Reactions of Bromine Fluoride Dioxide, $\mathbf{B r O}_{2} \mathbf{F}$, for the Generation of the Mixed-Valent Bromine Oxygen Cations $\mathrm{Br}_{3} \mathrm{O}_{4}{ }^{+}$and $\mathrm{Br}_{3} \mathrm{O}_{6}{ }^{+}$

Konrad Seppelt*

Abstract

A reliable synthesis of unstable and highly reactive $\mathrm{BrO}_{2} \mathrm{~F}$ is reported. This compound can be converted into $\mathrm{BrO}_{2}{ }^{+} \mathrm{SbF}_{6}{ }^{-}, \mathrm{BrO}_{2}{ }^{+} \mathrm{AsF}_{6}^{-}$, and $\mathrm{BrO}_{2}{ }^{+} \mathrm{AsF}_{6}{ }^{-} \cdot 2 \mathrm{BrO}_{2} \mathrm{~F}$. The latter decomposes into mixed-valent $\mathrm{Br}_{3} \mathrm{O}_{4} \cdot \mathrm{Br}_{2}{ }^{+} \mathrm{AsF}_{6}{ }^{-}$with five-, three-, one-, and zero-valent bromine. $\mathrm{BrO}_{2}{ }^{+}$ $\mathrm{H}\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{2}^{-}$is formed with $\mathrm{HSO}_{3} \mathrm{CF}_{3}$. Excess $\mathrm{BrO}_{2} \mathrm{~F}$ yields mixed-valent $\mathrm{Br}_{3} \mathrm{O}_{6}{ }^{+} \mathrm{OSO}_{3} \mathrm{CF}_{3}^{-}$with five- and three-valent bromine. Reactions of $\mathrm{BrO}_{2} \mathrm{~F}$ and MoF_{5} in $\mathrm{SO}_{2} \mathrm{ClF}$ or $\mathrm{CH}_{2} \mathrm{ClF}$ result in $\mathrm{Cl}_{2} \mathrm{BrO}_{6}{ }^{+} \mathrm{Mo}_{3} \mathrm{O}_{3} \mathrm{~F}_{13}{ }^{-}$. The reaction of $\mathrm{BrO}_{2} \mathrm{~F}$ with $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ and NO_{2} produces $\mathrm{O}_{2} \mathrm{Br}-\mathrm{O}-\mathrm{CO}-\mathrm{CF}_{3}$ and the known $\mathrm{NO}_{2}{ }^{+} \mathrm{Br}\left(\mathrm{ONO}_{2}\right)_{2}{ }^{-}$. All of these compounds are thermodynamically unstable.

