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Abstract: Despite continuous advances in surgical and immunosuppressive protocols, the long-term
survival of transplanted kidneys is still far from being satisfactory. Antibody-mediated rejection,
recurrent autoimmune diseases, and death with functioning graft are the most frequent causes of
late-kidney allograft failure. However, in addition to these complications, a number of other non-
immunologic events may impair the function of transplanted kidneys and directly or indirectly lead
to their failure. In this narrative review, we will list and discuss the most important nonimmune
causes of late death-censored kidney graft failure, including quality of the donated kidney, adherence
to prescriptions, drug toxicities, arterial hypertension, dyslipidemia, new onset diabetes mellitus,
hyperuricemia, and lifestyle of the renal transplant recipient. For each of these risk factors, we will
report the etiopathogenesis and the potential consequences on graft function, keeping in mind that in
many cases, two or more risk factors may negatively interact together.

Keywords: hyperuricemia; quality of the donated kidney; adherence to prescriptions; drug toxicities;
arterial hypertension; dyslipidemia; new onset diabetes mellitus; hyperu

1. Introduction

Today, kidney transplantation is the preferred treatment for patients with end-stage
kidney disease. Declining rates of acute rejection have led to improvements in short-term
kidney transplant survival, but long-term results are still far from being satisfactory. Apart
from death with functioning graft, chronic antibody-mediated rejection and recurrence
of autoimmune diseases are the major limits for long-term graft survival [1–5]. For this
reason, physicians’ attention in the follow-up of transplant recipients is generally focused
on immune factors, whereas nonimmunologic factors receive less attention, despite their
substantially high contribution to post-transplant morbidity.

In this paper, we will review the most important nonimmunologic causes of death-
censored kidney allograft failure.

1.1. Quality of the Donated Kidney

Renal function in renal transplant recipients (RTRs) in general is supported by a
solitary functioning kidney. In the case of a deceased donation, the estimated glomerular
filtration (eGFR) of the donor usually ranges between 60 and 100 mL/min/1.73 m2, but in
older and extended criteria donors (ECDs) the eGFR may be considerably lower. Although
any functioning kidney transplant is cost-effective, compared to remaining on dialysis
on a waitlist [6], there is evidence that subclinical functional defects are generated in a
solitary kidney leading to long-term progressive vasculo-glomerular and tubulo-interstitial
lesions, also in nontransplanted individuals [7,8]. Early after transplantation, brain death
cytokine storm, ischemia-reperfusion injury, acute rejection, and infections [9–14] may lead
to acute kidney injury (AKI), ending in a chronic or acute inflammatory state concurring
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in the pathogenesis of arterial hypertension [15,16]. Another major consequence of the
inflammatory state is the development of chronic hypoxia that through the mediation
of interleukine 1 and 6, angiotensin II, and transforming growth factor beta can result in
excessive accumulation of extracellular matrix and fibrosis [17–19]. The excessive deposit of
the extracellular matrix can induce epithelial-mesenchymal transition and lead to interstitial
fibrosis and chronic allograft dysfunction [20–22].

These complications are more frequent and severe in transplants from deceased donors,
particularly ECDs. Extended criteria donors nowadays are a main source for kidney
transplantation. Survival and quality of life are better for ECD kidney transplants in
comparison with dialysis at any age [23–25]. However, the number of nephron and GFR
progressively decreases after the age of 29 [26], favoring the development of hypertension
and CKD in the general population. In kidney transplantation, large series reported that
a higher age of donor is related to a less kidney survival at 5 years [27]. For this reason,
organs from elderly donors are mainly allocated to elderly recipients, unless the older
donor has no history of hypertension, no increased creatinine, no cerebrovascular death,
no diabetes or cancer, and no other reasons to be defined as a marginal donor [28].

Living donor transplants in general are followed by a lower release of pro-inflammatory
factors in comparison with a deceased donor transplant. Cold ischemia time, ischemia-
reperfusion injury, cytokine and autonomic storms related to brain death, are considerably
reduced in living donor transplants. Preemptive transplantation also reduces the proin-
flammatory status, mainly linked to dialysis [29,30].

