant improvement in F1-score from 
using the new data generator instead of its old counterpart. 

In another post-challenge enhancement we conducted a 
vast hyperparameter search comprising a total of 424 tri-
als to find a good hyperparameter set and also to assess the 
impact of different hyperparameters. Table 2 shows the dif-
ferent hyperparameters considered during the search along 
with their range of values and the final chosen value. This 
search was performed using the CRF mask and the new 
data generator, as both aspects had already demonstrated 
their positive impact in system performance. Upon inspec-
tion of logged values from executed runs we concluded the 
following: 

• Increasing the number of trainable layers from PubMed-
BERT provided consistent gains in terms of F1-score. 
More precisely, by training only the last layer the max-
imum achieved score was no higher than 0.86 on the 
NLM-Chem ‘test’ subset, while by training the last three 
layers we managed to consistently achieve F1-scores above 
0.87. Due to computational limitations we only managed 
to perform training until the antepenultimate layer of the 
PubMedBERT model. 

• Random data augmentation seemed to be beneficial, 
although without a clear difference between the two meth-
ods (shuffle and noise).

• Adding a Gaussian noise layer after the contextualized 
embedding resulted in consistent improvements.

• The non-monotonic Mish activation function outper-
formed any other activation function during hyperparam-
eter search experiments. 

Following the best model configurations and intuition 
gathered during the hyperparameter search procedure, further 
experiments were performed to assess whether it was benefi-
cial to use more chemical datasets as training data (Table 6), 
similarly to what was done during the BioCreative challenge. 
Additionally, we also aimed to see the gains that the previously 
described majority voting ensemble methods could achieve. 
Therefore, three different pre-training scenarios were consid-
ered using: (1) no additional data; (2) CCD datasets, which 
is short for CDR, CHEMDNER and DrugProt, and (3) CCD 
and NLM-Chem-Syn. After all three pre-training scenarios, 
models were fine-tuned on the (i) ‘train’ and ‘dev’ subsets or (ii) 
‘train’, ‘dev’ and ‘test’ subsets of the NLM-Chem. Note that in 
experiments using the test subset it is not sensible to measure 
system performance on the same subset, hence the missing 
values in Table 6. Combining the three pre-training meth-
ods with the two fine-tuning methods resulted in six unique 
experiments, and for each experiment we trained five models 
with different random seeds. Then, we reported the average 
and standard deviation of the performance of the five models, 
and additionally we used the same five models to compute 
the tag-level majority voting (T) and the entity-level majority 
voting (E). 

When inspecting Table 6, the first important observation is 
that both majority voting ensemble methods seem to perform 
surprisingly well, since in all of the experiments it managed 
to outperform the mean plus the standard deviation of the 
respective five models. Furthermore, the entity-level major-
ity voting method also slightly outperformed the tagging-level 
majority voting, which supports the idea that the tagging 
level may produce inconsistent and invalid BIO sequences 
causing ruptured entities. Next, when looking at the results 
reported on the NLM-Chem ‘test’ subset it seems that using 
pre-training data is beneficial for system performance, with 
CCD being preferable over CCD and NLM-Chem-Syn, thus 
showing that using CTD synonym augmentation was not ben-
eficial. Another interesting conclusion is that using the ‘test’ 
subset as training data led to a marginal increase from 0.8569 
to 0.8600. Thus, at this point performance gains become 
questionable since adding 50% more training documents only 
resulted in a 0.0031 increase in F1-score. Finally, our best 
model achieved a F1-score of 0.8731 in the final NLM-Chem 
test set, and was based on an entity-level ensemble of five 
models that were pre-trained on the CCD datasets and then 
fine-tuned on the NLM-Chem ‘train’, ‘dev’ and ‘test’ subsets. 



 

 

 

 

  

  

 
  

  

Table 6. NER results, using strict evaluation, obtained from extensive post-challenge experiments. All the models were trained for 20 epochs. P: pre-
training. T: indication if the NLM-Chem ‘test’ subset (training set) was used in the fine-tuning stage, and the NLM-Chem-Syn ‘test’ subset was used in 
the pre-training. E: indication of the ensemble method used—tag-level (T) or entity-level (E) majority voting. CCD: CDR, CHEMDNER and DrugProt. Syn: 
synthetic NLM-Chem dataset. Standard deviation is presented in parentheses. The highest F1-score results are highlighted in bold. 

