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An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed
framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather
than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal
after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-
OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train
of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the
proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less
computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural
representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the
biologically plausible synaptic models in a wide range of intuitive signal processing.

1. Introduction

Learning in neural networks can be achieved by two main
strategies, namely, supervised and unsupervised learning.
Unsupervised learning is guided by correlations in the input
information to the network. Donald Hebb postulated in
1949 [20] that the modifications in the synaptic transmission
efficacy are driven by the correlations in the firing activity of
the pre- and postsynaptic neurons. Spike-timing-dependent
plasticity (STDP) is the potentiation of a synapse when the
postsynaptic spike follows the presynaptic spike within a time
window of a few tens of milliseconds and the depression
of the synapse when the order of the spikes is reversed.
Since this is consistent with the postulates of D. Hebb,
sometimes this type of STDP is referred to as Hebbian
STDP. When the sign of the change in the synaptic strength
is changed, the process might be known as anti-Hebbian
STDP [17]. The Hebbian learning rules implement this
dependence of synaptic changes on the relative timing of
pre- and postsynaptic action potentials, and the Hebbian
modulation of STDP is the synaptic changes following a

learning algorithm either via the Hebbian or the anti-
Hebbian rule [19]. One of the attractive models in this
regard is the Bienenstock-Cooper-Munro (BCM) model for
the development of orientation selective cells in the visual
system [4]. The Hebbian learning rule of this model has
received considerable support from experiments on long-
term potentiation (LTP) and long-term depression (LTD)
[31].

Many studies have investigated how the Hebbian-based
learning algorithms can be applied to empower the perfor-
mance of artificial neural networks (ANNs) and especially
of those use either spiking neuronal models and/or synaptic
models that implement STDP; see, for example, [15, 37] for
recent reviews. A correlation-based Hebbian learning rule for
spiking neurons was presented reporting that correlations
between input and output discharges tend to stabilize [21].
A biologically plausible learning algorithm for multilayer
neural networks was introduced in [23]. It was shown
that the learning algorithm has allowed the network to
solve partially the exclusive-Or (XOR) problem without
back propagation. Applying both Hebbian and anti-Hebbian
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rules in a recurrent network that implements STDP was
investigated [7]. It has been shown that leads to approximate
convergence of the synaptic weights. These studies were
focused on the computational properties of STDP, thus
they have illustrated its function in neural homeostasis and
supervised and unsupervised learning.

Notably, a number of theoretical analyses have reported
that Hebbian and anti-Hebbian modulation of STDP can
either minimize or maximize the postsynaptic (neuronal)
firing variability to a given specific presynaptic input [7, 17,
39]. These studies have suggested that combining Hebbian
rules and reinforcement learning (RL) [34] facilitates the
simulation of the learning abilities featuring biological neural
systems. A number of studies have investigated the tenability
of integration between both concepts. For example, the
ability to reduce the required learning steps for certain tasks
in comparison to applying RL alone was investigated [5]. The
tasks were poorly defined to be used for general machine
learning regimes. Applying the RL rules to the spike-response
model (SRM) was performed [11]. This has been done by
adding a Hebbian term to the RL rule. The latter study was
directed as well to investigate the influence on the number
of learning steps. It has been showed that RL can occur via
correlating the fluctuations in irregular spiking with a reward
signal in networks composed of neurons firing Poisson spike
trains [33, 40]. Another study has tried to teach a network of
spiking neurons to output specific firing patterns on different
time scales and in response to varying input combinations
[15].

Commonly through all these studies, the modula-
tion targets solely the synaptic weights in the synaptic
parametrization, that is, only the spike-timing independent
part of the synaptic parametrization is tuned. Little attention
has been paid to the direct modulation of the synaptic
hidden parameters, for example, response and recovery time
constants.

In order to get an impression about the relevance of
applying a learning rule to tune directly the synaptic hidden
parameters, some topics are reviewed in the following.
Adopting the spike-timing dependency in the synaptic
action presumes that pre- and postsynaptic spiking activities
influence the internal mechanisms result in the synaptic
action itself. Shortly stated, there is a sort of closed-loop
feedback mechanism regulating the synaptic action observed
through changes in the synaptic plasticity [28, 41]. In
chemical synapses, the calcium ions buffering plays, in
general, a facilitatory role and is triggered by arriving spikes
at the presynaptic terminal. This buffering enhances the
transmission of the presynaptic spike by urging the release
of neurotransmitter from the vesicles into the synaptic cleft.
The extent of this facilitatory role is, however, bound to
the contribution of other mechanisms such as the pool
size of the ready to release vesicles and postrelease recovery
timing constants of neurotransmitter. There is a dependence
between the utilization of the synaptic resources (ions
and neurotransmitter), and the overall synaptic action is
modulated by the spike timing at the presynaptic site. The
synaptic action consequently affects the postsynaptic activity.
Latencies between postsynaptic spikes allow for the uptake of

neurotransmitter from the cleft and for the reformation of
vesicles within the presynaptic terminal. These latencies are
basically modulated by the release process that is originally
presynaptically regulated [41]. Thus, there is an interdepen-
dence between STDP (as the correlation between presynaptic
and postsynaptic spiking) and the synaptic resources, for
example, the concentration of neurotransmitter and ions.
As briefed, the interdependence originates from the relation
between the synaptic action and the relative timing of
pre- and postsynaptic action potentials. This interdepen-
dence suggests that learning frameworks, in general, may
specifically tune the internal synaptic dynamic mechanisms
according to predefined inputs/outputs combinations.