1.2. Adherence to Prescriptions

Medication non-adherence is prevalent in around 39% of patients with CKD and is
associated with poor control of blood pressure, disease progression, adverse events, and
mortality [31]. In RTRs the major problem is the complexity of treatment even in patients
with stable graft function. The burden of pills that patients receive is not only due to
immunosuppressive regimens but also to hypertension, dyslipidemia, and anemia. In a
survey of 1130 RTRs with stable serum creatinine, an average 5.9 years after transplantation,
each patient was taking on average 11 pills per day, 6 immunosuppressant and 5 non-
immunosuppressant [32]. Many immunosuppressive agents used in organ transplantation
exert adverse side effects including gastrointestinal disorders, hyperglycemia, hypertension,
and possible neurologic complications. Another issue that transplant physicians should be
aware of is depression, which is present in 25% of RTRs [33,34]. The presence of depressive
symptoms negatively affects adherence to prescriptions and clinical outcomes. Poor adher-
ence is particularly frequent in adolescents, with a weighted prevalence of non-adherence
in 32% of RTRs younger than 21 years [35]. In adult RTRs non-adherence to immunosup-
pressive medications is common, with 20% to 55% of patients being non-adherent [36–38].
Poor adherence is often related to social isolation, low belief in medications and/or poor
socio-economic conditions. Unintentional compliance is frequent in older patients. They
often forget to take medications, and the greater the number of drugs to take, the higher
the risk of forgetfulness. Moreover, changes in the dosage or type of medications can often
be misunderstood. A systematic review showed that nonadherence was associated with
poor clinical outcomes, contributing to 20% of late rejection episodes and 16% of graft
losses [39]. Poor adherence to clinical visits and/or to nonimmunosuppressive medications
may favor the occurrence of infection, tumors, and CVD. Noncompliance is also favored by
the complexity of the immunosuppressive regimen prescribed. Many immunosuppressive
drugs are prescribed twice a day, irrespective of available once-a-day formulations and of
their pharmacokinetic profile. Studies on patients receiving antibiotics have clearly shown
that compliance is strictly related to prescriptions schedules. Morning once-a-day adminis-
trations had the best patient compliance. A meta-analysis of randomized controlled trials
showed that compliance to antibiotic treatment is higher when an antibiotic is administered
once a day than multiple times daily for the treatment of specific infections and for specific



J. Pers. Med. 2022, 12, 1271 3 of 16

classes of antibiotics [40]. Lifetime treatment with immunosuppressive drugs should be
personalized and designed, keeping in mind simplicity, to enhance patient compliance.

1.3. Drug Toxicities

Calcineurin inhibitors (CNI) may be responsible for progressive and irreversible kidney
toxicities. CNI can cause kidney vasoconstriction by increased expression of vasoconstric-
tor factors, such as angiotensin II, endothelin-1, thromboxane A2, and leukotrienes, while
reducing the production of vasodilators, such as prostacyclin, prostaglandin E2, and nitric
oxide. In the long term, a chronic nephrotoxicity may develop, characterized by interstitial
fibrosis, tubular atrophy, glomerular sclerosis, and afferent arteriolopathy (Figure 1) [41].
Nephrotoxicity is usually dose-dependent, related to intra- and inter-individual bioavail-
ability and sensitivity. In the 1980s, during first experiences, cyclosporine (CsA) in kidney
transplantation was used at elevated doses, up to 15 mg/kg/day. High dosages resulted
in frequent acute and chronic nephrotoxicities. An Australian study pointed out that
58% transplanted kidneys treated with CsA for 10 years showed histologic signs of dose-
dependent chronic toxicities, such as arteriolar lesions, patchy interstitial fibrosis, tubular
atrophy, and focal, segmental, and global glomerular sclerosis [42]. In the same way, when
tacrolimus (TAC) was introduced as an immunosuppressive agent, target levels were in
the range of 15–20 ng/mL. Slowly, CSA and TAC dosage and blood target levels were
considerably reduced. Today, initial doses of CsA and TAC do not exceed 3–5 mg/kg/day
and 0.1 mg/kg/day, respectively. Doses are then progressively reduced over the time, up to
minimal effective doses for maintenance. To prevent nephrotoxicity, it is also important to
avoid concomitant use of nephrotoxic drugs (quinolones, aminoglycosides, amphotericin
B, foscarnet, etc.) or drugs that modify the pharmacokinetics of CNI, interfering with
cytochrome P 450 activities. The role of CNI as a main cause of interstitial fibrosis has
been overevaluated as many authors have suggested [1,43,44]. High CNI exposure can also
lead to systemic effects, including arterial hypertension, dyslipidemia, glucose intolerance,
hyperuricemia, indirectly affecting kidney allograft function.
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Figure 1. CNI renal toxicity. (a) CNI arteriolopathy; a preglomerular arteriole showing mucinoid
thickening of the arteriolar wall. (b) CNI arteriolopathy with severe nodular hyalinosis of the wall.
(c) Striped interstitial fibrosis, tubular dilatation and atrophy. (d) Diffuse interstitial fibrosis, glomeru-
lar ischemia and sclerosis.