B

Bromine fluoride dioxide (bromyl fluoride) has long been known, ${ }^{[1]}$ and its pyramidal structure has been established by spectroscopic methods. ${ }^{[2]}$ It is a very reactive and unstable species that decomposes above $10^{\circ} \mathrm{C}$, often with explosion. Herein, we present a reliable and safe procedure for its highyielding preparation in a PFA tube system between -78° and $-10^{\circ} \mathrm{C}$ in amounts of $100-200 \mathrm{mg}$ [Eq. (1)].
$2 \mathrm{NaBrO}_{3}+\mathrm{BrF}_{5}+2 \mathrm{HF} \rightarrow 3 \mathrm{BrO}_{2} \mathrm{~F}+2 \mathrm{NaHF}_{2}$
A previous single-crystal determination had suffered from O/F disorder. ${ }^{[3]}$ However, recrystallization from acetone at low temperatures produced several adducts. In the adduct $3 \mathrm{BrO}_{2} \mathrm{~F} \cdot 4$ acetone, the bond lengths are undisturbed by disorder: $r_{\mathrm{BrO}}=1.587-1.620(2)$ and $r_{\mathrm{BrF}}=1.781-1.822(2) \AA$. Solutions in $\mathrm{SO}_{2} \mathrm{ClF}$ or $\mathrm{CH}_{2} \mathrm{ClF}$ are stable at low temperature if all reductive reagents $\left(\mathrm{H}_{2} \mathrm{O}\right.$!) are excluded. Even in anhydrous HF slow decomposition occurs (Scheme 1).
SbF_{5} and $\mathrm{BrO}_{2} \mathrm{~F}$ form $\mathrm{BrO}_{2}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$. This product is identical to the one that has been obtained recently in the reaction of $\mathrm{BrO}_{3} \mathrm{~F}$ with SbF_{5} under loss of oxygen. ${ }^{[4]} \mathrm{AsF}_{5}$ works in the same way as SbF_{5}, giving $\mathrm{BrO}_{2}{ }^{+} \mathrm{AsF}_{6}{ }^{-}$. This compound can be sublimed with some decomposition in vacuum at $10^{\circ} \mathrm{C}$. This indicates that the fluoride ion affinity of
[*] Prof. K. Seppelt
Institut für Chemie und Biochemie
Freie Universität Berlin
Fabeckstrasse 34-36, 14195 Berlin (Germany)
E-mail: seppelt@zedat.fu-berlin.de
Supporting information and the ORCID identification number(s) for
the author(s) of this article can be found under:
https://doi.org/10.1002/anie.201912271.
© 2019 The Authors. Published by Wiley-VCH Verlag GmbH \& Co. KGaA . This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Scheme 1. Reactions of $\mathrm{BrO}_{2} \mathrm{~F}$. [a] See Ref. [4]. [b] See Ref. [5].
AsF_{5} is just large enough for the formation of this ionic species. AsF_{5} as a gas can easily be applied in various amounts relative to $\mathrm{BrO}_{2} \mathrm{~F}$: In a reaction with excess $\mathrm{BrO}_{2} \mathrm{~F}$, crystals of $\mathrm{BrO}_{2}{ }^{+} \mathrm{AsF}_{6}{ }^{-} \cdot 2 \mathrm{BrO}_{2} \mathrm{~F}$ are formed. These turned into dark-red $\mathrm{Br}_{3} \mathrm{O}_{4} \cdot \mathrm{Br}_{2}{ }^{+} \mathrm{AsF}_{6}{ }^{-}$under loss of oxygen after standing for days at $-30^{\circ} \mathrm{C}$.

The cation $\mathrm{Br}_{3} \mathrm{O}_{4}{ }^{+} \cdot \mathrm{Br}_{2}$ of this salt is shown in Figure 1. The Br_{2} part of the cation can be described as a Br_{2} molecule attached to the $\mathrm{Br}-\mathrm{O}$ part of the cation: The $\mathrm{Br}-\mathrm{Br}$ bond length of $2.280(1) \AA$), the $\mathrm{Br}-\mathrm{Br} \cdots \mathrm{Br}$ bond angle of $104.8(1)^{\circ}$, and the corresponding Raman line of $297.5 \mathrm{~cm}^{-1}$ are typical for molecular bromine bonded through halogen bonding. The $\mathrm{Br}_{3} \mathrm{O}_{4}{ }^{+}$cation can be viewed as a combination of $\mathrm{BrO}_{2}{ }^{+}$and neutral $\mathrm{O}=\mathrm{Br}-\mathrm{O}-\mathrm{Br}$ or as $\mathrm{O}_{2} \mathrm{Br}-\mathrm{O}-\mathrm{Br}^{+}-\mathrm{O}-\mathrm{Br}$. In each description, it contains one-, three-, and five-valent bromine (in addition to the zero-valent Br_{2}).
$\mathrm{HSO}_{3} \mathrm{CF}_{3}$ dissolves $\mathrm{BrO}_{2} \mathrm{~F}$ under formation of $\mathrm{BrO}_{2}{ }^{+}$ $\mathrm{H}\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{2}{ }^{-}$. The anion $\mathrm{H}\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{2}{ }^{-}$has only occasionally

