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This study was designed to determine the effects of dietary oil and feed withdrawal treatments on fatty acid composition of
phospholipids of triacylglycerol in pars costalis diaphragmatis muscle and subcutaneous fat from the brisket. A 2 X 3 factorial
experiment was conducted with crossbred steers with an initial body weight of 280.5 + 5.8 kg. Steers were fed either a control or
an oil containing diet where 5% of the control diet was replaced with an equal mixture sunflower and flax oil while undergoing
one of three feed withdrawal treatments: no withdrawal, a single 48 h withdrawal before initiation of fattening at one year of age,
or 48 h withdrawal at 8 wk intervals from weaning to initiation of fattening. At time of processing samples of muscle and fat were
obtained and analyzed to determine fatty acid composition. Disproportionate distribution of the fatty acids was observed by diet,
feed withdrawal regimen and whether the sample was from muscle or fat. Differences are discussed in detail, and our data suggests

a special function for the fatty acids that accumulate in specific positions of the triacylglycerol due to treatment.

1. Introduction

The discovery of the anticarcinogenic, antiadipogenic, and
anti-inflammatory properties of fatty acids led to studies to
enhance the occurrence of these functional fatty acids such as
conjugated linoleic acid (CLA) in human foods. Enhancing
the naturally occurring CLA in ruminant products to provide
naturally formed CLA as opposed to synthesized CLA to
produce a value added agricultural product was among the
objectives. However, concerns have been raised [1] that the
efficacy of synthetic CLA may be marginal with regards to
decreasing the size of adipose tissue in humans relative to
that in other species (swine; [2]) and that the extent of
the increase in natural products may be less adequate to
meet the requirements. Yet, the discovery of the anticarcino-
genic properties CLA was from beef extracts [3], which
were perhaps not particularly in high concentration. When

Gaullier et al. [4] compared the effects of CLA free fatty
acid and CLA- triacylglycerol (TAG), they found that while
both forms of CLA were effective over the 12 m period of
the study. Although a difference between the free fatty acid
and the TAG was not significant, the CLA-TAG consistently
resulted in greater weight loss and decreases in body mass
index and body fat mass. Similarly, either a decrease in
inguinal fat content [5] or a decrease in fat cell number in
the inguinal fat was noted [6], in rats fed beef from cattle fed
dietary oil to increase the CLA content of the beef fat, even
though the amount of CLA provided from the beef was lower
than the amount of synthetic CLA in the test diet. These
observations appear to suggest that the consistent positive
effect of the CLA in triacylglycerol (synthetic compound or
as beef fat) may be related to the CLA at the sn2 position.
The fatty acid in the sn2 position is not hydrolysed by either
pancreatic lipase or lipoprotein lipase in the digestive tract
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or extrahepatic tissues, respectively [7], but is carried to the
liver for further metabolism [8]. Chardigny et al. [9] studied
the location of labelled CLA in TAG at either the sn1/3 or sn2
position, and found that the label was recovered in oxidation
products when CLA was in the snl/3 position but was
found in the carcass when the labelled CLA was in the sn2
position. These authors found that dairy CLA was uniformly
distributed among the three positions of milk fat, as did
Paterson et al. [10], who found that bioformed CLA from
sheep fed safflower oil aggregated to greater proportions at
the sn1/3 position in muscle fat. However, Mir et al. [11]
found that muscle fat from beef steers fed sunflower oil
had greater proportions of CLA at the sn2 position, but the
amounts were greater when the dietary oil incorporation
level was 3% of diet rather than 6%. In order to extend
the understanding of the effects of diet and feed withdrawal
(FW) on fatty acid distribution to phospholipid (PL) or
TAG and in TAG to the sn2 or snl/3 positions, the fatty
acid composition of PL, TAG, and sn2 in fat from muscle
(Pars costalis diaphragmatis; PCD) and subcutaneous (SQ)
fat needed determination. The present study was conducted
with the objective of determining the fatty acid composition
of phospholipids (PL), TAG and sn2 position and to calculate
the proportion of the fatty acids at the sn1/3 position. The
fat was obtained from steers in an experiment [12] where
they were fed either a control (CON) or an oil (OIL) diet
where 5% of the diet was replaced with equal amounts of
sunflower and flax oils. These diets were fed to steers in three
FW treatments, no FW, single FW (FW X 1), which occurred
at yearling age for 48 h and a multiple FW (FW X 4), where
the steers were denied feed for 48 h every eight weeks between
weaning and one year of age.

