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ABSTRACT

Angiotensin II type 1 receptor (AT1R) has a patho-
physiological role in hypertension, atherosclerosis
and heart failure. Type 2 diabetes is hyper-
insulinemic state and a major risk factor for ath-
erosclerosis and hypertension. It is known that
hyperinsulinemia upregulates AT1R expression
post-transcriptionally by increasing the half-life of
AT1R mRNA, but little is known about the mech-
anism of this effect. In the present study, we first
identified AT1R 30-UTR as a mediator of insulin
effect. Using 30-UTR as a bait, we identified
through analysis of insulin-stimulated cell lysates
by affinity purification and mass spectrometry HuR
as an insulin-regulated AT1R mRNA binding
protein. By ribonucleoprotein immunoprecipitation,
we found HuR binding to AT1R to be increased by
insulin. Overexpression of HuR leads to increased
AT1R expression in a 30-UTR-dependent manner.
Both insulin and HuR overexpression stabilize
AT1R 30-UTR and their responsive element within
30-UTR are located within the same region. Cell
fractionation demonstrated that insulin induced
HuR translocation from nucleus to cytoplasm
increased HuR binding to cytoplasmic AT1R
30-UTR. Consistent with HuR translocation playing
a mechanistic role in HuR effect, a reduction in the
cytoplasmic levels of HuR either by silencing of
HuR expression or by inhibition of HuR transloca-
tion into cytoplasm attenuated insulin response.
These results show that HuR translocation to cyto-
plasm is enhanced by insulin leading to AT1R

upregulation through HuR-mediated stabilization
of AT1R mRNA.

INTRODUCTION

Biological actions of angiotensin II, a peptide hormone
central in regulating cardiovascular structure and
function, are mediated by its interaction with specific cell
surface receptors expressed on the cell membranes of car-
diovascular and renal cells (1). Angiotensin II has two
receptors that confer its effects: the widely expressed
type 1 receptor (AT1R) is a G-protein-coupled seven
times membrane spanning receptor that mediates most
of the deleterious remodeling effects of angiotensin II,
while the angiotensin II type 2 receptor is much more
restricted in its expression and counteracts most of the
cellular effects of AT1R receptor (2). Acute stimulation
with angiotensin II regulates electrolyte homeostasis
and vasoconstriction, increasing blood pressure, while
chronic stimulation promotes adverse remodeling in the
myocardium and vasculature. AT1R expression is
upregulated in the healing phase of myocardial infarction,
in failing myocardium and in atherosclerotic arteries.
Consistent with the central pathophysiological role of
AT1R, pharmacologic therapy that reduces the activity
of AT1R has been shown in numerous clinical trials to
be beneficial in attenuating the progression of atheroscler-
osis, heart failure as well as chronic renal disease.

Type 2 diabetes mellitus (T2DM) is an important risk
factor for atherosclerosis and the majority of diabetic
patients die of cardiovascular disease (3). The renin–angio-
tensin system (RAS) has a central role in the development of
vascular disease in type 2 diabetes (4). Attenuation of RAS
activity has been shown to be beneficial in the setting of both
primary and secondary prevention of new ischemic events
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andmortality (4). It is possible that T2DM is linked to RAS
via hyperinsulinemia as it is a typical feature T2DM.
Hyperinsulinemia has been associated with the increased
activity of AT1R. In atherosclerotic regions of arteries, the
productionof angiotensin II and the expressionofAT1Rare
significantly increased (5). In carotid endarterectomy
samples derived from diabetic or non-diabetic patients,
AT1R expression is increased in comparison to the
samples from non-diabetic patients. This effect is also seen
in isolated vascular smooth muscle cells (VSMCs), in which
the baseline expression of AT1R in cells retrieved from
patients with T2DM is higher and insulin response
stronger when compared to non-diabetic subjects (6).
These results suggest clinically meaningful relationship
between AT1R receptor expression and insulin levels.