 Evaluation on the  Evaluation on the
 NLM-Chem training set (‘test’ subset)  final NLM-Chem test set 

Pa Tb Ec Precision Recall F1-score Precision Recall F1-score 

– N – 0.8497 (0.0047) 0.8807 (0.0044) 0.8649 (0.0032) 0.8468 (0.0044) 0.8673 (0.0015) 0.8569 (0.0017) 
– N T 0.8530 0.8861 0.8692 0.8508 0.8718 0.8612 
– N E 0.8573 0.8846 0.8707 0.8573 0.8699 0.8636 
CCD N – 0.8590 (0.0035) 0.8837 (0.0028) 0.8712 (0.0017) 0.8586 (0.0052) 0.8667 (0.0022) 0.8626 (0.0031) 
CCD N T 0.8658 0.8931 0.8792 0.8643 0.8726 0.8685 
CCD N E 0.8685 0.8906 0.8794 0.8721 0.8714 0.8717 
CCD, Syn N – 0.8579 (0.0021) 0.8818 (0.0016) 0.8696 (0.0018) 0.8569 (0.0035) 0.8589 (0.0032) 0.8579 (0.0013) 
CCD, Syn N T 0.8625 0.8890 0.8755 0.8604 0.8631 0.8617 
CCD, Syn N E 0.8675 0.8873 0.8773 0.8668 0.8620 0.8644 
– Y – – – – 0.8565 (0.0021) 0.8634 (0.0010) 0.8600 (0.0012) 
– Y T – – – 0.8604 0.8672 0.8638 
– Y E – – – 0.8655 0.8659 0.8657 
CCD Y – – – – 0.8669 (0.0023) 0.8648 (0.0028) 0.8659 (0.0022) 
CCD Y T – – – 0.8713 0.8704 0.8708 
CCD Y E – – – 0.8775 0.8688 0.8731 
CCD, Syn Y – – – – 0.8627 (0.0034) 0.8564 (0.0047) 0.8594 (0.0019) 
CCD, Syn Y T – – – 0.8663 0.8612 0.8637 
CCD, Syn Y E – – – 0.8715 0.8601 0.8658 

a Pre-training corresponds to the first training-pass of the deep-learning model (20 epochs). 
b ‘N’ (No) means that the NLM-Chem ‘test’ subset (training set) was not used in the last training pass, and the NLM-Chem-Syn ‘test’ subset was not used 
during pre-training. ‘Y’ (Yes) means that the ‘test’ subset of the NLM-Chem and NLM-Chem-Syn datasets were used in the last training-pass and pre-training, 
respectively. 
c An ensemble of five different models trained with different random seeds. Majority voting was applied at the T or E. The rows in which ensemble was not 
used (-) present the average results of the same five models (standard deviation is shown in parentheses). 

Table 7. Results obtained during the iterative development process of the rule-based normalization approach in the training dataset. Dictionaries used in 
exact matching contained mappings for DescriptorName, ConceptCASN1Name and Entry Terms. Best results are highlighted in bold. 

Config. Matching Lowercase Abbreviaton expansion level Valid MeSH tree subcategories SCR Precision Recall F1-Score 

1 Exact No None D01, D02, D03, D04 No 0.9389 0.3092 0.4562 
2 Exact Yes None D01, D02, D03, D04 No 0.9424 0.3707 0.5321 
3 Exact Yes Document D01, D02, D03, D04 No 0.9424 0.3707 0.5321 
4 Exact Yes Corpus D01, D02, D03, D04 No 0.9316 0.3819 0.5417 
5 Exact + Partiala Yes Corpus D01, D02, D03, D04 No 0.8426 0.3887 0.5320 
6 Exact Yes Corpus All Dxx No 0.9361 0.5160 0.6653 
7 Exact Yes Corpus All Dxx Yes 0.9439 0.6594 0.7764 
8 Exactb Yes Corpus All Dxx Yes 0.9375 0.7957 0.8608 

a Partial matching performed using pyMeSHSim, which integrates MetaMap. 
b Mapping dictionary augmented with complex gold-standard mappings from the train and development partitions of the training dataset. 

As a final remark, the document-level agreement technique 
did not manage to achieve satisfactory results during all of our 
experiments. It is our understanding that for this technique to 
work, one should also consider the annotation guidelines to 
better understand and further improve the mechanism. 