2. Materials and Methods

2.1. Animals and Diets. A total of 72, spring born, European
crossbred (with Hereford, Angus, and Charolais genetics),
steer calves were obtained upon weaning (280.5 + 5.8kg)
and housed in the Individual Feeding Barn of the Lethbridge
Research Centre following the guidelines of the Canadian
Council on Animal Care [13]. The study was started
after receiving approval of the Institutional Animal Care
Committee (Approval no. 0727). The vaccination protocol,
treatment assignment, and diets fed to the steers have been
provided in He et al. [12]. The six treatments applied to the
steers in a 2 X 3 factorial arrangement (Figure 1, [14]; in
press), where each of two diets was provided to the steers
undergoing one of three FW treatments, where each FW
lasted for 48 h, but water was always available.

The steers were fed either the CON or OIL diet. In the
OIL diet 5% of the diet was replaced with an equal mixture
of flax and sunflower oil. The oil replaced the steam rolled
barley in the diet [12]. The FW treatments were no FW,
single FW (FW X 1 [15]) for 48 h at yearling age, just before
initiation of the fattening phase, or 48h FW every 8wk,
which occurred four times (FW X 4), between start of the
experiment and until they were approximately a year in age,
and before the transition to the fattening phase was initiated.
Each FW was started on the weigh day after recording the
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BW and the feed bunks were cleaned for all the steers. Only
those predetermined to undergo FW did not receive the feed
after the BW was recorded, while steers in other treatments
were provided feed. After the 48 h of FW, the steers in all
treatments were provided with the respective diets.

The animals were fed once daily with total mixed rations.
Animals were weighed every 4 wk through the growing phase
and every 3wk during the fattening phase. At the end of
the trial when steers were judged visually by the commercial
abattoir purchaser as carrying adequate fat to yield 57%
lean meat, the animals were weighed on full feed on two
consecutive days and shipped on full feed and were processed
at a commercial abattoir [12]. At processing, samples of PCD
and SQ from each animal were collected and placed on ice
and transported to the laboratory. Fat from the PCD and
SQ was extracted as described in He et al. [12]. The fat
was separated into triacylglycerol (TAG) and phospholipids
(PL), and the TAG from each sample was digested so that
the monoacylglycerol (sn2MAG) could be collected and the
fatty acid composition of each fraction could be determined.
The relative fatty acid composition of sn2 and that at the
snl/3 positions of the TAG was calculated from the fatty acid
composition of the TAG and the sn2.

2.2. Separation of Lipid Classes. Total lipid was fractioned
into TAG and PL using column chromatography to separate
the fractions [16]. Standard TAG and PL were separated by
column chromatography, and the separated fractions were
then resolved by thin layer chromatography to ascertain the
fractions and that separation was appropriate. The affirma-
tion of separation was performed by using TLC (Analtech
Uniplate Silica Gel 250 ym plates, 20 x 20 cm; 75 Blue Hen
Drive, Newark, DE, 19713), with hexane/diisopropyl ether
(75:25; v/v) as the solvent. Separations were compared with
20 uL of 10 mg/mL trioleoylglycerol (Sigma-Aldrich Canada,
Oakville, ON, Canada) plated as a reference standard.
Briefly, the fractions were separated using silica gel columns,
which were constructed using 10 mL micropipette tips.
Approximately 1.3 g of conditioned silica gel (Alltech 63—
200 um; 2051 Waukegan Road Deerfield, IL, 60015) dried
overnight at 160°C then mixed with ultra high purity (UHP)
water in a 95:5 ratio and sandwiched between conditioned
cotton (cotton was soaked in CHCI;: CH30H: C¢Hiy
1:1:1 overnight, changing solvent every 8 h, then air dried).
A solution of fat from each sample in toluene to a concen-
tration of 100 mg/mL was prepared and 1 mL was loaded
on to the column. Immediately following the loading of the
sample onto the column, 1 mL of solvent (hexane/diisopro-
pyl ether 85:15 v:v for PCD samples and 80:10 v:v for
SQ) was added to the column and held for exactly two
minutes. For samples from the PCD, a 2 mL initial solvent
rinse following the loading phase was required to remove
unwanted residue. Following the solvent wash (to discard the
residue) for the PCD, all fat samples were eluted with two,
3mL portions of the respective solvents. After elution, the
tip was washed with 400 uL of toluene. All portions of the
elution were collected into a preweighed glass vial. Solvent in
the vial was later dried under a stream of N and the weight
of TAG was recorded.
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Further, the PL was retrieved from the column by eluting
the column with two 3 mL rinses of di-isopropyl ether as the
solvent for the PCD samples and methanol for the SQ sam-
ples. The eluted solvent with the PL from the sample was col-
lected into a preweighed glass vial and solvent was removed
under a stream of N. All TAG and PL samples were stored in
CHCL; at —20°C.