An important, still unsolved issue in CNI monitoring is the relationship between cur-
rent therapeutic drug monitoring based on blood levels and the intracellular concentration
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of CNI. CNI exert their action inside T lymphocytes. Studies show that blood levels do not
reflect the intracellular concentration of CNI and may be misleading [45]. In addition, one
should take into account the impact of concurrent drugs that can interfere with CYP450
or P glycoprotein, thus modifying the blood levels [46]. An expert consensus pointed
out that acute rejection and kidney toxicity still occur in patients showing blood CNI
concentrations within the therapeutic range [47]. Because CNIs exert their action inside
T lymphocytes, intracellular CNIs should provide reliable results. However, measuring
intracellular CNIs concentrations is not easy. To date, there are no guidelines for the TDM
of intracellular CNI concentrations. A recent clinical study in kidney transplantation looked
at the relationship between intracellular TAC concentration and rejection or drug-related
toxicities. Tacrolimus was measured in the blood and within the cells on days 3 and 10
after kidney transplantation, and on the morning of a for-cause kidney transplant biopsy.
The correlation between TAC in the cells and TAC in the blood was poor. The study
conclusion was that TAC concentration in cells was not significantly associated with the
occurrence of rejection. These results might be inconclusive because of the low number
of patients included in this study and because peripheral blood mononuclear cells are
not a specific enough matrix to monitor tacrolimus [48]. In the future, the combination of
pharmacokinetics, pharmacogenetics, pharmacodynamics, and immunologic biomarkers
may allow a better guide the use of TAC in RTRs. The inhibitors of the mammalian target of
rapamycine (mTOR), sirolimus, and everolimus can exert dose-dependent antiproliferative
and apoptotic effects on epithelial tubular cells [49]. Impaired tubular reabsorption of
albumin has been demonstrated in a transplant patient treated with sirolimus in 2006 [50].
A randomized controlled trial comparing CsA with sirolimus reported increased protein-
uria, increased urinary excretion of markers of tubular damage and evidence of tubular
injury on kidney biopsy in patients treated with sirolimus [51]. Taken together, these data
would speak in favor of a tubular toxicity leading to poor reabsorption of albumin and
small proteins. Other immunosuppressive drugs used in kidney transplantation do not
exert direct nephrotoxicity, including belatacept, purine synthesis inhibitors, proteasome
inhibitors, and polyclonal and monoclonal antibodies.

1.4. Dialysis Vintage

End-stage renal disease (ESRD) is a wasting illness and is often associated with a higher risk
of cardiovascular diseases and many other comorbidities. A retrospective analysis of the United
States Renal Data System Registry reported that compared to preemptive transplantation,
waiting times of 0 to 6 months, 6 to 12 months, 12 to 24 months and over 24 months conferred
a 17%, 37%, 55%, and 68% increase in risk, respectively, for death-censored graft loss after
transplantation [52]. Poor graft function risk is particularly increased in elderly patients [53].