Post-transcriptional regulation of AT1R is the predom-
inant mechanism by which estrogen, progesterone, insulin,
statins and angiotensin II exert their effect onAT1R (7–12).
Prior data shows that insulin regulates AT1R by stabilizing
its mRNA (11). However, the mechanisms by which insulin
regulates AT1R mRNA stabilization remain obscure. We
herein identified the 30-UTR of AT1R as a mediator of this
response. In our assays with insulin-stimulated lysates, we
found HuR protein to bind 30-UTR transcript. HuR (also
known as ELAVL1), a member of the ELAV (embryonic
lethal abnormal vision) RNA-binding protein (RBP)
family, is an ubiquitously expressed protein that has been
shown to have role in regulation of cancer (13), hypoxic (14)
and genotoxic responses via mRNA stabilization and
effects on translation (15). Insulin sensitivity of the HuR
interaction with AT1R 30-UTR was confirmed by
ribonucleoprotein immunoprecipitation (RNP-IP), gel
shift and affinity purification experiments. Our data
suggest that HuR mediates the insulin effect on AT1R ex-
pression via mRNA stabilization.

MATERIALS AND METHODS

Cell culture, luciferase assay and protein extraction

HEK293 cells were grown in DMEM that was supple-
mented with 10% fetal bovine serum (FBS), with ampicil-
lin/streptomycin, and glutamine. Cells were used for 6–10
passages before replacement with early passage stocks.
Coronary artery VSMCs were purchased from Clonetics.
Early passage VSMC were cultured on smooth muscle
growth medium-2 with 5% FBS. Constructs were transi-
ently transfected in HEK293 cells using a standard
Fugene 6 protocol (Roche). Small interfering RNAs
(siRNAs) (30 nM) for HuR, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), Tudor and nuclease domains
containing protein p100, AU-rich binding protein (AUF1)
and negative control siRNAs (Ambion and Qiagen) were
transfected using Lipofectamine 2000 reagent (Invitrogen)
according to manufacturer’s instructions. HEK293 cells or
VSMCs were serum starved for 24 h before stimulation by
75 nM of insulin for 12 h unless otherwise indicated. Cells
were harvested 24–48 h after transfection and firefly
luciferase activities were measured using the Luciferase
Assay System (Promega). The luciferase activity was
normalized to renilla activity or total protein content.

The luciferase results were calculated from an average of
three independent experiments performed in triplicate for
each construct. Leptomycin B (LMB) was purchased from
Sigma. Cell fractionation was done with Cell Fractionation
kit (Pierce) according to manufacturer’s instructions.
Protein concentrations were determined by Bradford
assay (Bio-Rad).

Lentivirus preparation and transduction

cDNA encoding full-length of human HuR was cloned
into the pLenti6-V5-DEST vector, and virus was generated
in the 293FT viral packaging cell line. Equal titers of test or
vector control virus were used in subsequent experiments.
Five lentiviral vectors expressing a 21-nt HuR short
hairpin RNA (shRNA) in pLenti6 vector were purchased
from Sigma. VSMCs were infected with virus-containing
supernatant in the presence of polybrene, and stably
transduced cells were selected with Blasticidin. HuR ex-
pression levels were detected by western blot.

Constructs

All the constructs were based on pGL3 (Promega) vector
have been described in an earlier study (16). All the con-
structs were confirmed by sequencing prior use.

RNA probe preparation, affinity purification and RNA
electrophoretic mobility-shift assay

AT1R (including 30-UTR) cDNA was used as a template
for PCR reactions whereby T7 RNA polymerase
promoter sequence was added to the 50-end of all frag-
ments. For producing RNA probes for affinity purifica-
tion, a 30-base long polyA tail was included in the 30-oligo.
RNA probes used in RNA electrophoretic mobility-shift
assay (REMSA) were synthesized without polyA tail and
labeled with biotin. More detailed protocols and primer
sequences were described (17). Gel shift was performed as
described (29).

Western blotting

Affinity-purified proteins and cell lysates were separated in
SDS–PAGE and transferred to nitrocellulose membrane
(Hybond ECL). Proteins were then detected as described
in Paukku et al. (16) or with infrared technology using
Odyssey Blocking Buffer (Li-Cor), polyclonal HuR
(Upstate), GAPDH (Trevigen), p100 (Santa Cruz) and
AUF1 (Upstate) antibodies and Alexa Fluor 680 Goat
anti-Mouse IgG (Invitrogen) or Goat anti-Rabbit IRDye
(Li-Cor) secondary antibodies. The membrane was
scanned with Odyssey Infrared Imaging System (Li-Cor).