2.2.1. Digestion of TAG with Pancreatic Lipase. Pancreatic
lipase (Lipase from porcine pancreas, Type 1I; Sigma-Aldrich
Canada, Oakville, ON) was used to generate sn2-MAG from
TAG [10]. Two milligrams of dried TAG wWERE suspended
in 500 uL of pancreatic lipase buffer [1 M Tris-HCI, pH 8,
containing 10% gum Arabic (wt/v) and 0.23 M CaCl, (wt/v)]
by sonication. Exactly 500 uL of pancreatic lipase buffer con-
taining 8 mg pancreatic lipase/mL was added to the TAG
suspension; the mixture was vortexed for 30 s and incubated
at 37°C for 1hr in a shaking water bath. The reaction
was stopped with 500 uL of 0.1 N acetic acid, and the lipid
was extracted three times with 2mL diethyl ether. Each
extract was passed through a small column of anhydrous
Na,SO4, combined, and then evaporated to dryness under
N. The extracted lipid was redissolved in 200 uL CHCl; and
applied to boric acid TLC plates (Analtech Silica Gel G 5%
(wt/v) boric acid, 250 ym plates, 20 X 20 cm; 75 Blue Hen
Drive, Newark, DE, 19713). A reference standard of 20 uL
of 20mg/mL of 2-Oleoylglycerol (Sigma-Aldrich Canada,
Oakville, ON, Canada) in CHCIl;5 solution was applied to
each plate. In order to have adequate sample, two spots were
applied for each sample. Lipids were separated by one ascen-
sion of CHCIl;/CH3;COCH; (88/12, v/v). The sn2-MAG
standard was visualized using iodine vapor, so that the sn2
MAG from the samples could be detected for elution and
collection.

2.2.2. Elution of Monoacylglycerol from Silica Gel. The silica
gel containing the fraction of interest (sn-2 MAG) was
removed from the TLC plate using a razor blade scraper and
then transferred into methanol-washed test tubes (a tube for
each sample). Lipids were eluted from the silica by extracting
twice with 5mL and once with 2mL of CHCls. The slurry
was shaken vigorously and centrifuged at 400 xg for 3 min.
The eluted solvent with the sn2-MAG was passed through
a column of anhydrous Na;SO4. The sn2-MAG separated
by thin layer chromatography from the two applications for
each sample were combined and dried under N and then
stored in 1 mL of toluene under N at —20°C.

2.3. Fatty Acid Analysis

2.3.1. Methylation of Samples. Samples of sn2-MAG, PL, and
TAG were thawed and allowed to equilibrate to room tem-
perature, then 10uL of 5.96 mg/mL C 19:0 was added as
an internal standard and the samples were methylated [17].
Briefly, 1 mL of sodium methoxide (0.5M) was added to
the sn2-MAG samples, while 2.5 mL of sodium methoxide
were added to samples of TAG, vortexed for 30 seconds, and
then placed in a water bath at 50°C for 10 min. The part-
ially methylated samples were removed and cooled to room

temperature. To the cooled sample 0.5mL or 1 mL Boron
trifluoride (14% in CH3OH) was added to sn2-MAG and
TAG samples, respectively, followed by vortexing for 30 sec-
onds and then returned to the water bath at 50°C for an addi-
tional 10 min. After which the samples were removed, and
cooled to room temperature and 2.5 and 5 mL UHP water
was added to the sn2-MAG and TAG samples. The samples
were vortexed, then 2.5 and 5 mL Hexane were added to sn2-
MAG and TAG samples, respectively, and vortexed for 15s.
The hexane layer was allowed to separate and was transferred
into autosampler vials, capped, and stored at —20°C.

