Mixed-Valent Compounds

Reactions of Bromine Fluoride Dioxide, BrO₂F, for the Generation of the Mixed-Valent Bromine Oxygen Cations Br₃O₄⁺ and Br₃O₆⁺

BrO²

Konrad Seppelt*

Abstract: A reliable synthesis of unstable and highly reactive BrO_2F is reported. This compound can be converted into $BrO_2^+SbF_6^-$, $BrO_2^+AsF_6^-$, and $BrO_2^+AsF_6^- \cdot 2BrO_2F$. The latter decomposes into mixed-valent $Br_3O_4 \cdot Br_2^+ AsF_6^-$ with five-, three-, one-, and zero-valent bromine. BrO_2^+ $H(SO_3CF_3)_2^-$ is formed with HSO_3CF_3 . Excess BrO_2F yields mixed-valent $Br_3O_6^+OSO_3CF_3^-$ with five- and three-valent bromine. Reactions of BrO₂F and MoF₅ in SO₂ClF or CH₂ClF result in $Cl_2BrO_6^+Mo_3O_3F_{13}^-$. The reaction of BrO_2F with $(CF_3CO)_2O$ and NO_2 produces $O_2Br-O-CO-CF_3$ and the known $NO_2^+Br(ONO_2)_2^-$. All of these compounds are thermodynamically unstable.

Bromine fluoride dioxide (bromyl fluoride) has long been known,^[1] and its pyramidal structure has been established by spectroscopic methods.^[2] It is a very reactive and unstable species that decomposes above 10°C, often with explosion. Herein, we present a reliable and safe procedure for its highyielding preparation in a PFA tube system between -78° and -10°C in amounts of 100-200 mg [Eq. (1)].

 $2\,NaBrO_3+BrF_5+2\,HF\rightarrow 3\,BrO_2F+2\,NaHF_2$ (1)

A previous single-crystal determination had suffered from O/F disorder.^[3] However, recrystallization from acetone at low temperatures produced several adducts. In the adduct $3BrO_2F$ ·4 acetone, the bond lengths are undisturbed by disorder: $r_{\rm BrO} = 1.587 - 1.620(2)$ and $r_{\rm BrF} = 1.781 - 1.822(2)$ Å. Solutions in SO₂ClF or CH₂ClF are stable at low temperature if all reductive reagents (H₂O!) are excluded. Even in anhydrous HF slow decomposition occurs (Scheme 1).

SbF₅ and BrO₂F form BrO₂⁺SbF₆⁻. This product is identical to the one that has been obtained recently in the reaction of BrO₃F with SbF₅ under loss of oxygen.^[4] AsF₅ works in the same way as SbF₅, giving BrO₂⁺AsF₆⁻. This compound can be sublimed with some decomposition in vacuum at 10°C. This indicates that the fluoride ion affinity of

[*] Prof. K. Seppelt Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34-36, 14195 Berlin (Germany) E-mail: seppelt@zedat.fu-berlin.de

^{© 2019} The Authors. Published by Wiley-VCH Verlag GmbH & Co. 0 KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

۶F	+	SbF6	\rightarrow	$BrO_2^+SbF_6^{-[a]}$
	+	AsF ₅	\rightarrow	BrO ₂ ⁺ AsF ₆ ⁻ , BrO ₂ ⁺ AsF ₆ ⁻ +2BrO ₂ F
			\rightarrow	$Br_{3}O_{4}$ - Br_{2} + AsF_{6} - (-30°C, 1 week)
	+	HSO ₃ CF ₃	\rightarrow	$BrO_2^+H(SO_3CF_3)_2^-$
			\rightarrow	$Br_3O_6^+ OSO_2CF_3^-$ (BrO_2F excess)
	+	(CH₃)₃Si-OS	O₂CF₃ →	$Br_3O_6^+ OSO_2CF_3^-$
	+	MoF ₅	\rightarrow	Cl ₂ BrO ₆ ⁺ Mo ₃ O ₃ F ₁₃ ⁻ .
	+	(CF ₃ -CO) ₂ O	\rightarrow	O ₂ Br-O-CO-CF ₃
	+	NO ₂	\rightarrow	$NO_2^+Br(ONO_2)_2^{-[b]}$

Scheme 1. Reactions of BrO₂F. [a] See Ref. [4]. [b] See Ref. [5].