1.5. Hypertension

Arterial hypertension is frequently observed in RTRs and pathogenesis is multifacto-
rial in most cases (Figure 2). Many patients are already hypertensive before transplantation
and CNI immunosuppression may induce de novo or worsen previous hypertension. CNI,
as a side effect, activates the renin–angiotensin system and deactivates the atrial natriuretic
peptide, leading to arteriolar vasoconstriction with consequentially reduced GFR and extra-
cellular fluid expansion. [54]. Additional causes of hypertension are steroid-induced water
and salt retention, further aggravated by increased extracellular volume and renin production
caused by impaired graft function. Other causes may also contribute to the development of
post-transplant hypertension: native kidney disease, old donor age, chronic rejection, and
transplant renal artery stenosis. All these factors contribute to extracellular expansion and in-
crease in cardiac output. In the meantime, there is an increase in peripheral vascular resistance
caused by inappropriate secretion of renin-angiotensin-aldosterone axis [55].
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Arterial hypertension not only increases the risk for cardiovascular events but can
also deteriorate kidney allograft function. Several studies have shown that the higher
the levels of blood pressure are, the higher is the risk of graft failure [56–60]. Kasiske
et al. [61] found that a 10-mmHg increment above 140 mmHg in systolic blood pressure
was associated with a 12% relative risk for graft failure and 18% relative risk of death. On
the other hand, good blood pressure control may prevent many cardiovascular and kidney
complications. Appropriate lifestyle behaviour and physical activity is the first step to
control hypertension. Diuretics exert anti-hypertensive effect by reducing salt and water
overload but in transplant recipients this may cause a drop in GFR due to the impaired
hemodynamic adaptation of the transplanted kidney. Calcium channel blockers reduce
systemic vascular resistance acting on vascular smooth cells and may protect one from
CNI-induced vasoconstriction. Renin–angiotensin system (RAS) inhibitors control arterial
hypertension, reduce proteinuria, and may treat erythrocytosis, but a meta-analysis of
three randomized controlled clinical trials and two cohort studies, including 20.024 RTRs,
showed no significant reduced risk of allograft loss or mortality in RTRs treated with RAS
inhibitors [62]. Current convincing data to prove that RAS inhibitors can actually improve
outcomes in RTRs are still lacking. Some transplant physicians are reluctant to prescribe
these agents, as potassium can be increased, and hemoglobin and GFR can be reduced.
To obtain good control of hypertension and to avoid side effects, most kidney transplant
recipients are receiving a synergistic combination of antihypertensive drugs.

1.6. Dyslipidemia

Dyslipidemia is a common complication after kidney transplantation [63,64] and is
an important contributor to the high rate of cardiovascular diseases in RTRs, also poten-
tially causing kidney dysfunction. Typically, dislipidemia is observed during the first 3
to 6 months after transplantation, when freedom from dialysis allow a free diet, and may
then persist for 10 or more years. The pathogenetic mechanisms for lipid disorders after
transplantation are multifactorial: excessive dietary intake of saturated fat and eating disor-
ders, poor physical activity, and sedentary habits are common in RTRs. Many transplant
recipients become overweight or obese after transplantation [65] and develop diabetes
after transplantation [66]. Moreover, poor post-transplant renal function, leading to CKD
stage 3 [67], can favor the development of dyslipidemia [68]. However, the most important
cause of post-transplant dyslipidemia is due to immunosuppressive drugs: CSA, TAC,
and mTOR inhibitors. Cyclosporine increases total cholesterol (C), VLDL-C, and LDL-C
by downregulating LDL receptor expression [69]. Hypertriglyceridemia in CNI-treated
RTRs is associated with increased plasma apoCIII concentrations [70]. Despite hypercholes-
terolemia being significantly less frequent in RTRs receiving TAC with respect to CsA [71],
tacrolimus can significantly increase plasma triglycerides, reducing LPL activity [72]. More-
over, mTOR inhibitors are frequently associated with dyslipidemia [73]. These drugs
increase hepatic synthesis of apoB100, VLDL, expression of adipose tissue lipase, apoCIII,
and lipophagy, while decreasing LDL liver catabolism, LPL expression, and preventing
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the uptake of lipids into adipocytes [74–76]. On the other hand, dyslipidemia caused by
mTOR inhibitors may be balanced by the cardioprotective effects of these drugs [67]. Many
transplant recipients receive lifetime maintenance glucocorticoids that enhance the activity
of acetyl coenzyme convertase and of fatty acid system, increasing hepatic synthesis of
VLDL, downregulating LDL receptor activity, and inhibiting lipoprotein lipase [77]. Very
few transplant recipients are on a steroid-free regimen. Evidence suggesting that renal lipid
accumulation and lipotoxicity may lead to kidney dysfunction has mounted significantly
in recent years. Lipid accumulation, changes in circulating adipokines, alterations in renal
lipid metabolism, insulin resistance, generation of reactive oxygen species, and endoplas-
mic reticulum stress are factors eventually leading to damage of the glomerular filtration
barrier and to kidney failure [78,79]. Other studies showed that an excessive accumulation
of cholesterol and/or triglycerides may cause podocyte injury and proteinuria, suggesting
that lipids represent a major regulator of danger signaling from the circulation to glomeru-
lar cell [80]. In a retrospective study conducted in more than 12,000 healthy participants,
high triglycerides and low HDL-C predicted an increased risk of kidney dysfunction, and
treatment of these abnormalities could reduce the incidence of early renal disease [81].
Finally, decreased fatty acid oxidation in CKD may contribute to lipid accumulation in
the tubular compartment, which results in energy depletion, followed by apoptosis and
de-differentiation, all factors contributing to fibrosis and CKD progression [82]. Although
it is difficult to extrapolate these data to RTRs, few studies reported associations between
early post-kidney transplant lipid levels and subsequent damages of graft function or
death-censored graft loss [83,84]. Pharmacological treatment is necessary if LDL choles-
terol level is > 190 mg/dL. Statins are generally well tolerated but myositis and muscle
symptoms may occur, leading to poor adherence or discontinuation. There is evidence
that statins may reduce cardiovascular events, whereas the benefits on kidney function are
controversial. A meta-analysis of randomized controlled trials reported that in adults with
CKD, statins do not reduce the risk for kidney failure events, but may modestly reduce
proteinuria and rate of eGFR decline [85,86]. Drug–drug interactions that increase statin
plasma concentrations mainly involve the co-administration of inhibitors of cytochrome P
enzymes (particularly CYP3A4, which is inhibited by CNI), or inhibitors of the transporter
proteins activities, which participate in statin cell influx and efflux. Although CNI may
increase blood levels of lipophylic statins, with the exception of fluvastatin, results from
several studies show that statins do not induce increased systemic exposure of CNI. Ezetim-
ibe represents an alternative, especially for statin-intolerant patients or when added to the
highest tolerated statin dose. If a predominant hypertriglyceridemia is present, low calorie
intake, low-fat diet and fish oil is suggested and may be beneficial. Fibrates may also lower
triglyceride levels but can be responsible for a reversible increase in serum creatinine. There
is insufficient information on the use of monoclonal antibodies in RTRs [87].