2.3.2. Gas Chromatography. The methylated sn2-MAG, PL,
and TAG were quantified by a gas-liquid chromatograph (GC
System 6890, Hewlett-Packard, Mississauga, ON, Canada)
equipped with a flame ionization detector and an SP-
2560 fused-silica capillary column (100 m with 0.2 mm film
thickness; Supelco Inc., Oakville, ON, Canada). Samples
were loaded onto the column via 1L splitless injections
[18]. The parameters for separation are as provided by He
et al. [12]. The composition of sn2-MAG and TAG for each
fatty acid was calculated from the formula of Paterson et al.
[10] where Sn1/3 wt % = (TAG wt%Xx 3—sn2-MAG wt%)/2.

2.4. Statistical Analysis. Data from the experiment were
analysed by using PROC MIXED [19] as a completely
randomised design. The treatment arrangement was as a 2 X
3 factorial experiment with each animal as the experimental
unit and the treatment factors were the two diets and the
three FW treatments. All values are provided as mean + sem
and differences among treatments were declared as signi-
ficant at P < 0.05 and 0.05 < P < 0.1 was considered a trend.
Differences between proportion of a fatty acid at sn2 and
snl/3 or PL and TAG were determined as difference between
two means with unequal variances [20].

3. Results and Discussion

The fatty acid composition of the fat from the PCD and SQ
has been reported previously [12]. It was noted that although
no trans C18:1, C18:2, CLA or elongated n3 fatty acids
occurred in the diet, substantial amounts were found in mus-
cle and SQ, thus their positional occurrence was of interest.

3.1. Pars Costalis Diaphragmatic

3.1.1. Saturated Fatty Acids. The proportional composition
of the saturated fatty acids, C14:0, C15:0, C16:0, C18:0, and
C20:0, in PL, TAG, and in sn2 and snl/3 of fat from PCD,
is presented in Table 1. Diet or treatment did not affect the
proportions of C14:0, but greater (P < 0.05) proportions of
this fatty acid were found in TAG than PL and at the sn1/3
than the sn2 position. Although C15:0 was present in only
small amounts in the fat of the PCD, greater (P = 0.0545)
proportions were observed in the PL of CON fed steers
than those fed the OIL diet. Further, more (P < 0.05) C15:0
occurred in PL than TAG and at sn2 than the sn1/3 position.
Dietary OIL suppresses de nova synthesis [21, 22] of C16:0,