Figure 1. Cation 1 in $\mathrm{Br}_{3} \mathrm{O}_{4}^{+} \cdot \mathrm{Br}_{2} \mathrm{AsF}_{6}{ }^{-}$. Cation 2 (almost identical) and anions are omitted. Displacement parameters (also in all figures below) set at 50%. Distances given in Å. Angles: O1-Brl-O2 110.6 ${ }^{\circ}$, O3-Br2-O4 103.5 ${ }^{\circ}$, O4-Br3 $\cdots \mathrm{Br} 4177.0^{\circ}$.
been observed; ${ }^{[6]}$ the non-symmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bridge here is $2.515 \AA$ long, as compared to $2.410 \AA$ in Ref. [6].

When an excess of $\mathrm{BrO}_{2} \mathrm{~F}$ relative to $\mathrm{HSO}_{3} \mathrm{CF}_{3}$ was applied, brown crystals of $\mathrm{Br}_{3} \mathrm{O}_{6}{ }^{+} \mathrm{SO}_{3} \mathrm{CF}_{3}{ }^{-}$were obtained. The cation of $\mathrm{Br}_{3} \mathrm{O}_{6}{ }^{+} \mathrm{SO}_{3} \mathrm{CF}_{3}^{-}$can be described as a combination of two BrO_{2}^{+}units and one BrO_{2}^{-}that weekly interact. The geometries of the two BrO_{2}^{+}units are very similar to those observed in the neat $\mathrm{BrO}_{2}{ }^{+}$compounds. Little is known about bromite, $\mathrm{BrO}_{2}{ }^{-}$: The preparation of NaBrO_{2} is quite tedious. ${ }^{[7]}$ A crystal structure determination on $\mathrm{NaBrO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ reveals $r_{\mathrm{Br}-\mathrm{O}}=1.701(2), 1.731(2) \AA$, and $\delta_{\mathrm{O}-\mathrm{Br}-\mathrm{O}}=105.3(1)^{\circ} .^{[8]}$ For our BrO_{2}^{-}unit, these data are $r_{\mathrm{Br}-\mathrm{O}}=1.733(1), 1.739(1) \AA$, and $\delta_{\mathrm{O}-\mathrm{Br}-\mathrm{O}}=102.7(1)^{\circ}$. The $\mathrm{Br}_{3} \mathrm{O}_{6}{ }^{+}$cation is overall close to C_{2} symmetry. Aside from the description as $\mathrm{BrO}_{2}{ }^{+} \cdot \mathrm{BrO}_{2}{ }^{-} \cdot \mathrm{BrO}_{2}^{+}$, this cation could also be described as a $\mathrm{Br}^{\mathrm{III}}$-dibromate (V) cation, albeit with two extreme long central bromine-oxygen bonds (Figure 2).

Figure 2. The cation $\mathrm{Br}_{3} \mathrm{O}_{6}^{+}$in $\mathrm{Br}_{3} \mathrm{O}_{6}^{+} \mathrm{OSO}_{2} \mathrm{CF}_{3}^{-}$; distances in \AA. Angles: O1-Br1-O2 110.3³, O3-Br2-O4 102.8ㅇ, O5-Br3-O6 108.9.
$\mathrm{BrO}_{2} \mathrm{~F}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}-\mathrm{OSO}_{2} \mathrm{CF}_{3}$ in $\mathrm{SO}_{2} \mathrm{ClF}$ also react to $\mathrm{Br}_{3} \mathrm{O}_{6}{ }^{+} \mathrm{SO}_{3} \mathrm{CF}_{3}^{-}$, now in the form of a yellow fine powder, as confirmed by its identical Raman spectrum (see the Supporting Information).