1.7. New Onset Diabetes Mellitus

New onset diabetes after transplantation (NODAT) is a frequent complication in RTRs,
due by traditional and non-traditional pro-diabetic risk factors. The traditional risk factors
are the same leading to development of diabetes type 2 in the general population. Non-
traditional risk factors include perioperative stress, hepatitis C infection, cytomegalovirus
infection, vitamin D deficiency, hypomagnesemia, and immunosuppressive medications,
such as glucocorticoids, CNI, and mTOR inhibitors. Glucocorticoids may induce insulin
resistance by different mechanisms, including impaired osteoblast function with conse-
quent increase in visceral adiposity and lipolysis, leading to elevated free fatty acids [88],
hepatic steatosis [89], and decreased transcription of insulin receptors in skeletal muscle,
while increasing transcription of two proteins that counter insulin action [90]. CNI can
induce decreased insulin secretion [91], increased insulin resistance [92], and direct toxicity
on β cells [93]. The diabetogenic effects of TAC are more intense compared with those of
CsA [94]. Immunosuppression with mTOR inhibitors has a direct effect on pancreatic beta
cells, reducing directly insulin secretion [95], and inducing gluconeogenic pathways in the
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liver [96]. However, in RTRs the association between mTOR inhibitors medication and hy-
perglycemia is weak, and is mostly due to the contemporary drug interaction with CNI [97].
NODAT may progress to diabetic nephropathy and proteinuria. The kidney pathological
findings of NODAT are similar to those of primary diabetic nephropathy in native kid-
neys [98]. However, NODAT is frequently associated with vascular or tubulointerstitial
histological changes due to concurrent rejection, viral infections, or drug nephrotoxicity.
Avoiding excessive weight gain, leading a healthy lifestyle, reducing caloric intake, and
engaging in physical exercise are typically recommended at the discharge of patients after
renal transplantation, but compliance with these indications is generally low. Management
of diabetes is more challenging in transplant recipients than in nontransplant patients,
because of the greater risk on kidney function. Metformin may offer some advantages
over other glucose-lowering agents with respect to risk of hypoglycemia [99] and beneficial
effects on the kidney [100,101], There has been concern about the risk of life-threatening
lactic acidosis. However, many kidney transplant recipients are using metformin with-
out experiencing side effects [102]. Two comprehensive reviews found no evidence of an
increased risk of lactic acidosis, using metformin compared to other anti-hyperglycemic
treatments [103,104]. Potential side effects of rosiglitazone and pioglitazone include edema,
congestive heart failure, and bone fractures [105,106]. Glucagon-like peptide-1 (GLP-1)
inhibitors may reduce progression of renal disease in type 2 diabetes [107,108], but these
drugs have serious gastrointestinal effects and might increase the risk of pancreatitis and/or
tumors [109]. A small study in organ transplant recipients reported that GLP-1 inhibitors
are effective and do not affect TAC levels or transplant outcomes in the short term [110].
Inhibitors of dipeptidyl peptidase 4 (DPP-4 inhibitors or gliptins) are generally considered
safe, with a low rate of side effects. Concerns about increased risk of cardiovascular events
or pancreatic cancer development have not been confirmed [111]. A systematic review
of 7 studies reported that DPP-4 inhibitor use in transplant recipients did not result in
significant change in eGFR or TAC blood levels [112]. Sodium glucose cotransporter-2
(SGLT2) inhibitors, such as canagliflozin, dapagliflozin, empaglifloziin, sotagliflozin etc.,
inhibit the reabsorption of glucose in the proximal tubular cells and facilitate glucose
excretion in urine. As glucose is excreted, its plasma levels fall, leading to an improvement
in all glycemic parameter. SGLT2 inhibition has also been shown to reduce cardiovascular
mortality and preserve kidney function in patients with type 2 diabetes [113]. However,
urinary tract infections and a slight initial decrease in renal function may limit use of SGLT2
inhibitors [114]. A systematic review and meta-analysis of 8 studies with 132 RTRs with
excellent kidney function reported that SGLT-2 inhibitors for treatment of NODAT are
effective in lowering glycate hemoglobin, reducing body weight, and preserving kidney
function without serious adverse events [115]. In RTRs requiring insulin treatment, the
dose and type of insulin prescription should be based on individual patient needs.

