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Abstract

We present a systematic assessment of polygenic risk score (PRS) prediction across more

than 1,500 traits using genetic and phenotype data in the UK Biobank. We report 813 sparse

PRS models with significant (p < 2.5 x 10−5) incremental predictive performance when com-

pared against the covariate-only model that considers age, sex, types of genotyping arrays,

and the principal component loadings of genotypes. We report a significant correlation

between the number of genetic variants selected in the sparse PRS model and the incre-

mental predictive performance (Spearman’s ρ = 0.61, p = 2.2 x 10−59 for quantitative traits,

ρ = 0.21, p = 9.6 x 10−4 for binary traits). The sparse PRS model trained on European indi-

viduals showed limited transferability when evaluated on non-European individuals in the

UK Biobank. We provide the PRS model weights on the Global Biobank Engine (https://

biobankengine.stanford.edu/prs).

Author summary

Polygenic risk score (PRS), an approach to estimate genetic predisposition on disease lia-

bility by aggregating the effects across multiple genetic variants, has attracted increasing

research interest. While there have been improvements in the predictive performance of

PRS for some traits, the applicability of PRS models across a wide range of human traits

has not been clear. Here, applying penalized regression using Batch Screening Iterative

Lasso (BASIL) algorithm to more than 269,000 individuals of white British ancestry in UK

Biobank, we systematically characterize PRS models across more than 1,500 traits. We

report 813 traits with PRS models of statistically significant predictive performance. While

the statistical significance does not necessarily directly translate into clinical relevance, we

investigate the properties of the 813 significant PRS models and report a significant corre-

lation between predictive performance and estimated SNP-based heritability. We find

that the number of genetic variants selected in our sparse PRS model is significantly corre-

lated with the incremental predictive performance in both quantitative and binary traits.
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Our transferability assessment of PRS models in UK Biobank revealed that the sparse PRS

models trained on individuals of European ancestry had a lower predictive performance

for individuals of African and Asian ancestry groups.

Introduction

Polygenic risk score (PRS), an estimate of an individual’s genetic liability to a trait or disease,

has been proposed for disease risk prediction with potential clinical relevance for some traits

[1,2]. Due to training data sample size increase and methods development advances for variable

selection and effect size estimation, PRS predictive performance has improved [3–17]. However,

it has not been clear what would be the predictive performance of PRS models when it is applied

to a wide range of traits and their transferability across ancestry groups. Rich phenotypic infor-

mation in large-scale genotyped cohorts provides an opportunity to address this question.

Here, we present significant sparse PRSs across 813 traits in the UK Biobank [18,19]. We

applied the recently developed batch screening iterative lasso (BASIL) algorithm implemented

in the R snpnet package [10] across more than 1,500 traits consisting of binary outcomes and

quantitative traits, including disease outcomes and biomarkers, respectively (Fig 1, S1 Table).

As opposed to most of the recently developed PRS methods that take genome-wide association

study (GWAS) summary statistics as input, BASIL/snpnet is capable of performing variable

selection and effect size estimation simultaneously from individual-level genotype and pheno-

type data. BASIL/snpnet results in sparse PRS models, meaning that most genetic variants in

the input dataset have zero coefficient. For example, the snpnet PRS for standing height, a clas-

sic example of polygenic traits, includes 51,209 variants, which has non-zero coefficients for

4.7% of 1,080,968 genetic variants and allelotypes present in the input genetic data. Moreover,

this approach does not require the explicit specification of the underlying genetic architecture

of traits, suitable for a phenome-wide application of PRS modeling. Using individuals in a

hold-out test set, we evaluated their predictive performance and their statistical significance,

resulting in 813 significant (p< 2.5 x 10−5) PRS models. We find a significant correlation

between the number of the genetic variants selected in the model and the incremental predic-

tive performance compared to the covariate-only models across quantitative traits and binary

traits. We assess the transferability of the PRS models across ancestry groups using individuals

from non-British white, African, South Asian, and East Asian ancestry in the UK Biobank. We

make the coefficients of the PRS models publicly available via the PRS map web application on

the Global Biobank Engine [20] (https://biobankengine.stanford.edu/prs).

Results

Characterizing sparse PRS models with BASIL algorithm

To build sparse PRSs across a wide range of phenotypes, we compiled a total of 1,565 traits in

the UK Biobank. We grouped them into trait categories, such as disease outcomes, anthropom-

etry measures, and cancer phenotypes (S1 Table, Methods). We analyzed a total of 1,080,968

genetic variants and allelotypes from the directly-genotyped variants [19], imputed HLA allelo-

types [21], and copy number variants [22]. Using 80% (n = 269,704) of unrelated individuals of

white British ancestry, we applied batch screening iterative lasso (BASIL) implemented in the

R snpnet package [10]. This recently developed method characterizes PRS models by simulta-

neously performing variable selection and effect size estimation. Applying different levels of

penalization in the Lasso regression with penalty factors, we prioritized the medically relevant
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(https://www.pgscatalog.org/publication/