For the class of synaptic models that implement STDP,
the overall synaptic response originates from two contri-
butions: the synaptic weight and the dynamic spike-timing
dependent mechanisms. The latter arises from the synergy
among the hidden synaptic parameters for example, via
response time constants and scaling factors. Maass and
Zador have reported that applying gradient descent tuning
to hidden parameters of their stochastic synaptic model can
lead in principle to learning within a neural circuit [27, 30].
This approach is based on the previous work by [1, 2, 29]; it
has been shown that synaptic dynamics modelled, in general,
as finite-impulse response filters can be learned through
modulating their hidden parameters. Biologically plausible
synaptic models that implement temporal coding via STDP
can be characterized in general as integrated (multilayered)
finite-impulse response filters [18].

It is tempting, therefore, to investigate whether the
Hebbian/anti-Hebbian modulation of STDP within an RL
framework, that is, with a reward signal, can lead to RL
when the learning is directed to tune the hidden parameters
of a synaptic model. In the study at hand, we propose a
follow-up study to the introductory framework introduced
in [12]. (The results reported here are separately produced
and not adopted from [12].) The framework integrates
the concepts of both Hebbian/anti-Hebbian learning and
RL while explicitly using plausible biological neuronal and
synaptic representations. The introduced training algorithm
affect the values governing the synaptic dynamics (for
example, time constants) instead of changing the synaptic
weight. To illustrate this, the learning of the exclusive-
OR (XOR) computation has been chosen. The simulated
spiking neural network uses (a) Markram-Tsodyks synaptic
model [28], and (b) Leaky integrate-and-fire neurons. The
proposed approach is inspired from the learning algorithm
for stochastic synapses that was introduced in [13]. Up to
the knowledge of the authors, this is the first trial to develop
such a framework to train the hidden synaptic parameters in
a dynamic synaptic model.

It is not intended to introduce a novel network-based
solution for the XOR problem; rather, the XOR task is
chosen as a classic benchmark problem for learning algo-
rithms. The core objective is to propose an appropriate,
but yet simple, learning algorithm that implements both
Hebbian and RL rules for spiking networks with spike-
timing-dependent synapses via tuning the synaptic model
parameters rather than the synaptic weights. The availability
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of such a framework opens new avenues in adopting the
class of biophysical synaptic models in processing of neural
signals and computations. Some of these synaptic models do
not feature any scalar weight factors as synaptic weights (see,
for example, [13, 24]), which is why they are not utilized
widely in signal processing tasks that require the tuning of
model parameters to achieve certain regime of dynamics
characterized by predefined mapping between input and
output spike patterns.

2. Models

Neuronal Model. Neurons are modelled as leaky integrate-
and-fire (LIaF) neurons [6]. Each neuron is described by its
voltage membrane potential V

τV
dV(t)
dt

= Vrest −V(t) + EPSP(t), (1)

where τV is the membrane time constant set at 20 msec and
EPSP is the total observed excitatory postsynaptic potential
from all presynaptic terminals. When V(t) ≥ Vth, a spike
is generated and V(t+) := Vrest, where t+ is the time instant
after t andVrest = 0 mV andVth = 50 mV. An absolute refrac-
tory period τrefr = 2 msec is implemented.

Synaptic Model (STDP). It is the well-established phe-
nomenological model from Markram et al. [28, 36] for short-
term synaptic plasticity. In the following, we refer to this
model as the Markram-Tsodyks model. This model describes
the effects of action potentials on the collective utilization of
synaptic efficacy u(t) and the subsequent process of recovery
r(t). It is an integrative model that describes both synaptic
actions of depression and facilitation. It reads [3]

dr(t)
dt

= 1− r(t)
τrec

− u(t) · r(t) · δ(t − ti), (2)

du(t)
dt

= USE − u(t)
τfac

+ USE · (1− u(t)) · δ(t − ti), (3)

where τrec is the pool recovery time constant. δ(t − ti) is the
Dirac delta function and represents an incoming spike at ti.