In speculations about the formation of these mixed-valent cations, the intermediacy of the free radical $\cdot \mathrm{BrO}_{2}$ could be considered. In contrast to long-known ${ }^{\circ} \mathrm{ClO}_{2}$, it has never been isolated. It has been detected in matrices, ${ }^{[9]}$ by microwave, ${ }^{[10]}$ and UV/Vis spectroscopy, ${ }^{[11]}$ and it has been postulated as a central intermediate in the Belousov-Zhabotinsky oscillating reaction. ${ }^{[12]}$ We often observed violet solutions in our reactions, although always for only a short period of time. This species seems to dimerize at low temperature, similar to ${ }^{\cdot} \mathrm{ClO}_{2}{ }^{[13]} \mathrm{A}$ dimer $\mathrm{Br}_{2} \mathrm{O}_{4}$ might dissociate into $\mathrm{BrO}_{2}{ }^{+} \mathrm{BrO}_{2}{ }^{-}$, which in turn could react with $\mathrm{BrO}_{2}{ }^{+}$to $\mathrm{Br}_{3} \mathrm{O}_{6}{ }^{+}$. Obviously not many cases of such a radical dimer dissociation into an ion pair are known; the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ into solid $\mathrm{NO}^{+} \mathrm{NO}_{3}$ in the presence of IF_{5} is one example. ${ }^{[14]}$

The reaction of $\mathrm{BrO}_{2} \mathrm{~F}$ with MoF_{5} in $\mathrm{SO}_{2} \mathrm{ClF}$ or $\mathrm{CH}_{2} \mathrm{ClF}$ offers another surprise: Aside from an ochre-colored powder and colorless crystals, a red-brown crop of crystals was always obtained, with the composition $\mathrm{Cl}_{2} \mathrm{BrO}_{6}{ }^{+} \mathrm{Mo}_{3} \mathrm{O}_{3} \mathrm{~F}_{13}{ }^{-}$. The cation can be formulated as $\mathrm{ClO}_{2}{ }^{+} \cdot \mathrm{BrO}_{2}{ }^{-} \cdot \mathrm{ClO}_{2}{ }^{+}$, similar to $\mathrm{BrO}_{2}^{+} \cdot \mathrm{BrO}_{2}{ }^{-} \cdot \mathrm{BrO}_{2}^{+}$. Because of the extreme oxidation power of $\mathrm{BrO}_{2} \mathrm{~F}$, a lot of atom scrambling has obviously occurred with the solvents (Figure 3).

Figure 3. The cation $\mathrm{BrCl}_{2} \mathrm{O}_{6}{ }^{+}$in $\mathrm{BrCl}_{2} \mathrm{O}_{6}{ }^{+} \mathrm{OSO}_{2} \mathrm{CF}_{3}{ }^{-}$; distances in \AA.

The reaction of $\mathrm{BrO}_{2} \mathrm{~F}$ with neat $\left(\mathrm{CF}_{3}-\mathrm{CO}\right)_{2} \mathrm{O}$ affords $\mathrm{O}_{2} \mathrm{Br}-\mathrm{O}-\mathrm{CO}-\mathrm{CF}_{3}$ as a pale-yellow solid that melts at $-12^{\circ} \mathrm{C}$, and inevitably explodes upon further warming (Figure 4).

Figure 4. Molecule 1 in the crystal structure of $\mathrm{O}_{2} \mathrm{Br}-\mathrm{O}-\mathrm{CO}_{-\mathrm{CF}_{3}}$; distances in Å. Angles: O1-Br1-O2 110.3 ${ }^{\circ}$, O1-Br1-O3 98.5, O2-Br1-O3 97.3°. The three independent molecules in the unit cell differ mainly only in the torsion of the CF_{3} group.

The reaction of $\mathrm{BrO}_{2} \mathrm{~F}$ with NO_{2} gives the known compound $\mathrm{NO}_{2}{ }^{+} \mathrm{Br}\left(\mathrm{ONO}_{2}\right)_{2}{ }^{-}$in quantitative yield as a colorless crystalline solid, formerly made from $\mathrm{N}_{2} \mathrm{O}_{5}$ and $\mathrm{Br}-\mathrm{ONO}_{3} .^{[5]}$ The central Br^{I} is linearly bonded to two oxygen atoms, as expected, and the overall structure is centrosymmetric (Figure 5).