PGP000244/ and https://www.pgscatalog.org/

publication/PGP000128/, score IDs are listed in S1

Table). The BASIL algorithm implemented in the R

snpnet package was used in the PRS analysis,

which is available at https://github.com/rivas-lab/

snpnet. The analyses presented in this study were

based on the individual-level data accessed

through the UK Biobank: https://www.ukbiobank.

ac.uk.
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Fig 1. Significant sparse polygenic risk scores (PRSs) across 813 traits in the UK Biobank. (A) We analyzed a total of more than 378,000 unrelated individuals and

1,565 traits in UK Biobank. We used 80% of individuals of white British ancestry for score development. For evaluation, we used the remaining 20% of individuals and

additional individuals in other ancestry groups. (B) The full list of 1,565 traits with predictive performance is shown as a sortable table at Global Biobank Engine

(https://biobankengine.stanford.edu/prs). (C) The predictive performance of PRS models for quantitative traits is summarized as a heatmap comparing the predicted

risk score (Z-score) and observed trait value (left) and mean and standard error of trait values stratified by percentile bin (right). (D) The predictive performance of

PRS models for binary traits is summarized as PRS score distribution stratified by case/control status (left) and odds ratio stratified by percentile bin (right). (E) The

non-zero coefficients of the sparse PRS model are shown. (F) The predictive performance evaluation in training and test sets consist of individuals of white British

ancestry, as well as additional sets consisting of individuals from non-British white, African, South Asian, and East Asian ancestry groups in the UK Biobank.

https://doi.org/10.1371/journal.pgen.1010105.g001
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alleles in the PRS model. Specifically, we used the predicted consequence of the genotyped vari-

ants and the pathogenicity information in the ClinVar database. We prioritized protein-trun-

cating variants, protein-altering variants, imputed HLA allelotype, and known pathogenic and

likely-pathogenic variants by assigning lower penalty factors (Methods). As unpenalized covar-

iates, we included age, sex, and the loadings of the top ten principal components (PCs) of geno-

types. For 35 blood and urine biomarker traits, we took the snpnet PRS models from a recently

published study [23], where the PRS models were characterized with the same methods on the

same set of individuals following the adjustment for an extensive list of technical covariates,

including fasting time and dilution factors, as well as for age, sex, and genotype PCs.

To evaluate the predictive performance (R2 for quantitative traits and observed scale

Nagelkerke’s pseudo-R2 [also known as Cragg and Uhler’s pseudo-R2] [24,25] for binary traits)

and its statistical significance, we focused on the remaining 20% of unrelated individuals in the

hold-out test set (n = 67,425) as well as additional sets of unrelated individuals in the following

ancestry groups in UK Biobank: non-British European (non-British white, n = 24,905), Afri-

can (n = 6,497), South Asian (n = 7,831), and East Asian (n = 1,704) (S2 Table, Methods). We

found 813 PRS models with significant (p< 2.5 x 10−5 = 0.05/2,000, adjusted for multiple

hypothesis testing with Bonferroni method) predictive performance in the hold-out test set of

white British individuals (Methods). For the binary traits, we also evaluated the receiver oper-

ating characteristic area under the curve [ROC-AUC] and Tjur’s Coefficient of Discrimination

(Tjur’s pseudo-R2) [26].

The participants of the UK Biobank were genotyped on two different arrays: about 10% of

participants were genotyped on the UK BiLEVE Axiom array, whereas the rest were genotyped

on the UK Biobank Axiom array [19]. To account for the potential biases correlated with the

types of arrays, we evaluated the predictive performance of the PRS by accounting for the

types of the arrays in addition to the age, sex, and the top ten genotype PCs. We found the

identity of the UK Biobank assessment centers mostly has a non-significant impact on the pre-

dictive performance (S1 Fig, Methods).

To assess the degree of prioritization of the medically relevant alleles, we selected standing

height, body mass index (BMI), high cholesterol, and asthma. We compared the predictive

performance and the number of genetic variants for each functional category. For the four

selected traits, we found a little difference in the predictive performance (R2 = 0.177 vs. 0.176

for the PRS model with penalty factor and without penalty factor, respectively, for standing

height, R2 = 0.111 vs. 0.111 for BMI, AUC = 0.620 vs. 0.619 for high cholesterol, and

AUC = 0.617 vs. 0.617 for asthma) (S2 Fig) while we saw an enrichment of the number of the

medically relevant alleles with non-zero coefficients in the PRS model with prioritization (2.14

fold enrichment standing height, 2.75 fold for BMI, 4.14 fold for high cholesterol, and 4.33

fold asthma) (Table 1 and S3 Table), highlighting the flexibility of the BASIL/snpnet in assign-

ing different levels of penalization based on the variant-level information.