AsF₅ is just large enough for the formation of this ionic species. AsF₅ as a gas can easily be applied in various amounts relative to BrO₂F: In a reaction with excess BrO₂F, crystals of $BrO_2^+AsF_6^- \cdot 2 BrO_2F$ are formed. These turned into dark-red $Br_3O_4 \cdot Br_2^+ AsF_6^-$ under loss of oxygen after standing for days at -30°C.

The cation $Br_3O_4^+ \cdot Br_2$ of this salt is shown in Figure 1. The Br₂ part of the cation can be described as a Br₂ molecule attached to the Br-O part of the cation: The Br-Br bond length of 2.280(1) Å), the Br–Br…Br bond angle of 104.8(1)°, and the corresponding Raman line of 297.5 cm⁻¹ are typical for molecular bromine bonded through halogen bonding. The $Br_3O_4^+$ cation can be viewed as a combination of BrO_2^+ and neutral O=Br-O-Br or as O₂Br-O-Br⁺-O-Br. In each description, it contains one-, three-, and five-valent bromine (in addition to the zero-valent Br_2).

 HSO_3CF_3 dissolves BrO_2F under formation of BrO_2^+ $H(SO_3CF_3)_2^-$. The anion $H(SO_3CF_3)_2^-$ has only occasionally

Figure 1. Cation 1 in Br₃O₄⁺·Br₂AsF₆⁻. Cation 2 (almost identical) and anions are omitted. Displacement parameters (also in all figures below) set at 50%. Distances given in Å. Angles: O1-Br1-O2 110.6°, O3-Br2-O4 103.5°, O4-Br3--Br4 177.0°.

18028 Wiley Online Library

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2019, 58, 18928-18930 been observed;^[6] the non-symmetric O–H…O bridge here is 2.515 Å long, as compared to 2.410 Å in Ref. [6].

When an excess of BrO₂F relative to HSO₃CF₃ was applied, brown crystals of Br₃O₆⁺SO₃CF₃⁻ were obtained. The cation of Br₃O₆⁺SO₃CF₃⁻ can be described as a combination of two BrO₂⁺ units and one BrO₂⁻ that weekly interact. The geometries of the two BrO₂⁺ units are very similar to those observed in the neat BrO₂⁺ compounds. Little is known about bromite, BrO₂⁻: The preparation of NaBrO₂ is quite tedious.^[7] A crystal structure determination on NaBrO₂·3 H₂O reveals $r_{Br-O} = 1.701(2)$, 1.731(2) Å, and $\delta_{O-Br-O} = 105.3(1)^{\circ,[8]}$ For our BrO₂⁻ unit, these data are $r_{Br-O} = 1.733(1)$, 1.739(1) Å, and $\delta_{O-Br-O} = 102.7(1)^{\circ}$. The Br₃O₆⁺ cation is overall close to C_2 symmetry. Aside from the description as BrO₂^{+.}BrO₂^{-.}BrO₂⁺, this cation could also be described as a Br^{III}–dibromate(V) cation, albeit with two extreme long central bromine–oxygen bonds (Figure 2).

Figure 2. The cation Br₃O₆⁺ in Br₃O₆⁺ OSO₂CF₃⁻⁻; distances in Å. Angles: O1-Br1-O2 110.3°, O3-Br2-O4 102.8°, O5-Br3-O6 108.9°.

 BrO_2F and $(CH_3)_3Si$ -OSO₂CF₃ in SO₂CIF also react to $Br_3O_6^+SO_3CF_3^-$, now in the form of a yellow fine powder, as confirmed by its identical Raman spectrum (see the Supporting Information).