Chemical normalization 
The process of normalizing detected chemical entities was 
heavily reliant on a rule-based system, which performed exact 
matching supported by a custom dictionary that mapped tex-
tual entities into MeSH codes. As previously mentioned in 
the Methodology section, this mapping dictionary was cre-
ated through an iterative procedure where the dictionary was 
progressively adjusted and improved. Table 7 summarizes sys-
tem performances obtained on the training dataset during this 
iterative development process. 

All of the results presented in Table 7 involved the use of 
dictionaries with MeSH mappings for the DescriptorName, 
ConceptCASN1Name and entry terms. Although the first iter-
ation actually involved a simpler dictionary containing only 
DescriptorName mappings (from D01–D04 MeSH subcate-
gories), the corresponding system performance was marginal 
with only ∼1% of the training entities being mapped, hence 
not being reported in Table 7. 

The first system presented in Table 7 attained a F1-
score of 0.4562, showing the expected high precision of 
an exact matching system (0.9389) but having a low recall 
(0.3092) that penalized the F1-score. The second row presents 
a similar configuration where the matching procedure was 
adjusted to use lowercased instead of raw text entities, which 
led to improvements across all metrics but still attained a 
reduced recall (0.3707). In the third and fourth configu-
rations, the system from Configuration 2 was augmented 



 

 

  

  

 

 

  
 

 

 

 

  

 

  

  

with an abbreviation expansion mechanism that can work 
at two different levels: document or corpus level. While the 
document-level configuration provided no gains in terms of 
performance, the corpus-level variant led to a slight improve-
ment in recall and F1-score at the cost of a decrease in 
precision. 

The fifth configuration presents a system configuration 
where partial matching was explored, through the integration 
of pyMeSHSim, with the objective of addressing the low recall 
verified in the previous system configurations. The inclusion 
of partial matching did not lead to the expected performance 
improvement, resulting in a 0.007% point gain in recall and 
a reduction in precision close to 0.1% points, demonstrating 
a significant increase in false positives. 

The sixth system configuration built on top of the fourth 
configuration, removing the partial matching component and 
expanding the mapping dictionary to increase its coverage, 
considering all Dxx MeSH subcategories instead of being lim-
ited to the D01–D04 subset. This increase in scope resulted 
in improvements across all metrics, with notorious improve-
ments being observed for F1-score (0.5417 to 0.6653) and 
recall (0.3819 to 0.5160), along with a slight increase in preci-
sion (0.9316 to 0.9361). The next iteration followed a similar 
strategy, further exploring the expansion of dictionary cov-
erage by including mappings from the SCR file. Once again, 
significant improvements were observed for F1-score (0.6653 
to 0.7764) and recall (0.5160 to 0.6594), while precision 
reached its maximum value of 0.9439. 

All of the previously mentioned configurations exclusively 
explored external resources for the creation of the mapping 
dictionaries, resulting in generalizable solutions without any 
bias from the challenge dataset. However, despite achieving 
the largest mapping coverage in the dictionary from Con-
figuration 7, it still did not manage to capture all MeSH 
codes present in the gold-standard annotations for the training 
dataset. Therefore, in the final configuration (8) we introduced 
prior knowledge from the training dataset into the mapping 
dictionary, by having the remaining unmapped entities anno-
tated using complex mappings present in the gold-standard 
annotations (which were added to the mapping dictionary). 
To avoid information cross-talk and have a blind evaluation, 
during system development we only extracted complex map-
pings from the ‘train’ and ‘dev’ partitions of the training set 
and evaluated the system in the ‘test’ partition of the training 
set, obtaining the results presented in Table 7. As it is possible 
to observe, the addition of curated complex mappings from 
the gold-standard annotations led to a final significant perfor-
mance increase, with the F1-score increasing from 0.7764 to 
0.8608, recall increasing from 0.6594 to 0.7957 and precision 
decreasing from 0.9439 to 0.9375. 

Due to its success, Configuration 8 was selected for the 
final entity normalization system, now adding curated con-
cept mappings from the ‘train’, ‘dev’ and ‘test’ partitions of 
the training set to the mapping dictionary and evaluating the 
resulting system in the actual test dataset. Official challenge 
results for the normalization task are presented in Table 3. 