With the same set of four traits, we asked whether including the imputed genetic variants

could improve the predictive performance. We saw some gain in the predictive performance

in three traits but not for standing height (S3 Fig). Based on those results, we decided to move

on to the phenome-wide application of the BASIL algorithm implemented in the R snpnet
packages on the directly genotyped variants, imputed allelotypes, and copy number variants

while prioritizing the medically relevant alleles with penalty factors.

Significance and estimated effect size of sparse PRS models

We estimated the SNP-based heritability by applying linkage disequilibrium (LD) score regres-

sion (LDSC) [27] on genome-wide association study (GWAS) summary statistics. We
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compared it against the predictive performance (R2 for quantitative traits and Nagelkerke’s

pseudo-R2 for binary traits) of the significant PRS models (Fig 2). Across 244 binary traits and

569 quantitative traits with significant PRS models, we found higher estimated observed scale

heritability for quantitative traits. Overall, we found a significant correlation between the esti-

mated SNP-based observed scale heritability and predictive performance (Spearman’s rank

correlation coefficient ρ = 0.44, p-value = 3.5 x 10–13 for binary traits, ρ = 0.46, p-value = 1.4 x

10–31 for quantitative traits).

The basic covariates alone are already informative for phenotype prediction. To assess the

incremental utility of PRSs, we quantified the incremental predictive performance by compar-

ing the predictive performance of the full model that considers both genotypes and covariates

and that of the covariate-only model across the 813 traits with significant sparse PRS. We

found most traits have a modest increase in the effect sizes of the prediction with a few notable

exceptions, such as celiac disease (Nagelkerke’s pseudo-R2 = 0.149 in the full model vs 0.006 in

the covariate-only model, p = 3.8 x 10−162), hair color (red) (Nagelkerke’s pseudo-R2 = 0.603

vs. 0.008, p< 1 x 10−300), mean platelet volume (R2 = 0.36 vs. 0.001, p< 1 x 10−300), heel bone

mineral density (R2 = 0.20 vs. 0.06, p < 1 x 10−300), and blood and urine biomarker traits [23]

(Figs 3 and 4).

Sparse PRS models offer an interpretation of genomic loci underlying the

polygenic risk

Celiac disease is an autoimmune disorder that affects the small intestine from gluten consump-

tion. The sparse PRS model for this trait, for example, consists of 428 variants that contain the

imputed HLA allelotypes and variants near the MHC region in chromosome 6 [19,21]. The

PRS model also contains genetic variants in all other autosomes, including a previously impli-

cated missense variant in chromosome 12 (rs3184504, log(OR) = 0.15 in multivariate PRS

model) in SH2B3. This gene encodes SH2B adaptor protein 3, which is involved in cellular sig-

naling, hematopoiesis, and cytokine receptors [28] (Fig 4).

The size of the PRS model is correlated with the incremental predictive

performance

The significant PRS models have a wide range of the number of variables selected in the

model, ranging from only one variable for iritis PRS (HLA allelotype, HLA-B�27:05, at the

well-established HLA-B�27 locus [29,30]) to 51,209 variants selected for standing height PRS

(Fig 5). We examined whether there is a relationship between the number of active variables in

the significant PRS model and the incremental predictive performance. The significant

Table 1. The prioritization of the medically relevant alleles with penalty factors. The numbers of the genetic vari-

ants or allelotypes with non-zero coefficient values are shown for the selected four traits. The denominator represents

the total number of variables included in the model. The numerator represents the number of the medically relevant

alleles, which are one of the following: protein-truncating variants, protein-altering variants, imputed HLA allelotypes,

the pathogenic or likely-pathogenic variants in the ClinVar database. The enrichment of the medically relevant variants

is also shown.

Trait Number of selected genetic variants or allelotypes

with penalty factor without penalty factor enrichment

Standing height 4187 / 51209 2129 / 55937 2.15

Body mass index 2543 / 27126 977 / 28667 2.75

High cholesterol 969 / 5987 215 / 5506 4.14

Asthma 1022 / 6430 250 / 6819 4.34

https://doi.org/10.1371/journal.pgen.1010105.t001
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correlation between the two quantities is stronger in quantitative (Spearman’s rank correlation

coefficient ρ = 0.61, p = 2.2 x 10−59) traits than in binary (ρ = 0.21, p = 9.6 x 10−4), reflecting

the difference in power between binary and quantitative traits [31].

Sparse PRS models exhibit limited transferability across ancestry groups

While the majority of the participants in the UK Biobank are of European ancestry, the inclu-

sion of individuals from African and Asian ancestry enables an assessment of the transferabil-

ity of the PRS models across ancestry groups in UK Biobank. In addition to the hold-out test

set that we derived from the white British population, we focused on additional sets of individ-

uals from non-British European (non-British white), African, South Asian, and East Asian

ancestry groups and compared the incremental predictive performance with that in white Brit-

ish hold-out test set (Fig 6). For quantitative traits, the models predicted well for non-British

white (linear regression fit of the incremental predictive performance: y = 0.91x), but they suf-

fer limited transferability for the non-European ancestry groups (y = 0.56x, y = 0.47x, and

y = 0.13x for South Asian, East Asian, and African, respectively). Similarly, in binary traits, the

non-British white showed higher transferability (y = 0.80 x) than the non-European ancestry

groups (y = 0.027x, y = 0.059x, and y = -0.145x for South Asian, East Asian, and African,

respectively).