RNP-IP and real-time PCR (qPCR)

This assay was performed essentially as described in
Backlund et al. (17). Briefly, cytoplasmic lysates
prepared from 107 of HEK293 cells or coronary artery
VSMCs were first precleared with protein G-agarose
beads and then IP with 2 mg of HuR, p100, GAPDH or
AUF1 antibodies. The coprecipitated mRNA was then
extracted, and subjected to RT-PCR and qPCR with
AT1R specific oligos.
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Cross-linking of AT1R mRNA complexes

Coronary artery VSMC were cross-linked by 0.5% for-
maldehyde. The reaction was terminated by 0.25M
glycine. Fixed cells were resuspended in RIPA buffer con-
taining protease inhibitors. The cells were lysed by sonic-
ation. Then IP was performed as described earlier.
Resuspended beads were incubated at 70�C for 45min to
reverse the crosslinks. The RNA is extracted from these
samples using Trizol according to the manufacturer’s
protocol. The coprecipitated mRNA was then extracted,
and subjected to RT-PCR and qPCR with AT1R specific
oligos.

RNA affinity purification

For producing polyadenylated RNA probes 30 bases long
polyA tail was included in the 30-oligos described earlier.
�2 mg of in vitro transcribed polyadenylated RNA probes
were incubated with polystyrene latex beads with dC10T30

oligonucleotides covalently linked to the surface (Oligotex,
Qiagen), in a buffer containing 20mM Tris–HCl, pH 7.5,
1M NaCl, 2mM EDTA and 0.2% SDS. After two washes
in a wash buffer 10mM Tris–HCl, pH 7.5, 150mM NaCl
and 1mM EDTA, the RNA-coated beads were incubated
with 100 mg cytoplasmic extracts (NE-PER, Pierce) in the
RNA binding buffer [5mM Hepes (pH 7.9), 7.5mM KCl,
0.5mM MgCl2, 0.1mM EDTA, 0.5mM DTT, 0.1mg/ml
yeast tRNA, 0.1mg/ml bovine serum albumin (BSA).
Poly-T beads were saturated with bait RNA and thus
the endogenous mRNA in the lysates gives only minor
background. After incubation for 10min at 30�C, the
beads were extensively washed with RNA binding buffer
without BSA. Laemmli sample buffer was then added to
the beads and proteins bound to the RNA probe were
resolved on 4–20% SDS–PAGE and subjected to silver
staining according to the manufacturer’s instructions
(Silver Stain Plus, Bio-Rad).

Mass spectrometry

Silver stained protein bands of interest were cut out of
the polyacrylamide gel and ‘in-gel’ digested essentially
as described by Shevchenko et al. (18). Proteins were
reduced with DTT and alkylated with iodoacetamide
before digestion with trypsin (Sequencing Grade
Modified Trypsin, V5111, Promega). The recovered
peptides were, after desalting using Millipore C18
ZipTipTM, subjected to matrix-assisted laser desorption/
ionization-time of flight (MALDI-TOF) mass spectromet-
ric analysis. MALDI-TOF mass spectra for mass finger-
printing and MALDI-TOF/TOF mass spectra for
identification by fragment ion analysis were acquired
using an Ultraflex TOF/TOF instrument (Bruker-
Daltonik GmbH, Bremen, Germany). Protein identifica-
tion with the generated data was performed using
Mascot� Peptide Mass Fingerprint and MS/MS Ion
Search programs (http://www.matrixscience.com).