Assuming a presynaptic action potential at time ti, the
depression process can be expressed by (2), in which r is the
fraction of neurotransmitter pool available for transmission,
u is the fraction of r to be utilized due to each spike,
and it models the neurotransmitter release probability. The
facilitation mechanism, on the other hand, is caused by
an increase in the synaptic utilization at each presynaptic
spike and can be formulated by (3). USE is a constant value
determining the step increase in u and τfac is the relaxation
time constant, where USE should be bounded to [0, 1]. Right
after an incoming spike, u is increased from its current value,
u(t), to u(t+) = u(t) + USE · (1− u(t)) and drifts towards its
baseline value USE with a time constant τfac between action
potentials. The rule keeps u(t) < 1. Figure 1 illustrates the
response of the state parameters r and u to a regular input
spike train as in Figure 1(a). The excitatory postsynaptic
response (EPSP) from an action potential is obtained by

EPSP(t) = A · u(t) · r(t), where A is the baseline level of
synaptic output. In case of an inhibitory synapse, A → −A.

In this synaptic model, A may be viewed as the
synaptic weight. It represents the spike-timing independent
contribution in the synaptic response. The dynamic synaptic
contribution S at any time instant t is evaluated as S(t) =
r(t) · u(t) [26]. The value of this dynamic contribution
depends on the values of the involved parameters: USE, τfac,
and τrec. In the next section, we explain how the learning rule
tunes only the dynamic part via modulating these parameters
regulating the spike-timing-dependent response.

3. Reinforcement Learning Framework

RL is a proven tool for developing an intelligent agent
without an explicit supervisor and without a teaching set, in
which a reward signal is generated from the interaction with
the environment, and it represents the source of supervision
[34]. In order to explain the proposed learning framework,
let us first consider the simulation setup. A network similar
in structure to the one used in [17, 40] is considered; see
Figure 2(a). The network has two input neurons N1 and N2

feeding their outputs via one hidden layer (N3,N4, . . .) to one
output neuron Nout. The network output is a spike train f .
Inputs are spike trains with Poisson-distributed interspike
intervals and are fed to input neurons. In parallel, the input
spike trains are fed to an XOR gate. Details of simulation
are given in Section 4. The XOR gate provides the correct
output (target output) as a reference spike train g. A basic
question is how this setup (Figure 2(a)) can be mapped to
the RL configuration.

3.1. Reward Signal. It has been described that a reward signal
(or a feedback parameter), Rwd, can be derived to represent
the progress in capturing certain temporal dynamics [15].
This reward is based on the difference between the target
spike trains and the network’s actual output. As for the
distance, van Rossum introduced an algorithm, which is
used here to calculate the distance between two spike
trains [38]. It is a dimensionless distance that calculates the
dissimilarity between two spike trains. It is calculated by
filtering both trains with an exponential filter and calculating
the integrated squared difference of the two trains. Each spike
at time instant t j in f is convolved with an exponential
function exp((t − t j)/τc) with t > tj , leading to the time
series f (t). Likewise, each spike in g is convolved with this
exponential function, resulting in the time series g(t). From
the resulting time series f (t) and g(t), the van Rossum
distance measure reads

D
(
f , g
) = 1

τc

∫∞

0

[
f (t)− g(t)

]2
dt, (4)

where τc is the time constant of the exponential filter. It
controls the extent of the effect from each spike on the
following spikes; that is, it determines the time scale of this
distance measure. Here, τc is set arbitrarily to 15 msec.

In order to reduce the effect of the input variability on
the observed performance [15], the reference spike train and
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Figure 1: Simulating state parameters of Markram-Tsodyks model, where τrec = 130 msec and τfac = 0.5/130 msec. (a) Regular spike train
stimulus at 100 Hz. Both (b) and (c) illustrate the time course of r(t) and u(t) in response to the regular spike train, respectively.

network’s output are temporally coded (or binned) with a
nonoverlapping temporal window with width W taken first
to be five msec. During each time window, having one or
more spikes is interpreted as having a digital one (high)
otherwise as zero (low). Thus, for any spike train of length
L that is binned with W msec window, the spike trains are
mapped to shorter versions with length L/W . In other words,
output spike train f with a 200 msec epoch is mapped to a
binned version F that is 40 steps long. Similarly, g is mapped
to G; see Figure 2(c). Hence, the reward signal is defined as

Rwd = e−αD(F,G), (5)

where α = 0.01. This definition of Rwd maps the distance
D ∈ [0,∞) to the range (0, 1], with a maximum reward
value of unity when the distance vanishes, that is, at identical
outputs. Rwd is dimensionless; this is a key property in the
introduced framework because of the required consistency
of physical units (which will be clear in (6)). The value of the
reward signal is used to modulate synaptic parameters that
represent certain biophysical quantities with physical units
rather.