Fig 2. Comparison of the estimated SNP-based heritability and predictive performance across the 813 traits with significant PRSs. The predictive performance

(Nagelkerke’s pseudo-R2 for 244 binary traits [left] and R2 for 569 quantitative traits [right]) of the PRS models that only consider genetic variants are compared

against the estimated SNP-based heritability. Both metrics are shown in observed scale and depend on the proportion of cases in the target and discovery cohorts. The

solid gray lines represent y = x. We show the points on the bottom left corners in the inset plots. The error bars represent standard error. BMD: Bone mineral density.

https://doi.org/10.1371/journal.pgen.1010105.g002
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Discussion

In this study, we performed a systematic scan of polygenic prediction across more than 1,500

traits and reported 813 significant sparse PRS models. We found a correlation between the pre-

dictive performance of the significant PRS models and SNP-based heritability estimates. We

assessed the effect size of the PRS model by quantifying the incremental predictive perfor-

mance, which we define as the difference in the predictive performance between the covariate-

only model and the full model consisting of both covariates and genetics. In both quantitative

and binary traits, we find a significant correlation between the number of independent loci

included in the model and their incremental predictive performance.

Our study is complementary to many other studies that focus on fewer traits to construct

PRS models from GWAS meta-analysis and mixed models. While the sample size in our study

is sufficiently large to observe statistical significance in predictive performance across hun-

dreds of traits, it does not necessarily mean the clinical relevance of the PRS models. Moreover,

population-based recruitment in UK Biobank may not be the best strategy to achieve the high-

est predictive performance for some traits. A disease-focused study [6,32–34] would be an

attractive alternative strategy, especially when multiple genotyped cohorts recruited for the

same disease are available or the disease of interest has a low population prevalence. Our

study, instead, focused on the phenome-wide application of PRS across hundreds of traits in a

single cohort by applying BASIL algorithm with readily available implementation in R snpnet
package [10], which does not require explicit modeling of underlying genetic architecture

across a wide variety of traits.

Fig 3. Incremental predictive performance of PRS models across the 813 traits with significant predictive performance in the hold-out test set individuals of

white British ancestry. The predictive performance (Nagelkerke’s pseudo-R2 for 244 binary traits [left] and R2 for 569 quantitative traits [right]) of the full models that

consider both the genotype and covariates are compared against that of the covariate-only models, and their difference (the incremental predictive performance) are

shown as a histogram.

https://doi.org/10.1371/journal.pgen.1010105.g003
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For binary traits, we used observed scale pseudo-R2 and observed scale SNP-based heritabil-

ity estimates, given that population prevalence is available for only a subset of binary traits con-

sidered in the present study. Conversion to liability scale estimates will further enhance the

validity of the comparison [35] and is of interest for future investigation.

Like other PRS approaches that consider datasets from one source population in the PRS

training, our sparse model trained on the individual-level data of white British showed limited

transferability across diverse ancestry groups [36–38]. The sample sizes of non-European

ancestry groups in UK Biobank are smaller than that of European ancestry groups. In general,

that will result in larger uncertainties in predictive performance assessment. Nonetheless,

Fig 4. The sparse PRS model and their predictive performance for celiac disease. (A, B) the predictive performance of celiac disease PRS. (A) the celiac disease PRS

distribution (y-axis) in a hold-out test set stratified by the disease case status (x-axis). The dashed lines represent the mean and the quantiles are shown as box plots. (B)

The disease prevalence odds ratio compared to the individuals with middle (40–60 th percentile) PRS score stratified by PRS percentile bins. The error bars represent

standard error (SE). (C) the coefficients of the celiac disease PRS model. The estimated effect size (y-axis) for each genetic variant (x-axis) is shown. The gene symbols

are annotated in the plot for coding variants and HLA allelotypes with large effect size estimates.

https://doi.org/10.1371/journal.pgen.1010105.g004
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when we assess the incremental predictive performance across ancestry groups by comparing

the full model consisting of the genetic data and basic covariates and the covariate-only model,

we found the binary traits, including disease outcomes, have lower transferability compared to

quantitative traits, including biomarkers, blood measurements, and anthropometric traits. The

power difference between binary and quantitative traits [31], limitation in power for some

traits, especially for the binary traits with limited case counts, and differences in heritability

may be the contributing factors of the observed difference. Improvements of PRS models with

high transferability across ancestry groups and the admixed individuals are of interest for

future research.