Immunofluorescence microscopy

VSMCs grown on glass coverslips were serum starved for
16 h and subsequently treated with 0.1 ml/ml insulin only,

with insulin and 10 ng/ml LMB or left untreated for 16 h.
All the subsequent procedures were performed at room
temperature. Culture medium was removed and the cells
were washed briefly with PBS. Cells were fixed with 4%
paraformaldehyde for 15min and washed twice with PBS.
Cells were permeabilized with 0.25% Triton X-100
(Bio-Rad) in PBS for 10min and washed three times
with PBS. To reduce non-specific binding of the
antibodies, the cells were blocked with 3% BSA (Sigma);
0.3M glycine (Bio-Rad) and 5% normal goat serum
(Millipore) in PBS for 1 h. Cells were incubated with
primary antibody (anti-HuR, Upstate) diluted 1:500 in
immunolabeling buffer (1% BSA and 0.1% Tween-20)
(Amresco) in PBS for 1 h. Cells were washed three times
with PBS and incubated for 1 h. with Alexa Fluor 594
goat-anti rabbit secondary antibody (Invitrogen) diluted
1:1000 in immunolabeling buffer. Cells were washed three
times with PBS and the nuclei were stained with 2 mg/ml
Hoechst 33258 (Sigma) in PBS for 1min. Cells were
washed twice with PBS and the coverslips were rinsed
with purified water before mounting to microscope slides
with Fluoro Mount (Sigma). Images were obtained by
Zeiss Axioplan 2 fluorescence microscope.

Statistical analysis

Data are presented as means±SE. Statistical analysis
was performed using Student’s paired one-tailed t-test.
P< 0.05 were considered significant.

RESULTS

Insulin increases AT1R expression by stabilizing
AT1R mRNA

The present study was prompted by the discovery that
insulin regulates AT1R expression. In keeping with
previous studies (11), stimulation of primary culture of
coronary artery VSMC by 75 nM insulin for 24 h increases
AT1R expression (Figure 1A) and AT1R mRNA
(Figure 1B). An increase in mRNA could be due to
increased stability of AT1R mRNA. To test this possibil-
ity, cells were exposed to actinomycin D (2 mg/ml) and
total cellular RNA then was prepared at the times
indicated and subjected to RT-qPCR to assess the
half-life of AT1R mRNA. As shown in Figure 1C, the
half-life of AT1R mRNA in coronary artery VSMC
stimulated by insulin was markedly longer (10 h) than
that observed in unstimulated cells. In contrast, the
half-life of negative control GAPDH mRNA was not
altered. These results supported the view that insulin
stabilized the AT1R mRNA. Independent assessment of
the mRNA stabilizing and inducing effect of insulin on
AT1R expression was sought through the creation and
analysis of luciferase reporter constructs linked to the
full-length AT1R 30-UTR. Following transient transfec-
tion with the parent vector pGL3, luciferase activity in
insulin treated HEK293 cells was no different than that
measured in untreated populations. By contrast,
Luc(30-UTR) expressing a chimeric mRNA encoding
luciferase and the full-length AT1R 30-UTR, exhibited a
readily inducible luciferase activity that was 2.5-fold
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higher after insulin stimulation than that in untreated cells
of the same transfection group (Figure 1D). In summary,
insulin upregulates AT1R expression by stabilizing AT1R
mRNA in a 30-UTR dependent manner.

Identification of HUR as an insulin-sensitive regulator of
AT1R mRNA

Insulin induces AT1R mRNA levels by increasing AT1R
mRNA half-life. Since stabilization of mRNAs is known
to involve binding of proteins that recognize certain
mRNA sequences, we examined whether proteins
present in lysates from coronary artery VSMCs bound
to AT1R mRNA. We assayed the existence of insulin-
regulated RBPs by employing affinity purification.