1.8. Hyperuricemia

Hyperuricemia is related to cardiovascular diseases [116,117] and is an independent
predictor of chronic kidney disease development and progression [118–122]. An inde-
pendent association between serum urate levels and allograft outcomes was found in
RTRs [123,124]. A retrospective analysis in 2993 kidney transplant recipients showed that
low and normal serum urate levels within the first year are an independent predictor of
better renal allograft outcomes in the long term [125]. However, in RTRs it is difficult to
separate hyperuricemia as a cause or consequence of kidney injuries [126]. The mechanistic
interpretation of urate-related kidney injury is complex. Hyperuricemia can activate the
renin-angiotensin-aldosterone system, along with the inhibition of nitric-oxide synthesis in
the kidney, leading to medial thickening of preglomerular arterioles, renal vasoconstriction,
and increased systemic blood pressure [127]. On the other hand, uric acid is recognized as
an endogenous damage-associated molecular pattern by pattern-recognition receptors with
engagement of inflammasomes and activation of pro-inflammatory interleukin-1β and
interleukin-18 [128]. This inflammatory process may end in kidney ischemia and hypoxia,
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two powerful inducers of tubulointerstitial fibrosis [129], and in the epithelial-mesenchymal
transition of renal tubular cells with increased fibronectin synthesis [130,131]. In summary,
a two-hit model can be proposed. The first hit entails activation of molecules and factors
that promote endothelial dysfunction, proliferation of vascular smooth-muscle cells and
sodium reabsorption, leading to increased systemic blood pressure. The second hit involves
activation of inflammatory status increasing vascular resistances, kidney ischemia and hy-
poxia, eventually leading to vascular and tubulo-interstitial lesions inducing development
and progression of kidney disease [132]. Xanthine oxidase inhibitors are the cornerstone to
reduce uricemia to ≤6 mg/dL, the target value for urate-lowering drugs. Allopurinol is a
nonspecific competitive inhibitor of xanthine oxidase that undergoes conversion to oxypuri-
nol, prior to renal excretion. Serious adverse events are mainly related to hypersensitivity
to allopurinol [133]. Concomitant administration of azathioprine and xanthine oxidase
inhibitors engenders the hazard of severe bone marrow suppression because xanthine
oxidase inhibitors inhibit the oxidation of 6-mercaptopurine to inactive metabolites. There-
fore, concomitant administration should be avoided, unless allopurinol is the only option
and has to be used. In these cases, dose reduction of azathioprine or 6-mercaptopurine is
suggested, and white blood cells should be strictly monitored. More recently, febuxostat
has become an established alternative for the treatment of hyperuricemia. Febuxostat is
extensively metabolized by oxidation and acyl-glucuronidation, with subsequent renal
clearance of febuxostat-acyl-glucuronides. Although pharmacokinetic parameters are not
affected by mild to moderate hepatic impairment, there is no consensus on whether renal
impairment has any effect on the pharmacokinetics of febuxostat [134]. As for allopurinol,
current febuxostat labeling contraindicates the concomitant administration of febuxostat
with either azathioprine or 6-mercaptopurine. In RTR, febuxostat had higher odds to
reach the target of serum uric acid < 6 mg/dL compared to allopurinol, without causing
significant side effects [135,136].