3.2. Mapping the Simulation Setup to an RL Scheme. In
a standard RL problem, an agent represents the learner
and the decision maker. Everything outside the agent is

its environment. The environment tells its agent about its
current state (activity), and it also gives rise to rewards. The
agent tries to maximize these rewards over time [34]. As
for the used temporal difference (TD) RL scheme here, the
environment state is the input patterns represented during
each episode (trial). The policy is formulated by both the
synaptic model and the update rules, it sets the dynamic
synaptic strength that is used in each trial dynamically.
The action is the output spike train from the ANN (resp.,
from its output neuron). The XOR gate and the calculation
of D are viewed as an advisor for the learning agent.
Differently stated, the network itself is the agent. This agent
has two policies; they are the synaptic parametrization and
the update rule. Attached to this agent, there is an advisor.
The latter calculates the distance from the reference spike
train, apply binning and feed the reward value to the update
rule (the agent’s second policy). (Two rules support this
description of the RL setup [34]. First, a policy represents a
sensory-output rule. It is the agent’s way of behaving to the
input information. Second, anything that cannot be changed
arbitrarily by the agent is considered to be outside of it
and thus part of its environment.) The enhancement in the
synaptic model (the agent’s first policy) aiming to improve
the quality of the action is better derived by a temporal
difference error rather than the reward values [15]. In other
words, instead of modulating the changes in the parameters
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Figure 2: (a) Schematic representation of network setup and simulation. Different-colored input lines indicate nonidentical inputs spike
trains. Dashed arrows represent those synaptic connections allowed for learning (details are explained in Section 3.4). (b) Sample of network
inputs. (c) Corresponding network output. In both panels, the light gray lines indicate the locations of reference spikes g (or G). The blue
lines are those correspond to f (or F). Note that in the lower panel of (c), the length of F (or G) is 200/W , where W = 5. Both (b) and (c)
are adopted from [12].

subject to training with the reward values, the temporal
error between the desired reward and current reward values
is used. This approach was basically introduced without
neurobiological evidences, as it was not developed for neural
networks at first place [34]. Researches in neuroscience have
discovered that the firing activity of dopamine neurons in
many cortical regions appear to resemble this error function
in the TD algorithm [8, 32].

3.3. Hebbian Update Rule. The dynamics of synaptic action
are governed through the contribution of electrochemical
mechanisms represented via the model parameters: USE,
τrec, and τfac. Each of these parameters is denoted by m.
The value of m is either increased, or decreased following
the Hebbian rule Δm = η · m, where |η| < 1 is the
learning rate [15, 29], according to the pairing between
pre- and postsynaptic activity. The realization of this basic

Hebbian rule reads as follows: the values of parameters
contributing to the facilitatory mechanisms are increased
and the contribution of the depressive mechanisms are
decreased when a spike at the presynaptic neuron induce a
desired spike at the postsynaptic neuron. The term “desired”
refers here to a correct hit. If the presynaptic spike does
not induce a postsynaptic spike and no spike is expected
the process is flipped. Whether the spike is desired or not
is judged by comparing to the reference spike train. So far,
it is supervised learning in full sense. For the TD learning
framework, we use a reward-based error signal δRwd applied
to the eligible synapses to update their parameters

Δm = η ·m · δRwd, (6)

where η is set to 0.01. δRwd is the temporal difference error
that is usually calculated as a prediction error. It is normally
calculated as the difference between the ideal (or expected)



6 Computational Intelligence and Neuroscience

reward and a scaled value of the current one [34]. Scaling
the current reward is made via trace decay parameter λ. In
this study, δRwd is the temporal difference error between
the unscaled values (λ = 1) of the current reward and the
previous one from the previous trial. It reads

δRwd = μ
(
Rwdprevious −Rwdcurrent

)
, (7)

where μ is a scaling factor to match the order value of δRwd to
the order of the parameters under training. It is set to seven
throughout the simulation.

On episodic basis (after each trial), the sign of the error
value is used to alter the direction of the change in the
parameter value, either to increase or to decrease the value of
the tuned parameter. Having a signed value, this learning rule
allows anti-Hebbian synaptic plasticity [15, 29]. Recalling
that the direct modulation of the synaptic model parameters
implement a gradient descent [1, 2], the proposed rule here
optimizes the error function δRwd in a heuristic way. The
implicit objective of achieving a stable maximum reward
is preserved via minimizing the error value δRwd [15].
Calculating the reward values from the distance between the
spike trains without binning reinforces the input variability.
This deteriorates the results significantly, as the fluctuations
in the temporal error will be too high. Thus, the binning is
used to suppress this variability and to isolate, to a certain
extent, the performance of the learning from its effect.

In this study, the hidden model parameters subject
to training are USE, τrec, and τfac; their initial values are
arbitrarily set to 0.5, 100, and 50 msec, respectively. A is fixed
to 7×10−4. Note that A in this synaptic model represents the
synaptic weight. Therefore, it has been chosen in this study
to be fixed and to be excluded from the training process for
the sake of emphasizing the role of direct tuning of synaptic
model parameters. Recalling the note mentioned above after
(5) about Rwd being dimensionless, if the reward values
have units of, for example, bits and m denotes τrec or τfac,
(6) will not be longer correct.