Given the medical relevance [39–51], we prioritized pathogenic and likely-pathogenic vari-

ants reported in ClinVar [52] as well as predicted protein-truncating and protein-altering vari-

ants (Methods). Our analysis focusing on four traits suggests that prioritizing the medically

relevant alleles does not necessarily improve the predictive performance. While our sparse

PRS models show enrichment in the number of selected medically relevant alleles, there is no

guarantee that the genetic variants included in the sparse PRS models were causal. It warrants

further follow-up analysis with statistical fine-mapping and detailed functional characteriza-

tion at each locus.

The increased availability of PRS models across multiple traits [17] exhibits a wide range of

applications, including the improved genetic risk prediction of disease [23,53] and the identifi-

cation of causal relationships across complex traits [54]. We provide the results on the Global

Biobank Engine (https://biobankengine.stanford.edu/prs) as well as on the PGS catalog [17]

and envision the resource will serve as an important basis to understand the polygenic basis of

complex traits.

Fig 5. Comparison of the effect size and the model size of sparse PRS. The number of the genetic variants included in the model (size of the model, x-axis) and the

incremental predictive performance (effect size of the model, y-axis) are shown for 244 binary traits (left) and 569 quantitative traits (right). TTE: time-to-event

phenotype.

https://doi.org/10.1371/journal.pgen.1010105.g005
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Fig 6. Transferability assessment of PRS models across ancestry groups in the UK Biobank. The incremental predictive performance (Nagelkerke’s pseudo-R2 for

244 binary traits (A, B) and incremental R2 for 569 quantitative traits (C, D)) was quantified in individuals in different ancestry groups in the UK Biobank and was

compared against that in the hold-out test set constructed from the individuals in white British ancestry group. (A, C) the difference in the incremental predictive

performance between the target group (x-axis, double-coded with color) and the source white British cohort. The median values are shown as black horizontal bars

and numbers. (B, D) comparison of the incremental predictive performance in the target group (color) and the test set. A linear regression fit was shown for each

ancestry group with the dashed lines. The slopes of the regression lines were also shown.

https://doi.org/10.1371/journal.pgen.1010105.g006
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Methods

Ethics statement

This research has been conducted using the UK Biobank Resource under Application Number

24983, “Generating effective therapeutic hypotheses from genomic and hospital linkage data”

(http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf).

Based on the information provided in Protocol 44532, the Stanford IRB has determined that

the research does not involve human subjects as defined in 45 CFR 46.102(f) or 21 CFR 50.3

(g). All participants of the UK Biobank provided written informed consent (more information

is available at https://www.ukbiobank.ac.uk/2018/02/gdpr/).

Study population and genetic data

UK Biobank is a population-based cohort study collected from multiple sites across the United

Kingdom [18]. To minimize the variabilities due to population structure in our dataset, we

restricted our analyses to unrelated individuals based on the following four criteria [46,55]

reported by the UK Biobank in sample QC file, “ukb_sqc_v2.txt”: (1) used to compute princi-

pal components (“used_in_pca_calculation” column); (2) not marked as outliers for heterozy-

gosity and missing rates (“het_missing_outliers” column); (3) do not show putative sex

chromosome aneuploidy (“putative_sex_chromo- some_aneuploidy” column); and (4) have at

most ten putative third-degree relatives (“excess_relatives” column).

Using a combination of genotype principal components (PCs), the self-reported ancestry

(UK Biobank Field ID 21000, https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=21000), and

“in_white_British_ancestry_subset” column in the sample QC file from UK Biobank, we sub-

sequently focused on people of self-identified white British (n = 337,129), self-identified non-

British white (n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East Asian

(n = 1,704) ancestry as described elsewhere [23]. Briefly, we used a two-step procedure to

define the five groups. We first used the genotype principal component loadings of the individ-

uals and set thresholds on component 1 and component 2 as follows: (1) self-identified White

British: -20� PC1� 40 and -25� PC2� 10 and in_white_British_ancestry_subset = = 1; (2)

self-identified non-British White: -20� PC1� 40, -25� PC2� 10, has a self-reported ances-

try of White, and does not identify themselves as White British; (3) African: 260� PC1,

50� PC2, and does not identify themselves as any of the following: Asian, White, Mixed, or

Other population groups; (4) South Asian: 40� PC1� 120, -170� PC2� -80, and does not

identify themselves as any of the following: Black, White, Mixed, or Other population groups;

and (5) East Asian: 130� PC1� 170, PC2� -230, and does not identify themselves as any of

the following: Black, White, Mixed, or Other population groups. To refine the population defi-

nition by removing the outliers, we computed population-specific genotype PCs using approx-

imately LD independent (R2 < 0.5) common (population-specific minor allele

frequency> 5%) biallelic variants outside of the major histocompatibility complex region

[23]. We applied following thresholds [23]: (1) South Asian: -0.02� population-specific

PC1� 0.03, -0.05� population-specific PC2� 0.02; and (2) East Asian: -0.01� population-

specific PC1� 0.02, -0.02� population-specific PC2� 0.