Journal of Lipids

71 = 4 [0T] Te 10 UOSIAE] UT S 7/(%IMDVINTUS — € X %IMDVI) = %IM¢/TUs,

*SISeq SI S UO ST JUAIU0d JeJ [Z]] ‘T8 39 9 Ut partoday,

9€06°0 1090°0 IvL¥°0 ¥Io+v¥¥0—- SI'0+090— ¥00+6I0— 0CT0F0S0— 91'0+790— 800+¢S€0— ¢/Tus
07€6°0 16€0°0 19%5°0 620+ SC'1 €0+ TSl 600+ 020 0+ I¢'1 1€0+ 291 91°0 960 cus .
0£01°0 cL0T0 89¢€°0 100+ €C'1 1000+ 1T°0 10°0+ 010 100+ 010 100+ 210 S00°0 +01°0 OVL 0:0¢
GS6L0 8LL¥°0 £0€0°0 20’0 F 020 20’0 F 020 20’0+ 810 0’0+ 810 100 F91°0 ¢0'0FSI°0 d
6651°0 0780 10000 8STFT90T  PETFO0S8L  €CTFYFBL  P6TFCO0L  €LTFIPL  €F1FS6€l ¢/us
(el 8608°0 So¢T0 9TCT+09°1¢C €TTF6V'CC 66T +TLCT 18T+ CI'9¢ 9¢'T F 6¥7°¢C LT'T +8LCC cus .
0¢ze0 L616°0 1000°0 G680 + S6°0C 640+ ¢861 LI'T + 6861 98°0 F 6L°C1 LTT +99'L1 ¥0'T + 0691 OVL 081
1€91°0 €159°0 17000 IITF6£07  0SOF806L  690F 8061  SSOFOSIL  LETFEOLL T80 F 1981 1d
€T5€°0 8SEH°0 0100°0 SCTF8097  6STFS9FC  PLTFQYST  TLTFOIST  ITTFET6T 651 F80°TE ¢/us
001€0 6998°0 €665°0 L1I'C+ L6°9C LTC +178'8C 8L'T ¥ ¥€'1C 81C+SI'0¢ 8CC +78'8C V1 +S¥'LC cus .
LT¥9°0 SS01°0 1000°0 18°0 +8€9¢C 8%°0 + €€°6¢C G680 +€0°LT 18°0 + T8'8¢ 0L°0 + 60°6C 68°0 + 05°0¢ OVL 091
[45°r4l0) 08080 1000°0 9¢'T ¥ 91°€C 07’1 *+ S€'1C 8L’ 1T F ¥¢€'1C 0%'T + 19°6¢C 0%'T + 85'8¢C IS T+ 29C Td
¥0€S°0 66690 66€L°0 80°0 + T0'0— YI'O+ 110 SI'0+100— SI'0F61°0 LT'0+ €00 80°0 + €0°0— ¢/1us
7991°0 8609°0 9TLY'0 7I'0+991 LTOFVPL Y10+ ¥S'1 €0+ 201 6C0+ 691 810 F IG'T cus .
wLTO 8€80°0 e6e0 €00FSS0  VOOFSSO  €O0OFISO  VOOFLFO  €00F8S0 €00 F8F0 OVL ot
142€°0 8/81°0 S¥<0°0 80°0 * 060 80°0 ¥ 00'T £0°0+ 180 900+ €60 L0'0F 0T’ 600+ S0'T Td
€108°0 8G6¥°0 ¥208°0 L9°0 F9¢°¢ 19°0 + 99°¢ 160+ 16°¢ LT0+98°C IS0+VvL¢ LV'0+79°¢ ¢/1us
£9T8°0 €186°0 <S09¢°0 9¢€0 +¥9°C 650 F¥¥'C GG'0+8LC 9€'0 +9¢C 600+ €ST 1€°0+6€CT cus .
¥162°0 1844\ ¥L1T0 8CT°0 F LE'E €T0FCee 170+ 9C°¢ 910 ¥ 69°C 8T0F ¥¢'¢ [co+el¢ OVL 0F
86960 €819°0 979¢°0 SI'0+7S'1 110+ 991 0T°0+ 651 120+09'1 VI0+LL1 SI'0+6SL'1 1d
(% M) pe Aneg
8LL°0 0£6°0 060°0 S80FFI'L 8L0F€L9 0L0F65°L 68°0 ¥ 8¢'8 780 F LE8 SL0FO0I'8 1(%) 3ed
X 331 Jor1 X X o X X o
Md xR EMMO& Ia P X Md I ‘ %m MAON ¥ X Md wo x %M Md ON - oy

"SIUBWIRAI] Y 8% 10J (¥ X MA) M § A19A3 [emeIpYIIM
Padj pue (T X M) [EMBIPYIM PadJ [3UIS ‘(M ON) [EMBIPYIIM P3J OU JO JUO UI PUE JAIP JO 094G Je [I0 JOMOJUNS PUB [I0 Xe[j JO aImxTw [enba ue jo pasodwod [10 L1e3a1p paj $1991s
399q J0 (Dd) suvwidviydvip syvisod sivd 1) WOIJ 1] Jo ¢/TUs pue (gus) Jo1d4[Souowr z-us 18 pue (Hy7,) [01024S[4oe1n (1q) prdijoydsoyd jo uonisodwod proe £31ej pajernjes ;[ 414v],