The structures of the cations $\mathrm{Br}_{3} \mathrm{O}_{4}^{+}, \mathrm{Br}_{3} \mathrm{O}_{6}^{+}, \mathrm{BrCl}_{2} \mathrm{O}_{6}{ }^{-}$, of the compound $\mathrm{O}_{2} \mathrm{Br}-\mathrm{OCO}-\mathrm{CF}_{3}$, and of the anion $\mathrm{Br}\left(\mathrm{NO}_{3}\right)_{2}{ }^{-}$ have been calculated by the methods B3LYP, MP2, and B97D.

Figure 5. The anion $\mathrm{Br}\left(\mathrm{NO}_{3}\right)_{2}^{-}$in $\mathrm{NO}_{2}{ }^{+} \mathrm{Br}\left(\mathrm{NO}_{3}\right)_{2}{ }^{-}$; distances in \AA. Angles: $\mathrm{Br} 1-\mathrm{O} 1-\mathrm{N} 1116.2^{\circ}$; sum of angles at $\mathrm{N} 1: 360.0^{\circ}$.

Whereas the direct bonds and angles were satisfactorily reproduced, the contact lengths between the units in $\mathrm{Br}_{3} \mathrm{O}_{4}^{+}$, $\mathrm{Br}_{3} \mathrm{O}_{6}{ }^{+}$, and $\mathrm{BrCl}_{2} \mathrm{O}_{6}{ }^{+}$were too long. The B3LYP method gives the best results among the three methods. However, the long-distance interactions are still so far off from the experimental values that the calculations of the vibrational spectra are unreliable (see the Supporting Information).

The generation of a thus far non-reproducible by-product $\mathrm{Cl}_{2} \mathrm{BrO}_{6}{ }^{+} \mathrm{ClO}_{4}^{-}$in a reaction of $\mathrm{BrO}_{2} \mathrm{~F} / \mathrm{HSO}_{3} \mathrm{CF}_{3}{ }^{-} / \mathrm{SO}_{2} \mathrm{ClF}$ is reported in the Supporting Information, only to show that more of these compounds can exist. Long ago, a compound described as $\mathrm{BrO}_{2}{ }^{+} \mathrm{ClO}_{4}^{-}$was made by ozonization of BrOClO_{3} in CFCl_{3}, but solely characterized by $\mathrm{Cl} / \mathrm{Br}$ analysis. ${ }^{[15]}$

Experimental Section

The generation of $\mathrm{BrO}_{2} \mathrm{~F}$ from $\mathrm{NaBrO}_{3}, \mathrm{BrF}_{5}$, and HF is most easily performed on a metal vacuum line in a PFA tube (poly(perfluoroethene perfluorovinyl ether) co-polymer) at $-78^{\circ} \mathrm{C}$, and subsequent sublimation at $-10^{\circ} \mathrm{C}$ into a second PFA trap cooled to $-78^{\circ} \mathrm{C}$. The product obtained is completely colorless. The same reaction without a metal vacuum line is described in detail in the Supporting Information, as are the reactions of $\mathrm{BrO}_{2} \mathrm{~F}$ with SbF_{5}, $\mathrm{AsF}_{5}, \mathrm{HSO}_{3} \mathrm{CF}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}_{2} \mathrm{OSO}_{2} \mathrm{CF}_{3}, \mathrm{MoF}_{5},\left(\mathrm{CF}_{3}-\mathrm{CO}\right)_{2} \mathrm{O}$, and NO_{2}.

Acknowledgements

The work has been supported by the Deutsche Forschungsgemeinschaft (DFG SE 293/44-1). I thank Prof. F. Kraus and R. Stene, Universität Marburg, Germany, for gifts of MoF_{5} and WF_{5}.