We randomly split the white British cohort into 70% training (n = 235,991), 10% validation

(to select the optimal sparsity level) (n = 33,713), and 20% test (n = 67,425) sets [23,56]. We

used the same split of training, validation, and test set for all tested traits. The non-British

white, African, South Asian, and East Asian samples were only used as test sets.
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Variant quality control and variant annotation

We used genotype datasets (release version 2 for the directly genotyped variants and the

imputed HLA allelotype datasets) [19], the CNV dataset [22], and the hg19 human genome

reference for the main PRS analyses in the study. Additionally, we considered imputed variants

(release version 3) to investigate whether the imputed variants would improve the predictive

performance. We annotated the directly-genotyped variants using Ensembl’s Variant Effect

Predictor (VEP) (version 101) [57,58] with the LOFTEE plugin (https://github.com/konradjk/

loftee) [49], for which we created a Docker container image (https://github.com/yk-tanigawa/

docker-ensembl-vep-loftee). Using ClinVar (version 20200914) [28], we annotated “patho-

genic” and “likely pathogenic” variants.

We performed variant quality control as described elsewhere [23,46,55]. Briefly, we focused

on the variants passing the following criteria: (1) outside of the major histocompatibility com-

plex (MHC) region (hg19 chr6:25477797–36448354); (2) the missingness of the variant is less

than 1%, considering that the two genotyping arrays (the UK BiLEVE Axiom array and the

UK Biobank Axiom array) cover a slightly different set of variants [19]; (3) the minor-allele fre-

quency is greater than 0.01%; (4) Hardy-Weinberg disequilibrium test p-value is less than

1.0x10-7; (5) Passed the comparison of minor allele frequency with the gnomAD dataset (ver-

sion 2.0.1) as described before [46,49]; (6) We manually investigated the cluster plots for a sub-

set of variants and removed 11 variants that have unreliable genotype calls [46].

We grouped the VEP-predicted consequence of the variants into six groups: protein-trun-

cating variants (PTVs), protein-altering variants (PAVs), proximal coding variants (PCVs),

Intronic variants (Intronic), variants in the untranslated region (Intronic), and other variants

(Others). Our grouping rule of the VEP-predicted consequence is summarized in (S4 Table).

We included the imputed copy number variants (CNVs) [22] and imputed HLA allelotypes

[21]. The CNVs were called using PennCNV (v.1.0.4) [59] on raw signal intensity data from

each genotyping array as described elsewhere [22]. Because the precise location of the CNVs is

not identified, we did not infer the functional consequences of CNVs with variant annotation.

The HLA allelotypes at HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3,

-DRB4, and -DRB5 loci were imputed using the HLA�IMP:02 and imputed dosage file is pro-

vided by the UK Biobank. We included 156 alleles across all 11 loci that had a frequency of

0.1% or greater in the white British. We rounded allele dosage when they were within plus or

minus 0.1 of 0, 1, or 2. We excluded the remaining nonzero entries. We also excluded errone-

ous total allele counts post-rounding [21].

When evaluating whether the inclusion of the imputed variants would improve the predic-

tive performance of the PRS models, we focused on the 5,931,362 imputed variants [19] based

on the following criteria: (1) imputation INFO score is greater than 0.7, (2) minor allele fre-

quency computed across the entire *500k genotyped samples (UK Biobank Resource 1967,

https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1967) is greater than 0.01, (3) biallelic vari-

ants, (4) the variant is not present in the directly genotyped variants, and (5) missingness is

less than 1%. We subsequently combined the imputed variant dataset with the directly geno-

typed variants, imputed HLA allotypes, and copy number variants.

Phenotype definitions in the UK Biobank

We analyzed a wide variety of traits in the UK Biobank, including disease outcome [46,60],

family history [46,60], cancer registry data [46], blood and urine biomarkers [23], hematologi-

cal measurements, and other binary and quantitative phenotypes [55,56]. Some phenotype

information collected at UK Biobank’s assessment center contains up to four instances, each

of which corresponds to (1) the initial assessment visit (2006–2010), (2) first repeat assessment
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visit (2012–2013), and (3) imaging visit (2014-), and (4) first repeat imaging visit (2019-).

Briefly, for binary traits, we performed manual curation of phenotypic definitions and

assigned “case” status if the participants are classified as the case in at least one of their visits

and “control” otherwise. For quantitative traits, we took the median of non-NA values, as

described elsewhere [55].