Journal of Lipids

thus lesser (P = 0.001 to 0.0001) proportions of this fatty
acid were observed in PL, TAG, and at the sn1/3 position, but
diet did not affect the proportion of this fatty acid at the sn2
position and the fatty acid was distributed evenly between PL
and TAG and sn2 and sn1/3. Contrary to C16:0, C18:0 in the
fat from the PCD was greater (P = 0.004 to 0.0001) in the PL,
TAG, and snl1/3 position of steers fed the OIL diet. Although
a treatment effect was not observed for sn2, greater (P < 0.05)
proportions of C18:0 were noted at the sn2 position than at
the sn1/3 in steers fed the CON diet but not in those fed the
OIL diet, which agrees with observations for beef fat [23].
The occurrence of C20:0 in PL of muscle of OIL fed steers was
greater (P =0.0307) than that in CON fed steers. The propor-
tions of C20:0 at the sn2 position were greater (P < 0.05) than
at snl/3 and FW increased (P = 0.0391) this fatty acid at the
sn2 location. The cause for this effect is not known, although
this fatty acid occurs mainly in animals and the significance
of its position in the TAG needs further study.

3.1.2. Unsaturated Fatty Acids. Table 2 shows the composi-
tion of the unsaturated fatty acids in fat from the PCD, of
steers and the proportional distribution between PL and TAG
and at the sn2 and snl/3 positions is provided. The OIL
diet fed to steers decreased (P = 0.0133 to 0.0042) C16:1¢9
in PL, TAG, and at the sn1/3 position without affecting the
sn2 position. However, the proportion of C16:1c9 at the
sn2 position was lesser (P < 0.05) than that noted for the
snl1/3 position and is similar to that reported previously [23].
C16:1¢9 increase was noted in PL of fat from the PCD in
steers that underwent FW (P = 0.0095).

Dietary OIL elevated (P = 0.0001) C18:1t9 in the PL,
TAG, and at the snl/3 position, with greater (P < 0.05)
proportions in PL than in TAG in OIL fed steers and at
sn2 versus snl/3 in CON fed steers. Although C18:1t11 was
found in relatively greater (P = 0.0001) abundance in PCD
of OIL fed steers, a preferred location with regard to PL or
TAG and sn2 or snl/3 was not observed in CON fed steers,
but in OIL fed steers a greater proportion was noted in the
TAG and sn1/3 positions relative to PL and sn2, respectively.
Interactions (P = 0.0557 and 0.0493) between diet and FW
treatments were observed for C18:1¢9 for PL and fatty acid at
the sn1/3 in the fat from the PCD because of decreases in this
fatty acid in steers fed OIL in the FW X 4 treatment relative
to that in steers fed the CON diet in the FW X 4 treatment.
Substantially greater (P < 0.05) proportions of the fatty acid
occurred at snl/3 than at sn2 as was also noted in MUFAL1
beef fat in the study by Smith et al. [23].

The C18:2t9¢11 was not found at the sn2 position, but
feeding the OIL diet resulted in increasing (P = 0.0001) this
fatty acid in PL, TAG, and snl/3, with similar proportions
being distributed to PL and TAG. Feeding the OIL diet to
steers increased (P = 0.0406 to 0.0001) C18:2n6 and C18:3n3
in PL, TAG, and sn1/3 without affecting sn2, but relatively
greater (P < 0.05) proportions of C18:2n6 were in PL than in
TAG and at the sn2 position than at the sn1/3 in concurrence
with previous studies [23]. With regard to the C18:3n3, its
accumulation at the sn2 was greater (P < 0.05) than at the
snl1/3, but differences in distribution between PL and TAG
were not observed.

The CLAc9t11 was greater (P = 0.0034 and 0.01 77) in PL
and at the sn1/3 position in PCD of OIL fed steers, while an
interaction (P = 0.0022) was observed for CLAc9t11 in TAG
where FW X 1 in OIL fed steers led to increases relative to
that in CON fed steers in the FW X 1 treatment. A preference
for PL relative to TAG was not noted for CLAc9t11, which is
similar to published data for lambs fed safflower oil [10] but
unlike their observation, a greater (P < 0.05) proportion of
CLAc9t11 was found at the sn2 position, which concurs with
observations in steers fed sunflower oil at the 3% of diet level
[11]. Similarly, CLAt10c12 was found to favour (P < 0.05)
the sn2 position relative to the sn1/3 position.