The Reference Spike Train. In the proposed framework, the
availability and need for the reference spike train represent
a major issue. It may be argued that contrary to supervised
learning, the actual desired output (reference) should not
be used in RL to correct the behaviour of the environment.
Instead, an agent extracts the required information about
the next action from the history of both the environment
behaviour and rewards. This is done implicitly in the
proposed framework. The distance between the output and
reference spike train is applied only on episodic basis. Thus,
the history of the networks behaviour is used, as it is
compared to the reference one and the distance gives rise
to the reward signal. Therefore, the proposed framework
models correctly an RL problem with a plausible realization
to synaptic STDP. As mentioned, the value function here is
the distance between the reference and output spike trains.
From a macroscopic (cognitive) point of view, the need
for the reference spike train calls for the need of memory
to accomplish learning in general. This, in turn, raises a
fundamental question of whether memory is a prerequisite

for learning or not. Here, we entertain that memory is
needed for learning, at least for the condition when the input
information has never been presented to the network. In the
simulations presented here, this condition is fulfilled.

3.4. Eligibility Traces. Eligibility denotes synapses that have
contributed to either a correct or false output spike. These
eligible synapses can be determined either analytically as in
[15, 17, 40] or phenomenologically as in [16, 22, 25]. In order
to keep complexity at a minimum, the latter approach is the
one adopted in the presented study. In general, this approach
depends on the understanding of the flow of spiking activities
within the network. In other words, for a series of neuronal
activities, synapses of the neural network do not influence the
timing of the output spike with identical contributions. In
the study at hands, it is chosen to allow training for only the
forward synaptic connections between the input neurons and
the hidden neurons (shown as dashed lines in Figure 2(a)).
That is, only the model parameters of those forward synapses
are updated according to the proposed learning framework.

4. Simulation and Results

The input data is a set of 600 spike trains with total epoch of
200 msec at 1 msec discretization each. Each input spike train
has a Poisson distributed interspike intervals with an overall
frequency of 50 Hz. This set is arranged in two subsets, each
of which is the input set for one input neuron. Figure 2(b)
shows a sample of the two input spike trains, note that the
epoch here is the simulation epoch of 200 msec (L). Samples
of the output spike train and the reference one are given in
Figure 2(c) as well as their corresponding binned versions.

Beside the values of the reward, the performance is
demonstrated with the distance D between the two short
representations of reference and network output spike trains
as well. And it is calculated per episode. Taking into account
the role of the temporal features embedded in the input
(and output) spike trains, other indicator of performance is
considered. This indicator is the maximum cross-correlation
coefficient X between the Gaussian-filtered versions of F and
G; F and G are the binned (short) versions of the output and
the reference spike trains f and g, respectively. This indicator
is never used in the training or in updating the values of the
model parameters.

A network with a hidden layer of five neurons is imple-
mented, and simulation is repeated with seven neurons
in the hidden layer. The network has one output neuron;
that is, the network size is N = seven and 10 neurons
respectively. The minimum number of neurons, required
to solve the XOR problem is five. In both networks, two
synapses between input neurons and the hidden layer are
randomly selected to be inhibitory synapses. Between the
hidden layer and the output neuron, only one synapse is
selected inhibitory. The selection of inhibitory synapses is
not changed during the simulation. For the smaller network
(N = 7), mean values of D(F,G) and X(F,G) over the last
50 episodes are 10.9 ± 1.5 and 0.83 ± 0.068, respectively.
For this network, the reward signal is given in Figure 3(a),
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Figure 3: Simulation results in case of five neurons in the hidden layer and window size set to five msec. (a) Values of reward signal. (b)
Distances between the reference and the output signal, D(F,G). (c) Maximum cross-correlation coefficient observed between the reference
and the output signal, X(F,G). A snapshot from the simulation over the input/output firing patterns and internal EPSP of the output neuron
is given in Figure S1.

and performance measures are illustrated in Figures 3(b)
and 3(c). With the larger network (N = 10), similar to
the previous setup the values of D(F,G) start between 25
and 35, experience an overall decay over time and reach
asymptotic stability after 100 episodes of training; the mean
value over the last 50 episodes in the observed distance is 3.21
± 2.33. X(F,G) has a mean value over the last 50 episodes
of 0.93 ± 0.03. A further detailed overview of the network
performance is given with a snapshot from the simulation
over the input/output firing patterns and internal EPSP of
the output neuron in Figure S1 (Supplementary Materials
are avaiable online at doi: 10.1155/2011/869348).

The time evolutions of the trained parameters are
illustrated in Figure 4. Convergence can be clearly seen from
the three illustration reporting the evolution of the tuned
parameters. These illustrations report the time course of
the tuned parameters for both excitatory and inhibitory

synapses. As for the effect of the initial values on the
learning performance, different starting values are used for
the parameters subject to training. Self-organized behaviour
is observed. That is, the final values of trained parameters
converge to self-consistent values over the training trials
when either of the initial values changes. Figure 5 illustrates
an example of this for USE, and starting the training from 0.1
instead of 0.5 leads to a similar final value at convergence.