A probe corresponding to bases 1–847 of the 30-UTR of
the AT1R was transcribed. Due to problems in
transcribing the full-length RNA construct, the
polyadenylated RNA transcript used in the affinity puri-
fication did not include the last 40 bp in 30-end of the
30-UTR. Cells, treated with either insulin or vehicle,
were lysed and incubated with poly-A containing RNA
transcripts that were attached to poly-T beads.
Figure 2A is a silver-stained gel showing the protein
pattern of fractions eluted from AT1R 30-UTR probe.
The most abundant band migrated at 36 kDa. Binding
of this protein was more prominent in reactions where
insulin-stimulated cell lysates were used. Protein was
excised from the gel and subjected to mass spectrometric
analysis and the protein was identified as HuR.
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Figure 1. Insulin upregulates AT1R expression by stabilizing AT1R mRNA. (A) Twenty-four hours after insulin or vehicle stimulation of coronary
artery VSMCs, lysates were prepared to assess AT1R and loading control GAPDH expression by western blot. (B) RNA isolated from cells
described for panel (A) was subjected to qPCR to assess the mRNA levels of AT1R and of loading control GAPDH. The western blotting and
real-time qPCR data are representatives at least of three or more experiments. (C). Cells described for panel (A) were exposed to actinomycin D
(2 mg/ml), whereupon the cellular RNA was isolated at the times indicated and subjected to real-time qPCR to assess the half-life of AT1R mRNA.
Results represent AT1R mRNA normalized to the expression of the construct at time 0 and are shown as a linear fit. Results represent the means of
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Our laboratory has previously reported that the 30-UTR
of AT1R mRNA is a target of GAPDH, AUF1 and p100
(16,17), and now we identified HuR as such as well. We
next sought to test whether these proteins capable of
forming a complex with the endogenous AT1R 30-UTR
are involved in the insulin-mediated AT1R regulation.
Therefore, we performed a RNP-IP with specific
antibodies and with cytoplasmic lysates from unstimu-
lated and insulin-stimulated coronary artery VSMCs.
qPCR with AT1R specific oligos was used to detect
protein-associated endogenous AT1R mRNA. Among
several RBPs that bind to AT1R mRNA, HuR showed
increased levels of association with AT1R mRNA follow-
ing insulin treatment (2.8-fold), while GAPDH, AUF1
and p100 did not show marked differences in binding
(Figure 2B). Thus, the association of endogenous AT1R
mRNA with HuR is regulated by insulin. We performed
the same experiment with formaldehyde-treated cells and
found essentially identical results (data not shown).
Therefore, the data suggests that HuR–AT1R interaction
takes place in the living cells.

Time course of insulin effect

The evidence presented thus far indicates that insulin
enhances the formation of cytoplasmic HuR-AT1R
mRNA complexes. Detailed mechanisms by which HuR
protects its target mRNAs are still incompletely under-
stood but it is thought to involve nucleo-cytoplasmic
shuttling of HuR and its subsequent translocation with
associated mRNA (19). To explore the time course of
insulin effect, Luc(30-UTR) was transfected to HEK293
cells and luciferase activities were then measured at 6, 12
and 24 h after insulin stimulation. Insulin stimulation
increased luciferase activity in cells transfected with
Luc(30-UTR) maximally �2.5-fold as compared to Luc
(Figure 3A). To examine this possibility, we traced HuR

localization by cell fractionation. In a western blot, we
observed a translocation of HuR from the nucleus to the
cytoplasm that became visible after 6 h of insulin treat-
ment, and stronger signal at 12 and 24 h (Figure 3B).
Similarly, affinity purification of HuR with AT1R
30-UTR showed increased HuR signal in western blot
after longer insulin stimulations (Figure 3B). To further
confirm the time dependent effect, we assessed HuR
binding to AT1R 30-UTR with REMSA. A probe-
consisting nucleotides 1–847 of AT1R 30-UTR showed a
shift with cytoplasmic lysate in which HuR was
overexpressed (Figure 3C). This band was abolished by
�10-fold excess of unlabeled probe and also decreased
in lysates prepared from cells in which HuR was
depleted. To confirm the presence of HuR in gel shift
band, we assayed the ability of antibodies recognizing
HuR to supershift the AT1R RNA–protein complexes
on native gels. As shown (Figure 3C), HuR indeed
forms part of the complexes, as a prominent band of
slower electrophoretic mobility was detected when the
anti-HuR antibody was added to protein complexes.
Analogously to affinity purification data, gel shift experi-
ment showed that insulin enhances HuR binding to AT1R
30-UTR probe. These results indicate that insulin-induced
translocation of HuR into the cytoplasm leads to
enhanced HuR binding to AT1R 30-UTR.