3.2. Subcutaneous Fat

3.2.1. Saturated Fatty Acids. In the SQ, tissue diet or FW
treatments did not influence distribution of either C14:0 or
C15:0 (Table 3) as was observed for the PCD; C15:0 was
found at higher (P < 0.05) proportions at the sn2 position
relative to the sn1/3 position. Decreases (P = 0.0022 and
0.0001) in C16:0 were observed in PL and TAG of the SQ
fat of steers fed the OIL diet, but differences in distribution
between PL and TAG or sn2 and snl/3 were not present.
Feeding the OIL diet to the steers increased (P = 0.0001) the
C18:0 content in PL and TAG, but the relative proportions
of C18:0 in sn2 and snl/3 were decreased (P = 0.0275) and
increased (P = 0.0521), respectively, when the OIL diet was
fed to steers in the FW X 4 relative to those fed the CON
diet in the same FW treatment. Further C18:0 tended to be
higher (P < 0.05) at the sn2 position relative to the snl/3,
as observed previously [23], and to TAG relative to PL. Diet
or FW effects were not observed for C20:0, but greater (P <
0.05) proportions were noted in the sn2 position of the SQ
fat than at the sn1/3 position.

3.2.2. Unsaturated Fatty Acids. In the SQ fat, feeding the
OIL diet to the steers led to decreases (P = 0.0712 to 0.039)
of C16:1¢9 in PL, TAG, and snl/3, with greater (P < 0.05)
proportions in the PL and sn1/3 position relative to TAG and
sn2, respectively (Table 4). In steers fed the OIL diet, the SQ
fat had elevated (P = 0.0001) levels of C18:1t9 and C18:1t11
in PL, TAG, and at sn1/3, but in OIL fed steers in the FW X 4
treatment greater (P = 0.042 and 0.003, resp.) proportion of
the two fatty acids was found at the sn2 position than in CON
fed steers. The C18:1¢c9 was increased in SQ of steers in the
FW X 4 relative to those in the no FW treatment. Generally,
as previously reported [11], C18:1c9 appeared in TAG and at
the sn1/3 position to a greater (P < 0.05) extent relative to PL
or the sn2 position.

As observed in the fat from the PCD of the steers,
C18:2t9¢11 was not found in the sn2 position, but steer SQ
fat was responsive to dietary oil and elevated (P = 0.0001)
levels of the fatty acid were present in the PL, TAG, and
snl/3, with greater (P < 0.05) proportions being found in the
PL, which was different from the observation in the PCD fat.
The C18:2n6 was increased (P = 0.0262) in steers fed the OIL
diet in the TAG and not in the PL, which is different from
what was observed in the fat from the PCD. Greater (P <
0.05) proportions of the fatty acid were found in the sn2 than
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TABLE 6: Summary table of the principal location of occurrence
of the fatty acids in fat from the pars costalis diaphragmatis (PCD)
muscle and the subcutaneous (SQ) fat from the brisket of steers fed
diets without or with n6 and n3 fatty acids.

Tissue Phospholipid  Triacylglycerol Sn2 Snl1/3
15:0 15:0
18:0
20:0
16:1¢9
18:1t9
PCD 18:1c9 18:1c9
18:2w6 18:2w6
18:3w3
CLAcOt11 CLAcOt11
CLAc10t12
EPA EPA
DHA DHA
15:0 15:0
18:0 18:0
20:0
16:1¢9 16:1c9
18:1t9
SQ 18:1c9 18:1c9
18:2w6 18:2w6
18:3w3 18:3w3
CLAcOt11 CLAcOt11
CLAc10t12 CLAc10t12
EPA EPA
DHA DHA

Fatty acids represented by number of carbons: number of double bonds in
either the cis (c) or trans (t) position.