Upon inspection of the rule-based system performance in 
the development (Table 7) and test datasets (Table 3), a clear 
drop in performance was noticeable when moving from devel-
opment to test time, with the F1-score decreasing ∼5% points, 
from 0.8608 to 0.8136. Nevertheless, it is important to con-
sider that all system performances presented in Table 7 were 

Table 8. Comparison between the named entity normalization results, 
evaluated on the final NLM-Chem test set, with rule-based methods 
and rule-based plus the deep-learning component. Normalization was per-
formed using each of the three ensemble models, fine-tuned in the entire 
NLM-Chem training set, presented in Table 6. The highest F1-score results 
are highlighted in bold. 

Rule-based 
Rule-based plus 
DL component 

Rowa Precision Recall F1-score Precision Recall F1-score 

1 
2 
3 

0.8745 
0.8828 
0.8801 

0.7748 
0.7754 
0.7739 

0.8216 
0.8256 
0.8236 

0.8428 
0.8494 
0.8446 

0.8082 
0.8067 
0.8045 

0.8251 
0.8275 
0.8241 

a Row 1 corresponds to the entity-level ensemble model with no pre-training. 
Row 2 corresponds to the entity-level ensemble model pre-trained with 
the CDR, CHEMDNER and DrugProt datasets. Row 3 corresponds to 
the entity-level ensemble model that also uses the NLM-Chem-Syn data in 
pre-training. 

obtained based on the non-normalized entities provided in 
the gold-standard training annotations, i.e. assuming an ideal 
scenario where the preceding NER component would cor-
rectly detect every chemical entity in the training dataset. 
Since challenge submissions were based on the use of an 
end-to-end pipeline where errors are propagated from task 
to task (e.g. from entity recognition to entity normaliza-
tion to chemical indexing) and there was the possibil-
ity of having new complex mappings in the test dataset 
that were not present in the development dataset and 
thus not covered in the mapping dictionary, the verified 
decrease in normalization performance was actually expected 
beforehand. 

Since the ‘Annotator’ was enhanced in a post-challenge 
contribution, with its NER performance improving ∼3% 
points comparatively to our best official chemical recognition 
submission, and ‘Normalizer’ performance directly depends 
on that of the ‘Annotator’, we expected to verify perfor-
mance gains in the chemical normalization task. In the left 
side of Table 8 we present the named entity normaliza-
tion results of the rule-based approach, which was applied 
over the last three entity-level ensemble runs of Table 6. As 
suspected, by using an improved ‘Annotator’ we managed 
to outscore our previous best challenge results, attaining a 
strict F1-score of 0.8216, which demonstrates the cascading 
behavior of the proposed end-to-end pipeline. To evaluate 
the impact of the deep-learning component, we extended 
the previous experiment by applying the deep-learning com-
ponent over the rule-based approach in order to map the 
remaining unmapped entities. The obtained results are pre-
sented on the right side of Table 8 and demonstrate that 
using the deep-learning component leads to slight yet consis-
tent improvements over previous results, raising our overall 
best result to a strict F1-score of 0.8275. Another interest-
ing result from inspecting the precision and recall metrics 
is that the deep-learning component increases recall at the 
expense of precision, which is the expected behavior since 
it utilizes embedding representations to find possible MeSH 
terms. Finally, although in our proceedings paper it was not 
clear whether the deep-learning component was beneficial 
or not for entity normalization, newly performed experi-
ments showed that this component did indeed help our overall 
solution. 



 

 
 

 
 

 

 

 
 

 
 

 

 
 

  

 

 

 
 

  

Table 9. Performance comparison between participating teams in the NLM-Chem challenge. The teams and results presented here were obtained from the 
challenge overview paper (5). NER, normalization and indexing F1-score results, using strict evaluation, were obtained on the NLM-Chem final evaluation 
set. Teams are sorted according to the NER score for simplicity. The highest value in each task, considering only official results, is highlighted in bold. R: 
row. Norm.: normalization. Index.: indexing. 