HuR is required for the stabilization of AT1R mRNA
by insulin

Further supporting evidence for the role of HuR in
insulin-induced AT1R regulation was obtained from the
reporter gene assays. To determine whether cytoplasmic
HuR, GAPDH, AUF1, or p100 plays a causal role in
insulin effect on AT1R, siRNA against these proteins
were utilized to reduce intracellular protein levels.
Cells expressing either normal or knockdown HuR levels
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were treated with insulin, and the changes in luciferase
activity were monitored. HuR silencing did not cause
cell death over the course of these experiments based on
lactate dehydrogenase release. The activity of Luc
(30-UTR) was reduced in HuR-silenced cells. No insulin

response was detected in the siHuR-treated cells
[Figure 4A (left)]. Contrary to HuR silencing, GAPDH,
AUF1, or p100 knockdown had no effect on insulin
response (Figure 4A). In order to investigate HuR
effects on AT1R mRNA, we subjected cells to
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perturbations that increased or decreased HuR levels.
Following HuR overexpression, Luc(30-UTR) activity
was significantly increased as compared to control Luc
(Figure 4B). In line with this, the knockdown of HuR
reduced Luc(30-UTR) activity but not that of control
Luc (Figure 4B).

We sought to directly examine the role of HuR in the
regulation of endogenous AT1R. Coronary artery VSMC
were transduced with lentiviral vectors overexpressing
either HuR shRNA or HuR and stimulated these cells
with insulin. AT1R expression was measured by western
blot in cells expressing normal, increased, or reduced HuR
levels. Increased HuR resulted in higher AT1R expression
and conversely lower HuR decreased AT1R expression. In
VSMCs, AT1R expression was higher after insulin treat-
ment, whereas HuR knockdown resulted in impairment in
the cell’s responsiveness to insulin and the increase was
attenuated (Figure 4C). Together, these observations
support the notion that HuR is necessary for the regula-
tion of AT1R by insulin.

Both HuR and insulin increase AT1R mRNA stability
via 30-UTR

Both insulin and HuR alter AT1R mRNA steady-state
levels and we proceeded to test the hypothesis that these
effects are mediated by changes in mRNA half-lives since
HuR has been found to stabilize many target mRNAs. To
ascertain if the increase in the Luc(30-UTR) mRNA levels
was due to changes in mRNA stability, the mRNA
half-life (t1/2) was analyzed following treatment with
actinomycin D to inhibit with de novo transcription

(Figure 5) after both HuR overexpression or insulin stimu-
lation. A construct without the AT1R 30-UTR did not
respond to either HuR overexpression or insulin treatment
(data not shown). Treatments that increased cytoplasmic
HuR levels, HuR overexpression and insulin, stabilized
Luc(30-UTR) mRNA. Reduction in HuR levels by
siHuR decreased Luc(30-UTR) mRNA half-life consistent
with steady-state AT1R mRNA levels. In summary, the
mechanisms of insulin and HuR effects on AT1R mRNA
appear to be the same.

Mapping of HuR binding sites and the insulin and HuR
responsive regions within the 30-UTR

Next, we wanted to identify the AT1R 30-UTR regions
involved in association with HuR. The observations
from affinity purification supported a binding scheme on
the AT1R 30-UTR in which HuR associates with 300–847
region of the 30-UTR (Figure 6A). As binding and
response sequences are not necessarily the same, we pro-
ceeded to map the insulin and HuR responsive elements
within the 30-UTR. A series of reporter constructs contain-
ing different fragments of 30-UTR were designed to
disrupt the insulin response. These constructs were trans-
fected into HEK293 cells. As shown in Figure 6B, insulin
stimulation increased the activity of luciferase constructs
containing at least 637 first nucleotides of 30-UTR,
whereas the activity of constructs containing shorter
30-UTR sequences remained effectively unchanged.
Sensitivity to the effect of HuR overexpression was
mapped to the same region than insulin effect, Figure 6C.
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Figure 5. The ectopic modulation of HuR expression alters the insulin effect on AT1R 30-UTR half-life. HEK293 transfected with Luc(30-UTR) had
their cytoplasmic HuR levels altered by cotransfection of either HuR expression vector or siHuR or stimulation by insulin. Cells were exposed to
actinomycin D (2 mg/ml), whereupon the cellular RNA was isolated at the times indicated and subjected to real-time qPCR to assess the half-life of
Luc mRNA. In the upper panel, luciferase qPCR. Lower panel: GAPDH qPCR. Results represent Luc or GAPDH mRNA normalized to the
expression of the construct at time 0. Results are shown as a linear fit. Results represent the means±SD of an average of three independent
experiments.
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the AT1R 30-UTR mRNA fragments prepared for affinity purification. Lower panel: Mapping of the HuR binding site within AT1R 30-UTR. RNA
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75 nM insulin, and for 24 h, luciferase activity was measured in the lysates. (C) Upper panel: Mapping of HuR-responsive element within the AT1R
30-UTR. HEK293 cells were transfected with luciferase vectors as described for panel (B) and cotransfected with HuR expression vector. RNA
isolated from cells described for panel (B) was subjected to real-time qPCR to assess the mRNA levels of AT1R and loading control. Results were
normalized to Luc. The results represent the means±SD of an average of three independent experiments. *P< 0.05 versus Luc. Lower panel:
Control blots for HuR overexpression.
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LMB prevents insulin-induced HuR translocation into
cytoplasm and insulin response