As mentioned above, the dynamic synaptic strength of a
synapse at any time instant t is S(t) = r(t) · u(t). Let 〈S(t)〉
be the time average of the synaptic strength of this synapse
over all the time steps in one trial (episode). The time course
of 〈S(t)〉 for not trained excitatory and inhibitory synapses
(found between the hidden layer and the output neuron)
are given in Figure 6(a); values are normalized between
zero and unity and smoothed. Similarly, the time course of
〈S(t)〉 for trained excitatory and inhibitory synapses (found
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Figure 4: Evolution of the trained parameters: τfac in (a), τrec in (b), and USE in (c) over time. In all subfigures, samples from an excitatory
synapse (Exc.) and from an inhibitory (Inh.) one are given. For both types, the starting values are identical.

between the input neurons and the hidden layer) are given in
Figure 6(b); values are normalized between zero and unity
and y-axis is a logarithmic scale. By investigating the not
trained time courses of dynamic synaptic strength, they
almost overlap, and there are clearly two different ranges
of behaviour. During the first 150 episodes, that is, before
convergence, both synapses (excitatory and inhibitory) have
a mean synaptic strength 〈Ŝ(t)〉 of ≈0.233 ± 0.2. For the
second half, during the last 150 episodes the mean synaptic
strength is ≈0.22± 0.05. In case of the trained synapses, the
behaviour of the synaptic strength is completely different.
Both types of synapses try to optimize their ranges of
influence. In other words, the excitatory synapse undergoes

a progressive shift to maximize its synaptic strength and to
stabilize it. Mean value increases from 2.6×10−6±4.4×10−6

during the first 150 episodes up to 0.0388 ± 0.052 during
the second 150 ones. The strength of the inhibitory one is
lowered from 0.0126± 0.0833 down to 1.006×10−4 ±4.03×
10−5 and kept stable at the lowest possible range. Because of
the wide span of values in the trained case, the values are
shown on a semilog plot of the y-axis to clarify the differences
between the two lines, see Figure 6(b).

Relative larger networks with 13, 17 and 20 neurons in
hidden layer (N = 16, 20 and 23, resp.,) are investigated.
The enhancement in the performance is observed in terms
of X(F,G) to be with an overall improvement of 0.01,
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Figure 5: Self-organized behaviour in trained parameters. Chang-
ing the initial value of the trained parameter USE does not affect the
final values at convergence.

0.013, and 0.017, respectively. The effect of changing the
time window is also investigated. The mean of performance
measures at different binning window settings (4, 5, and
7 msec) are summarized in Table 1. In case of 4 and 7 msec
window, the epoch of the input spike trains are changed in
order to get a final binned version of 40 steps long; that is,
the length of the input spike train is changed to be 160 and
280 msec, respectively.

The normal evaluation of results, by counting the correct
hits of ones and zeros as in [17, 40] reveals relatively
poor performance in the case presented here. The mean
correct hit rate between f and g is 72.5% ± 1.1, while
it increases to 85.4% ± 1.6 between F and G at W = 5.
It should be pointed out that, on one hand, this classical
evaluation method of the results seems from our point
of view not applicable here. The timing of occurrence of
input spikes is solely the input feature to the network,
because both neuronal and synaptic representation here
implement temporal dynamics. Comparing only the counts
(hit rates) of the occurrences of ones and zeros in the
output and reference spike trains suppresses all the temporal
information and eliminates the involvement of the STDP
realized by the synaptic dynamics. Which is why we use
the distance between the two-binned spike trains and the
maximum coefficient of cross-correlation between them as
indicators for performance. Both measures are sensitive to
temporal information within spike trains. On the other
hand, the proposed framework here outperforms previous
approaches from [15, 40] in terms of the needed network
size, learning speed and time-to-convergence. The proposed
framework with a network size of 30 neurons results in a
correct hit rate of ∼91% between F and G at W = 5 which
is still comparable to those results from [17, 40] with a
doubled network size. The learning model proposed in [33,

Table 1: Summary of performance measures for the network with
7 neurons in the hidden layer.

Window Distance Max. cross-correl. coeff.

W D(F,G) X(F,G)(%)

4 msec 4.63 ± 5.12 89.50 ± 6.01

5 msec 3.21 ± 2.33 93.09 ± 3.04

7 msec 6.83 ± 5.41 94.42 ± 3.01

40] is not applicable to recently developed synaptic models
such as the modified stochastic synaptic model [14] or the
kinetic synaptic model [24]. In the analytical derivation
of these models, it was assumed that the spike generation
and the utilization of synaptic resources are conditionally
independent of each other. Although this is not wrong in
principle, it limits the applicability of these approaches to
other synaptic models that do not satisfy this condition. The
proposed RL framework avoids this setback and therefore it
may applied to a wide class of synaptic models.