Row Worka Models or frameworks employed NERb Normalizationb Indexingb 

1 Kim et al. (80) Bio-LM-Large (94), BioSyn (95), SapBERT (90) 0.8672 0.7831 – 
2 Erdengasileng et al. (86) PubMedBERT (83) 0.8600 0.8101 – 

Unofficialc – – 0.4825 
3 Adams et al. (96) BioMegatron (97), BioBERT (54) 0.8571 0.5208 – 
4 Chiu et al. (98) BioM-Transformers (99), PubMedBERT (83) 0.8521 0.8072 – 
5 Bevan and Hodgskiss (100) PubMedBERT (83) 0.8493 0.7870 – 

Unofficialc – – 0.3334 
6 Team 104 – 0.8463 0.7078 – 
7 Team 148 – 0.8459 0.7008 – 
8 Ours (78) PubMedBERT (83), SapBERT (90) 0.8454 0.8136 0.4664 

Unofficialc – – 0.4651 
Post-challenged 0.8731 0.8275 0.4849 

9 Team 149 – 0.8416 0.7025 – 
10 Team 146 – 0.8415 0.6744 – 
11 Tsujimura et al. (101) SciBERT (102) 0.8284 0.7954 – 

Unofficialc – – 0.3806 
12 
13 

Benchmark (5) 
L ópez-Úbeda et al. (103) 

BioBERT (54) 
ELMo (104), BioBERT (54) 

0.8149 
0.8136 

0.7889 
0.7763 

0.4141 
– 

14 Mercer and Alliheedi (105) Stanza (106, 107) 0.6492 0.5965 – 
15 Mobasher et al. (108) BioBERT (54) 0.6049 – – 

Unofficialc – 0.4511 – 
16 Team 116 – 0.3109 – – 

a Teams that did not submit a description paper for the BioCreative VII workshop are denoted with their team numbers according to the challenge overview 
paper (5). The benchmark shows the performance of a baseline model shared by the challenge organizers. 
b Note that the NER, normalization and indexing results may not correspond to the same model run. We only present the highest obtained results of each 
team, but teams were allowed to submit several runs. 
c Additional submissions were allowed posterior to the challenge, although not being considered in the official challenge results. 
d Our improved results due to post-challenge enhancements reported in this manuscript. 

Chemical indexing 
The results of the chemical indexing task are directly 
influenced by the success of the previous tasks. Differently 
from the previous ones, for the chemical indexing task our 
system had results from official submissions and unofficial 
submissions (post-challenge) and also from the post-challenge 
extension of the work. Results for the official submissions are 
available in the last section of Table 3, whereas results for the 
best unofficial submission are presented in Table 9. 

The original rule-based approach obtained strict F1-scores 
of 0.4664 and 0.4437, outperforming the benchmark solution 
and attaining the top performance in official challenge submis-
sions, whereas the TF-IDF solution achieved strict F1-scores 
below 0.4, failing to perform even on par with the benchmark. 
Due to the overall poor performance of the latter approach, 
TF-IDF was sidelined and improvement efforts were focused 
on the Indexer’s rule-based system, where a new rule was 
introduced for evaluating MeSH codes present in the conclu-
sion section. Previously existing rules were slightly adjusted, 
and all occurrence thresholds were modified to reflect the 
integration of a novel rule in the system. Despite presenting 
significant and consistent improvements of ∼5% points across 
all three training dataset partitions (‘train’, ‘dev’ and ‘test’), 
the enhanced rule-based system showed a decrease in strict 
F1-score in unofficial submissions (0.4664 to 0.4651). 

Posterior to the challenge and due to the contradictory and 
unexpected behavior of the enhanced rule-based system in 
unofficial submissions, a deeper analysis was performed on 
this system to evaluate the impact of each rule as well as the 
impact of varying occurrence thresholds. Here, the ‘train’ and 

‘dev’ partitions of the training dataset were merged and used 
as a development dataset, while the ‘test’ partition was used 
for evaluation. 

The selected rules were not defined using any methodi-
cal approach due to the sheer number of existing structural 
elements within each scientific manuscript. For instance, a 
simple element such as a caption could be referenced using 
different tags depending on its origin (e.g. table, figure and 
supplementary material, among others), which increased the 
number of options to be considered. Therefore, in an initial 
stage, we analyzed all these elements and experimented using 
all of them in the searching range. However, the initial results 
were poor and led us to reduce the type of elements to con-
sider in the indexing mechanism. Although sections such as 
methods, results and discussion could have the actual MeSH 
codes of interest, we discovered that these sections led to the 
detection of numerous noisy annotations, which negatively 
influenced the indexing performance of the system. Therefore, 
we abandoned these and focused only on the elements of the 
manuscripts that have more emphasis, leading to the selec-
tion of the title, abstract, conclusions and all captions from 
tables and figures. By establishing these sections as the search-
ing scope for MeSH codes, we started to identify weights for 
each section to define whether the annotated MeSH should be 
indexed or not. 