Although mounting evidence indicate that hyperuricemia may concur with other
factors in inducing kidney damages, no robust data are available to support the routine use
of pharmacotherapy for RTRs with asymptomatic hyperuricemia.

1.9. Anemia

In transplant recipients with poor kidney allograft function, anemia is frequent. Ery-
thropoiesis stimulating agents (ESAs) may be used in the early posttransplant period to
prevent renal hypoxia or in the late period to prevent cardiovascular complications. There is
no evidence that treatment with ESAs may affect kidney function in RTRs. Rather, targeting
higher hemoglobin levels may reduce the progression of allograft nephropathy [137].

2. Lifestyle
2.1. Smoking

Epidemiological studies documented a marked risk of irreversible proteinuria in
smokers [137,138]. Smoking can also accelerate the progression of renal failure in patients
with kidney disease [139]. Patients who continue to smoke after transplantation are at
increased risk of graft failure [140] that may be reversed by stopping smoking [141]. A
history of smoking before kidney transplantation can also contribute significantly to allo-
graft loss [142,143]. The kidney histologic picture in smokers is characterized by interstitial
fibrosis [144] or nodular glomerulosclerosis [145]. The pathogenesis of smoking-related renal
damage is largely unknown. The intermittent increase in blood pressure during smoking
might play a major role in causing renal damage [146]. Increased sympathetic activity, in-
creased renal vascular resistance, oxidative stress, increased intraglomerular pressure, and/or
renal artery arteriosclerosis probably contributes to the deleterious effects of smoking [147].

2.2. Sedentary Activity

A retrospective study evaluated the impact on kidney function of active physical
activity (≥ 30-min, 5 times/week) versus nonactive patients in 2060 stable RTRs aged
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≥18 years, with at least a 10-year follow-up. A slower decline of eGFR over time was
observed in active RTRs compared to non-active patients [148]. It is unclear how physical
activity may protect one from kidney function deterioration. There is evidence that exces-
sive weight, glucose intolerance, and high blood pressure are reduced by regular physical
activities, indirectly avoiding eGFR decline [149]. In a recent paper, 19 RTRs prospectively
underwent magnetic resonance images on a 3T scanner including diffusion-weighted,
blood oxygenation level dependent (BOLD), and arterial spin labeling sequences in hip
positions 00 and >900 before and after intravenous administration of 20 mg furosemide.
Unexpectedly, graft perfusion values were significantly higher in flexed, compared to neutral
hip position. BOLD-derived cortico-medullary R2 ratio was significantly modified during hip
flexion, suggesting an intrarenal redistribution of the oxygenation in favor of the medulla and
to the detriment of the cortex. Although more data are needed, the authors suggest avoiding
prolonged sitting for RTRs and favor exercises without major sustained hip flexion, such as
rowing, for example [150].

2.3. Diet

Nutrition is an important medical aspect in kidney transplantation. During the acute
post-transplant phase, some patients with a long history of CKD and dialysis are generally
malnourished [151,152]. In these patients, dietetic regimen of 25–35 kcal/kg ideal body
weight (IBW)/day and 1.0–1.2 g protein/kg IBW/day is recommended, until achievement
of nutritional adequacy [153,154].