To address if the nuclear export of HuR is required for
insulin response, HEK293 cells expressing Luc(30-UTR)
were exposed to LMB, a CRM1 inhibitor which has
been proposed to affect HuR translocation through the

nuclear envelope (20). We treated control Luc- or
Luc(30-UTR)-transfected HEK293 cells for 12 h either
with 10 ng/ml LMB or vehicle, followed by insulin
stimulation and measurement of luciferase activity.
Pre-treatment of LMB potently inhibits the effect of
insulin measured by luciferase activities (Figure 7A,

A

C

B

Figure 7. Translocation of HuR mediates insulin effect on AT1R. (A) Upper panel: HEK293 cells transfected with Luc or Luc(30-UTR) were
stimulated with insulin in the presence or absence of LMB for 12 h and lysates were measured for luciferase activity. Luciferase results are expressed
as fold of promoter control without 30-UTR in relative light units of firefly luciferase. Results represent the means±SD of an average of three
independent experiments. Lower panel: Protein lysates from cells described for panel (A) were extracted and probed for the expression of HuR,
nucleolin and b-tubulin. (B) Upper panel: HEK293 cells transfected with Luc or Luc(30-UTR) and cotransfected with either shCRM1 or shControl.
Insulin stimulation (75 nM) for 24 h followed by determination of luciferase activity on the cell lysates. Luciferase results are expressed as fold of
promoter control without 30-UTR in relative light units of firefly luciferase. Results represent the means±SD of an average of three independent
experiments. Lower panel: Protein lysates from cells described for panel (B) were extracted and probed for the expression of CRM1, HuR, nucleolin
and GAPDH. (C) Immunofluorescence analysis of HuR. HuR signals (red) in either untreated or insulin treated (75 nM for 12 h) coronary artery
VSMC cells. Red, HuR fluorescence; blue, DAPI staining to visualize nuclei; overlay, overlap of the two signals. Note the distinct overlap of DAPI
and HuR signals in untreated cells; while insulin-stimulated cells also exhibit abundant nuclear HuR, the treatment causes a substantial increase in
the cytoplasmic HuR signal, not seen in untreated cells. Exposure to LMB prevented the insulin effect.

Nucleic Acids Research, 2012, Vol. 40, No. 12 5259



upper panel) and prevents HuR translocation to cyto-
plasm (Figure 7A, lower panel). To verify the effective
inhibition of CRM1 by LMB, HEK293 cells were either
treated with LMB or left untreated, and whole-cell,
nuclear and cytoplasmic lysates were subjected to
western blot analysis. As shown in Figure 7A (lower
panel), exposure of cells to LMB reduced cytoplasmic
HuR levels. Moreover, LMB inhibited insulin-induced
HuR increase in the cytoplasm. As controls for loading
and purity of subcellular fractionation, b-tubulin and
nucleolin were measured. To further confirm the role of
CRM1 on insulin effect, insulin effect was assessed in
CRM1-silenced cells. As shown in Figure 7B, transfection
of HEK293 cells with a vector expressing CRM1 shRNA
inhibited CRM1 levels by �85% and attenuated the insulin
response compared with what was observed in control
shRNA-transfected cells. Immunofluorescence analysis
verified the cytoplasmic increase in HuR levels in
coronary artery VSMC and the inhibition of HuR trans-
location by LMB (Figure 7C). This data is consistent with
the shuttling of HuR to the cytoplasm having a key role in
the signaling of insulin-triggered AT1R upregulation.