In this analysis we focused on assessing the indexing poten-
tial of using each rule independently. For that, rules for the 
caption, abstract, title and conclusion sections were used 
separately on the development dataset, varying their corre-
sponding occurrence thresholds in a range between 1% and 



 

  

 

 
  

 

 

 

  

Table 10. Results obtained on an NLM-Chem development dataset 
(‘train’+‘dev’ subsets) by indexing the documents using each rule indepen-
dently. For simplicity purposes, we only report results for the threshold 
variation interval of 1–10% as this yielded the best performances. The 
highest F1-score results are highlighted in bold. 

Threshold (%) Precision Recall F1-Score 

Rule for MeSH codes in captions 
1 0.2369 0.6196 0.3427 
2 0.2844 0.6000 0.3859 
3 0.3274 0.5804 0.4187 
4 0.3684 0.5490 0.4409 
5 0.3900 0.5216 0.4463 
6 0.4262 0.4980 0.4593 
7 0.4457 0.4667 0.4559 
8 0.4615 0.4471 0.4542 
9 0.4758 0.4235 0.4481 
10 0.5025 0.3961 0.4430 

Rule for MeSH codes in the abstract 
1 0.3264 0.6784 0.4408 
2 0.3573 0.6431 0.4594 
3 0.3873 0.6196 0.4766 
4 0.4048 0.5922 0.4809 
5 0.4128 0.5569 0.4741 
6 0.4363 0.5373 0.4815 
7 0.4429 0.5020 0.4706 
8 0.4636 0.4745 0.4690 
9 0.4793 0.4549 0.4668 
10 0.5023 0.4196 0.4573 

Rule for MeSH codes in the title 
1 0.5066 0.4549 0.4793 
2 0.5068 0.4392 0.4706 
3 0.5140 0.4314 0.4691 
4 0.5222 0.4157 0.4629 
5 0.5282 0.4039 0.4578 
6 0.5538 0.4039 0.4671 
7 0.5568 0.3843 0.4548 
8 0.5509 0.3608 0.4360 
9 0.5605 0.3451 0.4272 
10 0.5664 0.3176 0.4070 

Rule for MeSH codes in the conclusions 
1 0.5000 0.0745 0.1297 
2 0.5152 0.0667 0.1181 
3 0.6296 0.0667 0.1206 
4 0.6538 0.0667 0.1210 
5 0.6400 0.0627 0.1143 
6 0.6667 0.0627 0.1147 
7 0.6364 0.0549 0.1011 
8 0.6364 0.0549 0.1011 
9 0.6842 0.0510 0.0949 
10 0.8000 0.0471 0.0889 

30%, in increments of 1%. The obtained results demonstrated 
two main trends: firstly, every rule had better performances 
when using smaller thresholds, with thresholds >10% leading 
to a rapid decay in indexing performance; and secondly, the 
rule for the conclusion section obtained significantly worse 
results than the remaining ones, showing that this section of 
full-text papers contains a smaller amount of relevant MeSH 
codes. For the sake of simplicity and owing to the first identi-
fied trend, Table 10 reports the obtained results for a threshold 
range between 1% and 10%. 

Since using each rule in an individual manner resulted in 
an indexing system that could not index at least one MeSH 
code in every document, we performed another experiment to 

assess the maximum number of documents where each rule 
could index at least one MeSH code. For that, each rule was 
used in the development dataset with a lenient occurrence 
threshold of 1%. The obtained results showed that the rule for 
captions was able to index codes in 93% of the documents, the 
rule for abstracts managed to index codes in 98% of the doc-
uments, the rule for titles managed 87% and finally the rule 
for the conclusion section only achieved a reduced portion of 
10%. 

For the final experiment, we assessed the influence of 
using different rule combinations in indexing performance 
while seeking for an optimal rule set and its corresponding 
occurrence thresholds. Here, the rule-based system was evalu-
ated using every possible combination of two and three rules 
and finally using all four rules. In every test the occurrence 
threshold for each rule was varied between 1% and 30%, 
resulting in an exponentially sized search space. The best 
indexing performance achieved on the development dataset 
was obtained using all four rules with occurrence thresholds 
of 2%, 22%, 10% and 10% for the title, captions, abstract 
and conclusion rules, respectively. The resulting configuration 
was evaluated on the ‘test’ split of the training dataset, obtain-
ing a precision of 0.4328, recall of 0.5321 and F1-score of 
0.4774. Finally, this chemical indexing system was evaluated 
on the best NER + Normalization run on the test dataset, 
managing to index 95.5% of the documents and obtaining a 
precision of 0.5017, recall of 0.4691 and strict F1-score of 
0.4849, surpassing the best indexing performance among all 
submissions (both official and unofficial) in this task of the 
NLM-Chem BioCreative VII challenge track. 