Previously, we analyzed blood and urine biomarker traits, investigating the effects of covari-

ates on the biomarker levels and derived covariate-adjusted biomarker values [23]. Briefly, we

used a linear regression model to account for the covariate effects on the log-transformed mea-

surement values from UK Biobank and adjusted for principal component loadings of geno-

type, age, sex, age by sex interactions, self-identified ancestry group, self-identified ancestry

group by sex interactions, fasting time, estimated sample dilution factor, assessment center

indicators, genotyping batch indicators, time of sampling during the day, the month of assess-

ment, and day of the assay. We used the PRS models trained for the covariate-adjusted traits

[23]. To quantify the incremental predictive performance against the covariate-only models,

we quantified predictive performance against the original measurement values, except eGFR,

AST/ALT ratio, and non-albumin protein, where we used the covariate-adjusted trait values.

Those three traits are derived from covariate-adjusted biomarkers [23] and do not have raw

measurement values.

The list of 1,565 traits with at least 100 cases (for binary traits) or non-NA measurements

(for quantitative traits) analyzed in this study is listed in (S1 Table).

Construction of sparse PRS models

Using the batch screening iterative Lasso (BASIL) algorithm implemented in the R snpnet
package [10], we constructed the sparse PRS models for the 1,565 traits. We used the Gaussian

family and the R2 metric for quantitative traits, whereas we used the binomial family and the

AUC-ROC metric for the binary traits [10]. For each trait, we fit a series of regression models

with a varying degree of sparsity on the training set, consisting of 70% (n = 235,991) of unre-

lated individuals of white British ancestry. The predictive performance of each of the models is

evaluated on the validation set, which consists of 10% (n = 33,713) of unrelated individuals of

white British ancestry to guide the selection of the optional level of sparsity. We selected the

sparsity that maximizes the predictive performance in the validation set. We subsequently refit

the penalized regression model using the individuals in the combined training and validation

set individuals (n = 269,704), which we denote as score development set, to maximize the

power in the regression model [10]. We used the same training, validation, and test set split

across all the PRS models analyzed in this study.

As opposed to many PRS methods that operate on the GWAS summary statistics [3–9,13–

15], our method takes individual-level genotype and phenotype data. Using L1 penalized

regression (also known as Lasso), BASIL simultaneously performs variable selection and effect

size estimation of the selected variants. We included age, sex, and top ten population-specific

genotype PC loadings computed for the white British individuals [23] as unpenalized covari-

ates. Thanks to the L1 penalty term in the objective function that penalizes the number of fea-

tures of non-zero regression coefficients, the resulting models will be sparse, meaning that

they will have fewer genetic variants than unpenalized models [10].

To prioritize coding variants over non-coding variants in linkage, we assigned three levels

of penalty factors (also known as penalty scaling parameter) [61]: 0.5 for pathogenic variants

in ClinVar [52] or protein-truncating variants according to VEP-based variant annotation

[58]; 0.75 for likely pathogenic variants in ClinVar, VEP-predicted protein-altering variants,

or imputed allelotypes; and 1.0 for all other variants. The assignment rules of the penalty
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factors are summarized in (S5 Table). The variants with lower values of penalty factors are pri-

oritized in the L1 penalized regression. To assess the degree of prioritization of the medically

relevant alleles and their impacts on the predictive performance, we focused on four traits

(standing height, BMI, high cholesterol, and asthma) and fit a separate model without penalty

factors. We compared the number of selected variants and the predictive performance.

Predictive performance and transferability of PRS models

We evaluated the predictive performance (R2 for quantitative traits and Nagelkerke’s pseudo-

R2 [also known as Cragg and Uhler’s pseudo-R2] [24,25] for binary traits) of PRS models (S6

Table). For the binary traits, we also evaluated the receiver operating characteristic area under

the curve [ROC-AUC] and Tjur’s Coefficient of Discrimination (Tjur’s pseudo-R2) [26]. For

R2 and ROC-AUC, we evaluated the 95% confidence interval of predictive performance using

approximate standard error of R2 [62,63] and DeLong’s method [64], respectively. We used

the individuals in the hold-out test set (n = 67,425) of white British ancestry as well as addi-

tional sets of individuals in non-British white (n = 24,905), African (n = 6,497), South Asian

(n = 7,831), and East Asian (n = 1,704) ancestry groups. We evaluated the predictive perfor-

mance of (1) the genotype-only model, (2) the covariate-only model, and (3) the full model

that considers both covariates and genotypes. We computed the difference between the full

model and the covariate-only model to derive the incremental predictive performance.

To evaluate the predictive performance of the covariate-only model in the hold-out test set

of white British ancestry, we fit a generalized regression model, trait * age + sex + array

+ Genotype PCs, using the individuals in the score development set. We subsequently com-

puted the risk scores based on the covariate terms for the individuals in the hold-out test set.

The array is an indicator variable denoting the types of the genotyping array (either the UK

BiLEVE Axiom array or the UK Biobank Axiom array). For the individuals in non-British

white, African, South Asian, and East Asian ancestry groups, we took the ancestry group-spe-

cific PCs computed for each set [23] and fit the same regression model for each group. We did

not use the array indicator variable for African, South Asian, and East Asian because all indi-

viduals in those ancestry groups were genotyped on the UK Biobank Axiom Array (S2 Table).