In speculations about the formation of these mixed-valent cations, the intermediacy of the free radical 'BrO₂ could be considered. In contrast to long-known 'ClO₂, it has never been isolated. It has been detected in matrices,^[9] by microwave,^[10] and UV/Vis spectroscopy,^[11] and it has been postulated as a central intermediate in the Belousov–Zhabotinsky oscillating reaction.^[12] We often observed violet solutions in our reactions, although always for only a short period of time. This species seems to dimerize at low temperature, similar to 'ClO₂.^[13] A dimer Br₂O₄ might dissociate into BrO₂⁺BrO₂⁻, which in turn could react with BrO₂⁺ to Br₃O₆⁺. Obviously not many cases of such a radical dimer dissociation into an ion pair are known; the dissociation of N₂O₄ into solid NO⁺NO₃⁻ in the presence of IF₅ is one example.^[14]

The reaction of BrO₂F with MoF₅ in SO₂ClF or CH₂ClF offers another surprise: Aside from an ochre-colored powder and colorless crystals, a red-brown crop of crystals was always obtained, with the composition $Cl_2BrO_6^+Mo_3O_3F_{13}^-$. The cation can be formulated as $ClO_2^+\cdot BrO_2^-\cdot ClO_2^+$, similar to $BrO_2^+\cdot BrO_2^-\cdot BrO_2^+$. Because of the extreme oxidation power of BrO_2F , a lot of atom scrambling has obviously occurred with the solvents (Figure 3).

Figure 3. The cation BrCl₂O₆⁺ in BrCl₂O₆⁺OSO₂CF₃⁻; distances in Å. Angles: O1-Cl1-O2 116.0°, O3-Br1-O4 105.1°, O5-Cl2-O6 115.7°.

The reaction of BrO_2F with neat $(CF_3-CO)_2O$ affords $O_2Br-O-CO-CF_3$ as a pale-yellow solid that melts at -12 °C, and inevitably explodes upon further warming (Figure 4).

Figure 4. Molecule 1 in the crystal structure of $O_2Br-O-CO-CF_3$; distances in Å. Angles: O1-Br1-O2 110.3°, O1-Br1-O3 98.5°, O2-Br1-O3 97.3°. The three independent molecules in the unit cell differ mainly only in the torsion of the CF₃ group.

The reaction of BrO_2F with NO_2 gives the known compound $NO_2^+Br(ONO_2)_2^-$ in quantitative yield as a colorless crystalline solid, formerly made from N_2O_5 and $Br-ONO_3$.^[5] The central Br^I is linearly bonded to two oxygen atoms, as expected, and the overall structure is centrosymmetric (Figure 5).

The structures of the cations $Br_3O_4^+$, $Br_3O_6^+$, $BrCl_2O_6^-$, of the compound O_2Br -OCO-CF₃, and of the anion $Br(NO_3)_2^-$ have been calculated by the methods B3LYP, MP2, and B97D.

Figure 5. The anion $Br(NO_3)_2^-$ in $NO_2^+Br(NO_3)_2^-$; distances in Å. Angles: Br1-O1-N1 116.2°; sum of angles at N1: 360.0°.

Angew. Chem. Int. Ed. 2019, 58, 18928–18930 © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 18929

Whereas the direct bonds and angles were satisfactorily reproduced, the contact lengths between the units in $Br_3O_4^+$, $Br_3O_6^+$, and $BrCl_2O_6^+$ were too long. The B3LYP method gives the best results among the three methods. However, the long-distance interactions are still so far off from the experimental values that the calculations of the vibrational spectra are unreliable (see the Supporting Information).

The generation of a thus far non-reproducible by-product $Cl_2BrO_6^+ ClO_4^-$ in a reaction of $BrO_2F/HSO_3CF_3^-/SO_2ClF$ is reported in the Supporting Information, only to show that more of these compounds can exist. Long ago, a compound described as $BrO_2^+ClO_4^-$ was made by ozonization of $BrOClO_3$ in $CFCl_3$, but solely characterized by Cl/Br analysis.^[15]

Experimental Section

The generation of BrO₂F from NaBrO₃, BrF₅, and HF is most easily performed on a metal vacuum line in a PFA tube (poly(perfluoroethene perfluorovinyl ether) co-polymer) at -78 °C, and subsequent sublimation at -10 °C into a second PFA trap cooled to -78 °C. The product obtained is completely colorless. The same reaction without a metal vacuum line is described in detail in the Supporting Information, as are the reactions of BrO₂F with SbF₅, AsF₅, HSO₃CF₃, (CH₃)₃Si-OSO₂CF₃, MoF₅, (CF₃-CO)₂O, and NO₂.