Finally, for contextualization purposes Table 9 shows a 
performance comparison between all participating teams in 
the NLM-Chem challenge, including our original submissions 
and our best post-challenge runs. 

Error analysis 
An error analysis was conducted focusing on the first mod-
ule of the proposed pipeline, during which it was possible 
to identify situations where the NER model wrongfully pre-
dicted false-positive chemical mentions and cases where it 
failed to identify the correct annotations. In this section, we 
not only enumerate and discuss some possible causes for ver-
ified entity recognition errors, but also evaluate the impact of 
error propagation in the performance of the cascaded pipeline. 

Beginning with tokenization, this process hinders NER for 
entities that do not respect tokenization boundaries. This error 
occurred in 156 entities from the 38 339 entities present in 
the challenge corpora, with two examples being presented in 
Figure 5. Overall, this may be alleviated by tokenization-free 
models or using string-pattern match methods in a post-
processing phase. 

Furthermore, in the manual process of annotating corpora 
it is acceptable that even expert curators may make some 
errors unintentionally or that they disagree in some specific 
annotations, as shown in Figure 6. Even with specific guide-
lines, experts can have different interpretations, which is the 
reason we hypothesize that gold-standard annotations may 
contain a small number of partially incorrect annotations (for 
example, an incorrect span), as presented in Figure 7. 

Another problem that influences entity detection is related 
with limited instance representation. In some cases, the 512 



 

 

 

  

  

  

 

   
 

 

 

 

  

Figure 5. Two examples of entity recognition errors due to tokenization boundaries. Blue boxes represent gold standard entity annotations, and the 
yellow boxes highlight characters that cannot be disentangled from the true annotations due to tokenization. The first error (a) occurs in the document 
PMC 3 661 362, where Na+ and K+ are gold-standard entity mentions. However, the PubMedBERT tokenizer produces the tokens INa and IK, which 
makes it impossible to correctly predict Na+ and K+ using a token-level tagging schema. The ‘closest’ predictions would be INa+ and IK+, which 
would be incorrect according to strict evaluation. The second example (b) was extracted from PMC 2 952 795 containing a similar issue with the term 
Ocarboxylate, where Oc forms a single token. 

Figure 6. An example of a potential inconsistent annotation found in the document PMC 2 254 971. In the first sentence (a), the curators considered 
propidium iodide as a chemical as well as its short form PI. However, as shown with the yellow box, the term PI in the second sentence (b) was 
not annotated, which made us suspect if it was a missed annotation. 

Figure 7. Example of an annotation with incorrect span from document PMC 5 096 026. The term polypyridy was mistakenly annotated instead of 
polypyridyl, since the last character was not included in the entity mention span. 

Figure 8. Example of the tagging inconsistency problem from the document PMC 555 756. Our model correctly predicted the entity ST-4 for 
Sentences (b) and (d), but failed to predict the remainder ST-4 mentions in Sentences (a), (c) and (e), which renders a final document annotation that 
appears to be contradictory. 

tokens from the BERT model are not enough, and more con-
text (in limit, the whole document) is required to correctly 
perceive the surrounding context of chemicals. This limita-
tion aggravates the tagging inconsistency problem (92), which 
means having annotations that are not consistent along the 
document, and is the source of some errors as also reported 
by Kim et al. (80). For example, the chemical entity ‘ST-4’ 
present in the PMC 555 756 article was only detected twice by 
our model, despite appearing five times in the gold-standard 
annotations of the article (Figure 8). 

Another specific error that our model is likely to produce 
is that chemical mentions may be annotated even if they are 
within protein mentions, which according to the annotation 
guidelines is undesired. For instance, in Figure 9, ‘cholesterol’ 
was correctly recognized by the model in one of the cases, 
but it is incorrectly identified in the other case since the same 
term belongs to a protein mention. In the future, to take into 
account these cases we would suggest to include an additional 
step for identifying protein entities. 