DISCUSSION

In this study, we set out to explore the mechanisms
underlying the regulation of AT1R by insulin. The
starting point for this investigation was the discovery
that insulin upregulates AT1R expression by stabilizing
its mRNA. We found this effect to be transferable to a
reporter gene by including 30-UTR of AT1R after
luciferase gene. Next, we searched for insulin-regulated
RBPs interacting with AT1R 30-UTR and identified
HuR as such a protein. Several lines of evidence support
the role of HuR as a mediator of insulin effect. HuR and
insulin both increase AT1R expression and mRNA levels
via stabilization of AT1R mRNA and they share func-
tional elements in the same region within the 30-UTR.
Insulin induces translocation of HuR into cytoplasm.
Inhibition of HuR translocation prevents the effect of
insulin on AT1R.
HuR is likely to regulate AT1R expression in blood

vessels and myocardium in common cardiovascular dis-
orders. In the VSMC of normal coronary arteries, HuR
expression is low and nuclear whereas in atherosclerotic
arteries HuR is high and cytoplasmic, potentially a
contributing mechanism underlying increased AT1R
expression (21,22). Similarly, in endothelial cells pro-
atherosclerotic conditions increase HuR expression
whereas anti-atherosclerotic treatments decrease HuR
and AT1R expression (23). After myocardial infarction,
both inhibition of AT1R and knockdown of HuR expres-
sion reduce the severity of pro-inflammatory responses
and contribute to improved left ventricular function and
remodeling (24).
HuR is primarily localized in the nucleus and can

shuttle between the nucleus and cytoplasm by virtue of
its shuttling signal, HNS (HuR nucleocytoplasmic
shuttling sequence) located in the hinge region between
its second and third RNA recognition motifs (19).

Several factors increase the cytoplasmic levels of HuR sug-
gesting that the nuclear export of HuR has a role in the
regulation of mRNA stability. For example, under stress,
the increased cytoplasmic HuR level led to the stabiliza-
tion of p21CIP1 mRNA (25). Similarly, during the cell
division cycle, HuR stabilized mRNAs encoding cell
cycle regulatory genes in accordance with its fluctuating
presence in the cytoplasm (26). Investigation into the
mechanism of insulin-mediated regulation of AT1R
mRNA by HuR showed that HuR was translocated to
cytoplasm in response to insulin. In addition, the effects
of insulin on AT1R were attenuated by a reduction in the
cytoplasmic levels of HuR either by HuR siRNA or by
inhibition of HuR translocation. Based on these findings,
we propose that insulin regulates AT1R expression by
promoting the nuclear export of HuR and consequently
by increasing the stability of AT1R mRNA.

In conclusion, our study presents evidence for the
importance of HuR as a downstream mediator of
insulin-induced AT1R regulation. These results are con-
sistent with the proposed models of HuR function in
mRNA stabilization. The dynamic recruitment of
varying RBPs to individual mRNAs determines the fate
of each transcript in respect to splicing, nuclear export,
stability and ultimately translation. HuR has effects on
large number of genes and currently we do not know
whether the insulin-induced increase in HuR has general
effects on gene expression, or rather exerts effects re-
stricted to AT1R transcription. It is tempting to speculate
that at least some deleterious effects of hyperinsulinemia
could be modified by targeting HuR. Key questions
remain how HuR, a widely expressed protein with broad
target specificity, can regulate specific mRNAs. HuR has
been reported to act in concert with other RBPs like
AUF1 (27), T-cell intracellular antigen 1 (TIA1) (28)
and tristetraprolin (TTP) (29) and thus protein–protein
interaction enable HuR to have transcript specific
effects. Studies to address if other RBPs or miRNAs are
involved in the regulation of AT1R expression in concert
with HuR are underway in our laboratory. While add-
itional details of this regulatory pathway await further
experimental demonstration, the findings presented here
underscore the role of HuR in the post-transcriptional
regulatory process of AT1R mRNA.
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