Acknowledgements

The work has been supported by the Deutsche Forschungsgemeinschaft (DFG SE 293/44-1). I thank Prof. F. Kraus and R. Stene, Universität Marburg, Germany, for gifts of MoF_5 and WF_5 .

Conflict of interest

The authors declare no conflict of interest.

Keywords: bromyl fluoride · bromine oxygen compounds · crystal structures · mixed-valent compounds

How to cite: Angew. Chem. Int. Ed. 2019, 58, 18928–18930 Angew. Chem. 2019, 131, 19104–19106

- [1] M. Schmeisser, E. Pommer, Angew. Chem. 1957, 69, 781.
- [2] R. J. Gillespie, P. Spekkens, J. Chem. Soc. Chem. Commun. 1975, 314–316; R. J. Gillespie, P. Spekkens, J. Chem. Soc. Dalton Trans. 1977, 1539–1546; R. Bougon, P. Joubert, G. Tantot, J. Chem. Phys. 1977, 89, 476–477; E. Jacob, Z. Anorg. Allg. Chem. 1977, 433, 255–260; K. O. Christe, E. C. Curtis, E. Jacob, Inorg. Chem. 1978, 17, 2744–2749.
- [3] I.-C. Hwang, R. Kuschel, K. Seppelt, Z. Anorg. Allg. Chem. 1997, 623, 379-383.
- [4] J. F. Lehmann, S. Riedel, G. J. Schrobilgen, *Inorg. Chem.* 2008, 47, 8343–8356.
- [5] W. W. Wilson, K. O. Christe, Inorg. Chem. 1987, 26, 1573-1580.
- [6] C. Belin, M. Charbormel, J. Poitier, J. Chem. Soc. Chem. Commun. 1981, 1036–1037; O. G. Polyakov, B. G. Nolan, B. P. Fauber, S. M. Miller, O. P. Anderson, S. H. Strauss, Inorg. Chem. 2000, 39, 1735–1742.
- [7] H. Fuchs, R. Landsberg, Z. Anorg. Allg. Chem. 1970, 372, 127– 133.
- [8] W. Levason, J. S. Ogden, M. D. Spicer, M. Webster, N. A. Young, J. Am. Chem. Soc. 1989, 111, 6210-6212.
- [9] O. Gálvez, A. Zoermer, A. Loewenschuss, H. Grothe, J. Phys. Chem. A 2006, 110, 6472-6481; J. Kölm, A. Engdahl, O. Schrems, B. Nelander, Chem. Phys. 1997, 214, 313-319; G. Maier, A. Bothur, Z. Anorg. Allg. Chem. 1995, 621, 743-746.
- [10] H. S. P. Müller, C. E. Miller, E. A. Cohen, *Angew. Chem. Int. Ed. Engl.* 1996, *35*, 2129–2131; *Angew. Chem.* 1996, *108*, 2285–2288;
 H. S. P. Müller, C. E. Miller, E. A. Cohen, *J. Chem. Phys.* 1997, *107*, 8292.
- J. M. Bossy, M. W. Leoni, R. E. Bühler, *Helv. Chim. Acta* 1972, 55, 107–116; C. E. Miller, S. L. Nickolaisen, J. S. Francisco, S. P. Sander, *J. Chem. Phys.* 1997, *107*, 2300–2309; W. A. Alves, C. E. S. Cortes, R. B. Faria, *Inorg. Chem.* 2004, 43, 4112–4114.
- H. D. Försterling, H. J. Lamberz, H. Schreiber, Z. Naturforsch. A 1980, 35, 1354–1360; H. D. Försterling, H. J. Lamberz, H. Schreiber, Z. Naturforsch. A 1985, 40, 368–372.
- [13] A. Rehr, M. Jansen, Angew. Chem. Int. Ed. Engl. 1991, 30, 329– 330; Angew. Chem. 1991, 103, 327–328; A. Rehr, M. Jansen, Inorg. Chem. 1992, 31, 4740–4742.
- [14] K. Seppelt, X. Zhang, Z. Anorg. Allg. Chem. 1998, 624, 667-670.
- [15] C. J. Schack, K. O. Christe, Inorg. Chem. 1974, 13, 2378-2381.

Manuscript received: September 25, 2019 Revised manuscript received: October 10, 2019 Accepted manuscript online: October 17, 2019 Version of record online: November 13, 2019