Values of D(·) depend on the time scale parameter τc.
It can be shown that the change in distance due to spike
insertion and displacement is inversely proportional to τc
[38]. In simple words, greater values of τc give rise to smaller
values of distance between the spike trains. Since the distance
measure plays a critical role in the introduced framework,
the effect of τc on the performance is investigated. The
simulations are repeated with values of τc: 5, 10, 15, 20
and 25 msec with five neurons in the hidden layer and
at W at five msec. As long as τc > τrefr and τc 
 L,
no significant influence on the performance is observed.
Otherwise, that is, either at τc < 7 msec or τc > 25 msec
in the proposed setup, the reward values δRwd are too large
(or too small) to correct the direction and the update rate
properly. Therefore, the performance turns to be critically
stable. This can be compensated by changing the scaling
factor μ correspondingly. Similar limitation was reported in
[15] as the Gaussian filtered version were used instead of the
exponential ones as smoothing filters for the spike trains. The
restrictions made on τc here do not limit the usage of the
learning framework.

The values of α and μ are relatively related. α adjusts
the range of the reward signal. Specifically, it adjust the
minimum and the maximum values of the reward values
between the zero and one depending on the span of
the distance values. Corresponding to this range, μ either
amplifies or reduces the effect of the δRwd on the learning rate
η. Thus, the overall performance can be slightly sensitive to
certain combinations of α and μ. This sensitivity is, however,
changes depending on the input data set because the key
player is the range of the distance D values. For example,
when the distances between the network responses and their
corresponding reference spike trains vary between 5 and 30,
the values of α and μ are chosen as reported in the script.
When these distances vary between 10 and 150, α and μ
should be differently selected. In general α is selected to make
the range of Rwd closer to unity. Other values are to be
adjusted accordingly.
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Figure 6: Time course of dynamic synaptic strength. 〈S(t)〉 is the time average of the synaptic strength of a synapse over all the time steps
in one episode. Values are normalized between zero and unity. (a) The average dynamic synaptic strength for untrained excitatory (Exc.)
and inhibitory (Inh.) synapses (smoothed). (b) The average dynamic synaptic strength for trained excitatory (Exc.) and inhibitory (Inh.)
synapses (for clear illustration of the lines, y-axis is on a logarithmic scale).

5. Discussion

Developing this framework is basically motivated by the
need of a proper and simple learning algorithm for the
spiking networks that utilize dynamic synapses. In these
networks, the synapses are not represented as weighting
constants. Hence, altering the synaptic response via the
classical backpropagation or the δ-rule is not appropriate
[17]. Moreover, the analytical derivation, for example in [40]
and other similar studies are based, to a certain extent, on the
assumption that the neurotransmitter release is independent
of the spike generation process at any particular time.
Although this is not wrong as an assumption, it limits the
application of their techniques from being extended for other
synaptic models, in which the probabilistic nature of the
neurotransmitter release is only responsible for the spike
generation [13, 24].

In the study at hands, a framework is proposed to direct
the tuning process to the hidden synaptic parameters instead
of the scaling synaptic weight. Investigating the behaviour
of the synaptic dynamic strength from Figure 6 gives more
insight into the influence of the learning framework pro-
posed here. As seen from the time evolution of the synaptic
strength in case of the untrained synapses, only the range
of fluctuation is affected by convergence. For the trained
synapses, the synaptic strength shifts to a completely new
dynamic regime at convergence. This is valid for both the
excitatory and inhibitory synapses. Apart from the exact
numerical values, this behaviour indicates that the learning
framework proposed here is able to regulate the dynamic part
of the synaptic response and to capture the required input-
output relation.

As for the XOR computations, comparing our results to
the count of correct hits reported for example in [17] may be
performed in a further study. Accounting for the temporal
features in the output is a key issue that distinguishes the
framework presented in this study from former ones. The
output of the network here is highly characterized by its
temporal contents. A distance measure that accounts for
the statistical features of the compared signals, for example,
stochastic event synchrony measure [10], may represent an
added value to the represented framework. Determining
which distance measure to use is a research point to be
tackled in a future study.

The detected self-organizing behaviour for the tuned
parameters suggests that the synaptic dynamics encode the
statistical features of the interspike intervals implicitly. In
other words, the temporal information embedded within
input spike trains are encoded in the dynamics of the
synaptic connections. This demonstrates the central role of
the implemented learning framework not only in realizing
the required computation, but also to capture the input
temporal information and to store it within the synaptic
dynamics.

The availability of the reference spike train along with
holding the reward value from previous trial require a
memory in the simulated neural system. This does not
represent a problem in simulation environments, since com-
puters are equipped with enough computational resources
to accomplish this. However, this raises an important issue
when the biological counterparts are under investigation.
Are biological neural systems able to provide such reference
outputs and keep some kind of traces to indicate the previous
success (or failure) in generating their recent outputs? There
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is no means to check whether there is an ability to generate
a reference output; however, there are evidences that neural
systems keep traces about the correctness of the recent neural
actions; the detection of the so called P300 signal in brain-
computer interface experiments is a direct example of such
indication; see, for example, [35] for a recent review. This
signal is a specific form of electroencephalogram (EEG)
waves and is used as a measure of cognitive function in
decision-making processes. The mechanism underlying the
generation of such signal is not clear, and their existence
suggests, however, that neural systems compare their planned
response to the required, that is, correct, response. This sheds
some light on the plausibility of the proposed framework.