Conflict of interest

The authors declare no conflict of interest.
Keywords: bromyl fluoride • bromine oxygen compounds . crystal structures • mixed-valent compounds

How to cite: Angew. Chem. Int. Ed. 2019, 58, 18928-18930
Angew. Chem. 2019, 131, 19104-19106
[1] M. Schmeisser, E. Pommer, Angew. Chem. 1957, 69, 781.
[2] R. J. Gillespie, P. Spekkens, J. Chem. Soc. Chem. Commun. 1975, 314-316; R. J. Gillespie, P. Spekkens, J. Chem. Soc. Dalton Trans. 1977, 1539-1546; R. Bougon, P. Joubert, G. Tantot, J. Chem. Phys. 1977, 89, 476-477; E. Jacob, Z. Anorg. Allg. Chem. 1977, 433, 255-260; K. O. Christe, E. C. Curtis, E. Jacob, Inorg. Chem. 1978, 17, 2744-2749.
[3] I.-C. Hwang, R. Kuschel, K. Seppelt, Z. Anorg. Allg. Chem. 1997, 623, 379-383.
[4] J. F. Lehmann, S. Riedel, G. J. Schrobilgen, Inorg. Chem. 2008, 47, 8343-8356.
[5] W. W. Wilson, K. O. Christe, Inorg. Chem. 1987, 26, 1573-1580.
[6] C. Belin, M. Charbormel, J. Poitier, J. Chem. Soc. Chem. Commun. 1981, 1036-1037; O. G. Polyakov, B. G. Nolan, B. P. Fauber, S. M. Miller, O. P. Anderson, S. H. Strauss, Inorg. Chem. 2000, 39, 1735-1742.
[7] H. Fuchs, R. Landsberg, Z. Anorg. Allg. Chem. 1970, 372, $127-$ 133.
[8] W. Levason, J. S. Ogden, M. D. Spicer, M. Webster, N. A. Young, J. Am. Chem. Soc. 1989, 111, 6210-6212.
[9] O. Gálvez, A. Zoermer, A. Loewenschuss, H. Grothe, J. Phys. Chem. A 2006, 110, 6472-6481; J. Kölm, A. Engdahl, O. Schrems, B. Nelander, Chem. Phys. 1997, 214, 313-319; G. Maier, A. Bothur, Z. Anorg. Allg. Chem. 1995, 621, 743-746.
[10] H. S. P. Müller, C. E. Miller, E. A. Cohen, Angew. Chem. Int. Ed. Engl. 1996, 35, 2129-2131; Angew. Chem. 1996, 108, 2285-2288; H. S. P. Müller, C. E. Miller, E. A. Cohen, J. Chem. Phys. 1997, 107, 8292.
[11] J. M. Bossy, M. W. Leoni, R. E. Bühler, Helv. Chim. Acta 1972, 55, 107-116; C. E. Miller, S. L. Nickolaisen, J. S. Francisco, S. P. Sander, J. Chem. Phys. 1997, 107, 2300-2309; W. A. Alves, C. E. S. Cortes, R. B. Faria, Inorg. Chem. 2004, 43, 4112-4114.
[12] H. D. Försterling, H. J. Lamberz, H. Schreiber, Z. Naturforsch. A 1980, 35, 1354-1360; H. D. Försterling, H. J. Lamberz, H. Schreiber, Z. Naturforsch. A 1985, 40, 368-372.
[13] A. Rehr, M. Jansen, Angew. Chem. Int. Ed. Engl. 1991, 30, 329330; Angew. Chem. 1991, 103, 327-328; A. Rehr, M. Jansen, Inorg. Chem. 1992, 31, 4740-4742.
[14] K. Seppelt, X. Zhang, Z. Anorg. Allg. Chem. 1998, 624, 667-670.
[15] C. J. Schack, K. O. Christe, Inorg. Chem. 1974, 13, 2378-2381.

Manuscript received: September 25, 2019
Revised manuscript received: October 10, 2019
Accepted manuscript online: October 17, 2019
Version of record online: November 13, 2019