at the sn1/3 position. Furthermore, C18:2n6 was elevated
(P =0.0079) at the sn2 position in SQ fat of steers in fed the
OIL diet, when they were in the FW X 4 treatment relative
to that of steers fed the CON diet in the same FW treatment.
The C18:3n3 fatty acid was increased (P = 0.0002 and
0.0001) due to dietary oil in the PL, TAG, but interactions
were observed for the proportions of this fatty acid at the
sn2 (P = 0.0021) and sn1/3 (P = 0.0153) positions due to
different effects in steers in the FW X 4 treatment. Generally,
greater (P < 0.05) proportions of the fatty acid were found in
PL and at the sn2 position. The differences in composition
of the PL with regard to composition of C18:2 n6 acids and
diet are in concurrence with those of Dannenberger et al.,
[24] for phosphatidylcholine from concentrate or pastured
cattle, while in contrast to their results for C18:3 n3 fatty.
Interactions (P = 0.0022 to 0.0475) were noted for
CLAc9t11 for PL and TAG and for distribution at sn2 and
snl1/3, which was largely due to differential effects in steers in
the FW X 1 treatment. The CLAt10c12 was elevated in PL in
SQ fat of OIL fed steers and was present in greater (P < 0.05)
proportions in PL relative to TAG. Although greater (P <
0.05) proportions of this fatty acid occurred in the sn2 than at
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the sn1/3 position, interactions (P = 0.0174 and 0.0155) were
observed for the distribution at the sn2 and sn1/3 position
due to the effect of FW X 4 and FW X 1, respectively. These
observations are in contrast to reports of Chardigny et al., [9]
for milk where CLA was distributed largely to sn1/3.

3.3. Elongated n3 Fatty Acids in Muscle and Subcutaneous Fat.
Table 5 summarises the distribution of EPA and DHA in the
PCD and SQ fat of steers fed the CON or OIL diet in the FW
treatments. However, neither diet nor FW affected either of
these fatty acids except for DHA in SQ at the sn2 position
where an interaction (P = 0.0225) was observed due to the
differential effects of FW X 4 in steers fed the two diets. In
both tissues, both EPA and DHA were found to greater (P <
0.05) extents in the PL and at the sn2 position relative to
that in the TAG and at the sn1/3 position. In concurrence
with the previous results, these elongated fatty acids diet only
marginally affected PL composition [24] despite the strong
effect on composition of the sn2 position.

In general, it can be agreed that most unsaturated
fatty acids favour the sn2 position [25], but C16:1 and
C18:1¢9 were found to occur in the snl/3 and the fatty
acid distribution results have been summarized in Table 6.
Unlike the reports of Chardigny et al. [9] and Paterson
et al. [10], CLA fatty acids occurred in the sn2 and not
in the snl/3 position in beef fat from PCD or SQ, which
is in concurrence with reports of Mir et al. [11]. This
difference in location in butter fat relative to beef fat may be
contributory to the absence of effect on body composition in
men provided butter with elevated levels of CLA [26]. The
relative greater appearance of the two CLA fatty acids at the
sn2 position in beef may signal a difference in efficacy, at
lower concentrations as has been observed in rat studies with
regard to effects on inguinal fat [5]. Further, the consistent,
greater, although nonsignificant, effect of CLA triacylglycerol
on body composition parameters relative to the free fatty acid
[4] may be due to the effect of the CLA moiety at the sn2
position and its resistance to hydrolysis in the intestine [7]
and its retention in the body [9].

4. Conclusion

Data from the study clearly indicate that provision of oil in
the diet affected PL, TAG, and snl1/3 fatty acid composition
to a greater extent than it did to that of the sn2 position.
The independence of the fatty acid composition of the
sn2 position suggests that the position attracts only certain
number of each type of fatty acid. It was only in the case of
the two CLA that an interaction between diet and FW was
observed and FW X 4 was found to elevate these fatty acids
at the sn2 location in steers fed the OIL diet. Usually increases
of a fatty acid at the sn1/3 position led to increases of the fatty
acid in the TAG. Although diet altered fatty acid composition
of PL, the effect was not always mirrored in the alterations to
composition of sn2.
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