In the long-term, a low-salt and high-fiber diet is recommended to prevent and
treat obesity, diabetes, dyslipidemia, and hypertension. The Mediterranean diet exerts
beneficial effects on CVD, diabetes, obesity, metabolic syndrome, and cancer [155–160]. The
Mediterranean diet, including high consumption of olive oil, legumes, unrefined cereals,
fruits, and vegetables, a moderate to high consumption of fish, a moderate consumption
of dairy products (mostly as cheese and yogurt), a moderate wine consumption, and a
low consumption of non-fish meat products, might also protect kidney graft function. In
a study, the nine-point Mediterranean Diet Score was assessed in 632 RTRs with graft
functioning for ≥1 year, adherent to the Mediterranean diet. During median follow-up of
5.4 years, the Mediterranean Diet Score was inversely associated with graft failure, kidney
function decline, and graft loss, independently of potential confounders [161]. For people
unfamiliar with the Mediterranean diet, this diet is based on a balanced diet of a variety of
fresh fruits and vegetables, lean meats, and plenty of water, whereas fat dairy products and
whole grains should be reduced.

2.4. Infections

Any severe infection can damage the kidney graft either because of rejection due
to reduced immunosuppression or because of treatment with nephrotoxic anti-infective
drugs such as aminoglycosides, vancomycin, amphoterin, quinolones, anti-fungal, and
anti-viral agents. Urinary tract infections (UTI) are frequent but usually respond well to
antimicrobials or do not need treatment if asymptomatic. However, frequent recurrence
of UTI may be associated to an increased risk of chronic rejection [162]. UTI may induce
acute pyelonephritis, particularly in patients with stones, stents, or mechanical obstruction.
Rapid increase of serum creatinine is possible in pyelonephritis. Acute kidney damages
may be reversible if infection is controlled, but may also cause graft loss and death [163]
when bacteremia leads to multi-organ dysfunction, with the kidney frequently involved.

Candidosis, aspergillosis, and mucormycosis may cause severe renal disease usually
in the early post-transplant period. BK polyoma virus is the most frequent cause of infective
late graft failure. Infection occurs during childhood and remains latent in the tubules. In
kidney transplant recipients, the reactivation of BK virus may occur. The diagnosis of
BKV is made between 6 and 12 months post-transplantation, more often after treatment of
rejection and in patients receiving strong immunosuppression [164,165]. BK virus infection
may cause interstitial nephritis with a large number of plasma cells that leads to progressive
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graft loss. The prevalence of polyomavirus BK nephropathy in RTRs ranges between 3%
and 8% [166–168]. The presence of viral inclusions, known as “decoy cells,” in urine and
the presence of BK virus DNA in plasma and in urine are markers for the replication of
BK virus infection [166,167]. The sensitivity of decoy cells is 100% but the predictive value
is low, only 27%. The demonstration of viremia confirm the diagnosis, with a sensitivity
of 100%, a specificity of 92% and a predictive value of 74% [169]. Renal biopsy shows
interstitial nephritis with infiltrate rich in plasma cells, and atypical intra-nuclear viral
inclusion bodies. Ureteral stenosis and/or hemorrhagic cystitis can also occur. In the
presence of renal function, deterioration and positive PCR-BKV renal biopsy is mandatory.
There is no specific treatment for BK virus infection. Reduction of immunosuppression may
stabilize renal function in a few cases but may expose one to the risk of acute rejection. A
systematic review showed that leflunomide, cidofovir, and intravenous immunoglobulins
failed to show any efficacy [170]. Graft loss occurs in 15–50% of BK polyomavirus-associated
nephropathy. The Transform study has recently shown that everolimus, in combination
with CNI, has a protective effect on BKV infection development. If a patient has lost
the transplanted kidney because of BKV nephropathy, in the absence of BKV viremia,
retransplantation is not a contraindication [171], and the immunosuppressive regimen
including everolimus may be protective from reinfection.

In conclusion, today many kidney transplant are lost because of death with functioning
graft (47%), chronic allograft nephropathy (29%), acute rejection (2.8%), hyperacute rejection
(0.1%), nonlethal cardiovascular events (2%), technical complications (0.8%), recurrent
glomerulonephritis (3.2%), noncompliance (2%), and other causes (11.8%) [172].

A personalized approach to care for clinical signs leading to nonimmune kidney graft
failure, including adherence to prescriptions, avoiding drug toxicities, controlling arterial
hypertension, treating dyslipidaemia, caring for new onset diabetes mellitus, treating hype-
ruricemia, and suggesting a healthy lifestyle may contribute to prolonged renal transplant
function, and give better and longer lives to transplant recipients.
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