Intuitively, the introduced framework is not confined to
the Markram-Tsodyks synaptic model. It is applicable to a
wide range of dynamic synaptic models that satisfy the main
assumption of underlying finite-impulse response dynamics;
see, for example, [24]. Besides, the estimation of the reward
signal does not presume certain characteristics of the synap-
tic model. Based on this sense of generality, the approach
presented here is useful in cases where stochastic, biologically
plausible or complex representations are required in the
simulation [13, 14]. Being able to capture the XOR com-
putation supports using this approach for tasks that require
intuitively signal processing and computational capabilities.
Considering the simple mathematical implementation of
the update rule and calculation of the reward values, this
framework can be used as an online adaptive scheme for
controlling and tuning networks performance.

This study is an introductory case to be followed in
order to extend the presented approach and to investigate it
with larger networks that may comprise multihidden layers.
Besides, it is to be tested in achieving more complex tasks
than the XOR problem. Also, the use of other neuronal and
synaptic representations still represents a coming task to be
considered. Besides, the algorithm has not been proven to
be optimal in the sense of learning speed or convergence to
minimal error, it may be amenable to improvements. The
stability analysis represents an open question as well; this
analysis should be directly related to the adopted synaptic
model as well as to the value function for the reward signal.

6. Conclusion

In this study, a learning framework is presented. It is based on
the Hebbian/anti-Hebbian concepts of updating the values
of the parameters affecting the synaptic dynamics. It is
controlled via an episodic reward signal derived from the
comparison between the outputs of the network and refer-
ence spike trains. The network with its synaptic dynamics
are able, through the introduced learning algorithm, to
implement the required nonlinear function of the XOR
computations. By entertaining the hypothesis that certain
mechanisms within biological neural systems may be viewed
as learning via rewarding [8, 9] the biological plausibility
of the approach is a main aspect in this study consider-
ing machine learning as a main target. In other words,
and within the class of error-driven learning models that
have some probability of being neurobiologically relevant,

the proposed approach presents an alternative to classical
approach of applying reinforcement learning to modulate
synaptic weights. As such, it brings models for reinforcement
learning closer to plausible models of unsupervised learning
while realizing the Hebbian perspectives. Follow-up studies
are planned to investigate the learning performance of
the introduced framework with other synaptic models.
Moreover, it remains to be seen if the introduced framework
might be used to extend the storage capacity of a network in
terms of the number of input patterns that can be stored and
retrieved.
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[30] T. Natschläger, W. Maass, and A. Zador, “Efficient temporal
processing with biologically realistic dynamic synapses,” Net-
work: Computation in Neural Systems, vol. 12, no. 1, pp. 75–87,
2001.

[31] C. M. A. Pennartz, “Reinforcement learning by Hebbian
synapses with adaptive thresholds,” Neuroscience, vol. 81, no.
2, pp. 303–319, 1997.

[32] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate
of prediction and reward,” Science, vol. 275, no. 5306, pp.
1593–1599, 1997.

[33] H. S. Seung, “Learning in spiking neural networks by rein-
forcement of stochastic synaptic transmission,” Neuron, vol.
40, no. 6, pp. 1063–1073, 2003.

[34] R. S. Sutton and A. G. Barto, Reinforcement Learning, TheMIT
Press, 1998.

[35] M. Teixeira, M. Castelo-Branco, S. Nascimento, and V.
Almeida, “The p300 signal is monotonically modulated by
target saliency level irrespective of the visual feature domain,”
Acta Ophthalmologica, vol. 88, no. s246, 2010.

[36] M. V. Tsodyks and H. Markram, “The neural code between
neocortical pyramidal neurons depends on neurotransmitter
release probability,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 94, no. 2, pp. 719–
723, 1997.

[37] R. Urbanczik and W. Senn, “Reinforcement learning in
populations of spiking neurons,” Nature Neuroscience, vol. 12,
no. 3, pp. 250–252, 2009.

[38] M. C. W. van Rossum, “A novel spike distance,” Neural
Computation, vol. 13, no. 4, pp. 751–763, 2001.

[39] M. C. W. van Rossum, G. Q. Bi, and G. G. Turrigiano, “Stable
Hebbian learning from spike timing-dependent plasticity,”
The Journal of Neuroscience, vol. 20, no. 23, pp. 8812–8821,
2000.

[40] X. Xie and H. S. Seung, “Learning in neural networks by
reinforcement of irregular spiking,” Physical Review E, vol. 69,
no. 4, Article ID 041909, 10 pages, 2004.

[41] R. S. Zucker and W. G. Regehr, “Short-term synaptic plastic-
ity,” Annual Review of Neuroscience, vol. 64, pp. 355–405, 2002.


	Introduction
	Models
	Neuronal Model
	Synaptic Model (STDP)

	Reinforcement Learning Framework
	Reward Signal
	Mapping the Simulation Setup to an RL Scheme
	Hebbian Update Rule
	The Reference Spike Train

	Eligibility Traces

	Simulation and Results
	Discussion
	Conclusion
	References