Complex terms require expert interpretation, which for 
deep-learning models may not be available without extensive 

external knowledge. In a similar manner, new terms intro-
duced in literature may not be easily identified by such models 
without having some kind of external knowledge. Such behav-
ior holds especially true in a field where new chemicals are 
often being discovered and specific names are created for these 
new entities. 

Finally, we evaluated the impact of error propagation in 
the complete system, which is inherent to the system due to its 
conception as a cascaded pipeline. Having a top-performing 
NER module is key to the success of the pipeline since it 
defines which textual entities should be forwarded to the nor-
malization and indexing modules; thus, a great effort was 
placed into the development and analysis of the NER module. 
However, due to the existence of gold-standard annotations 
for the normalization and indexing subtasks, it was possible 
to develop and evaluate both modules based on an ‘opti-
mal’ scenario where the NER module correctly identifies every 
textual entity. This assumption naturally biases system per-
formance, boosting normalization and indexing performances 
during system development and leading to a more significant 
drop in performance during test time. 



  

 

 
 

 
 

 

 

 

  

 

 

 

  

Figure 9. Example of a chemical mention embedded in a protein mention from document PMC 2 096 715. Our model predicted cholesterol on both 
sentences as an chemical entity. However, in Sentence (a) the word cholesterol should not be identified because, according to the annotation 
guidelines, the chemical term appears within a protein mention. 

Table 11. Performance comparison for the normalization and indexing subtasks in the ‘test’ subset from the NLM-Chem training dataset when using gold-
standard annotation files versus system annotations from the previous module in the pipeline. Performance for the NER module in the same dataset is 
also provided to demonstrate the performance drop, resulting from loss propagation through the cascaded pipeline. The reported delta values correspond 
to the relative change in performance when using gold standard annotations versus system annotations. 

Precision Recall F1-Score 

Chemical mention recognition 
– 0.8685 0.8906 0.8794 

Chemical normalization to MeSH IDs 
Gold-standard annotations 
System annotations (NER) 

0.9090 
0.8393 Δ –7.67% 

0.8366 
0.7999 Δ –4.39% 

0.8713 
0.8191 Δ –5.99% 

Chemical indexing 
Gold-standard annotations 
System annotations (Normalization) 

0.4286 
0.4252 Δ –0.79% 

0.5229 
0.4954 Δ –5.26% 

0.4711 
0.4576 Δ –2.87% 

To capture the impact of error propagation as expected 
from a real scenario, we ran the full pipeline on the test split 
of the training dataset, with the obtained results being pre-
sented in Table 11. For comparison purposes, we provide 
system performances using gold-standard annotations versus 
system annotations for the normalization and indexing mod-
ules, along with the relative change in performance resultant 
from using system outputs instead of gold-standard annota-
tions. Upon inspection of obtained results it is possible to 
observe two major trends. Firstly, there clearly exists error 
propagation through the pipeline, as evidenced by the perfor-
mance loss in F1-score of nearly 6% and 3% in normalization 
and indexing, respectively. Secondly, system performances 
obtained when using generated annotations (Table 11) in the 
test split of the training dataset are close to the results reported 
for the full test dataset (Table 9), which demonstrates the 
robustness of the herein proposed system. 

Conclusions and future work 
This paper describes deep-learning and rule-based strategies 
for chemical entity recognition, normalization and indexing 
following our participation in the NLM-Chem track of the 
BioCreative VII challenge (Track 2). We presented in detail 
the post-challenge experiments we conducted and how these 
improved our final system performances. More precisely, we 
improved our NER F1-score from 0.8454 to 0.8731; NEN 
F1-score from 0.8136 to 0.8275 and indexing F1-score from 
0.4664 to 0.4849. 

For future work, we aim to tackle the tagging inconsistency 
problem improving the already-started document-level agree-
ment mechanism. Additionally, to deal with the tokenization 
boundary problems, we believe that using tokenization-free 
models, such as ByT5 (93), may mitigate this problem. 
Regarding the normalization, we also view the added value in 
expanding the deep-learning component by training a dense 
retrieval based on the SapBERT embeddings (90) for the task 

of entity linking. Finally, for the indexing we intend to explore 
the MeSH tree structure, which may help to identify parent 
MeSH codes that are meaningful for indexing, but did not 
appear in the document. 
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