To evaluate the predictive performance of the genotype-only model, we computed the poly-

genic risk score for the sets of individuals for evaluation using the--score command imple-

mented in plink2 [65]. We quantified evaluation metrics (R2, Nagelkerke’s pseudo-R2,

ROC-AUC, and Tjur’s pseudo-R2).

To evaluate the predictive performance of the full model, we fit a model, trait * 1 + covari-

ate-only score + PRS, using the covariate-only score and PRS described above. The constant

term accounts for the potential differences in the trait mean (for quantitative traits) or case

prevalence (for binary traits) between the score development population and the target popu-

lation. We looked at the p-value reported for the PRS term for the statistical significance of the

PRS model. We used p< 2.5 x 10−5 (= 0.05/2000, adjusted for multiple hypothesis testing

using the Bonferroni method for the number of traits analyzed in the study) as the significance

threshold.

We also computed the difference in R2 or Nagelkerke’s pseudo-R2 between the full and

covariate-only models to derive the incremental predictive performance.

SNP-based Heritability estimation

To compare the incremental predictive performance of the PRS models with SNP-based heri-

tability, we applied genome-wide association analysis with PLINK. Specifically, we applied--

glm command in PLINK [65] v2.00-alpha with age, sex, array, the number of CNVs, the length
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of CNVs, and the top ten genotype PC loadings as covariates. The array is an indicator variable

denoting whether the UK Biobank Axiom array or UK BiLEVE Axiom array was used in the

genotyping. We included this term if the variants were directly measured on both arrays. The

number and the length of the CNVs are described elsewhere [22]. The genotype PCs are the

principal component (PC) loadings of individuals. We computed the population-specific PCs

using the unrelated individuals in white British and used the first 10 PCs [23]. In the regression

analysis, we standardized the variance of the covariates (--covar-variance-standardize option)

and applied quantile normalization for the quantitative phenotype (--pheno-quantile-normal-

ize option). Note, we did not perform quantile normalization in the PRS analysis. We used

“cc-residualize” and “firth-residualize” options that implement the approximation [66] for effi-

cient computation of GWAS p-values. We subsequently applied linkage disequilibrium (LD)

score regression (LDSC) [27] and characterized the SNP-based heritability (S7 Table). We

compared the predictive performance of the PRS models and the LDSC-based heritability

estimates.

Correlation analysis of the number of genetic variants and predictive

performance of PRS models

We applied Spearman’s correlation test implemented in R to assess the rank correlation

between the size (the number of genetic variants included in the model) and the effect size (the

incremental predictive performance) of the PRS model.

Statistics

For computational and statistical analysis, we used Jupyter Notebook [67], R [68], R tidyverse

package [69], and GNU parallel [70]. The p-values were computed from two-sided tests unless

otherwise specified.

Supporting information

S1 Fig. Statistical significance of the assessment center terms in phenotype prediction. We

fit a regression model on age, sex, the types of genotyping arrays, polygenic risk score, and

assessment centers for each of the 1,565 traits analyzed in the study. The frequency of the sta-

tistical significance (-log10(P)) of assessment center variables was shown. The cumulative fre-

quency was shown on the secondary axis on the right. The statistical significance after the

Bonferroni correction was shown as a red vertical line.

(TIF)

S2 Fig. The impact of prioritizing the medically relevant alleles with penalty factors on the

predictive performance of snpnet PRS models. The predictive performance (AUC for binary

traits and R2 for quantitative traits) evaluated across hold-out test set individuals of different

ancestry groups in UK Biobank are shown for four traits. The error bars represent the 95%

confidence interval.

(TIF)

S3 Fig. The impact of the imputed genetic variants on the predictive performance of snpnet
PRS models. The predictive performance (AUC for binary traits and R2 for quantitative traits)

evaluated across hold-out test set individuals of different ancestry groups in UK Biobank are

shown for four traits. The error bars represent the 95% confidence interval.

(TIF)
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S1 Table. List of traits analyzed in the study and the predictive performance of the corre-

sponding PRS models. For the 1,565 traits analyzed in the study, the following information is

shown: trait category, the phenotype ID in Global Biobank Engine (GBE ID), trait name, the

types of link functions in a generalized linear model (Gaussian for quantitative traits and Bino-

mial for binary traits), the predictive performance of the genotype-only model, covariate-only

model, the full model that considers both genotype and covariates, as well as the incremental

predictive performance (Delta[Full, covariates-only]), the number of genetic variants included

in the PRS model, the statistical significance of the incremental predictive performance in a

hold-out test set consists of a subset of white British individuals in the UK Biobank, whether

the p-value is significant after multiple-hypothesis correction (p< 2.5 x 10−5), the score ID in

polygenic score (PGS) catalog, the experimental factor ontology term ID of the mapped traits

in PGS catalog, and the label of the mapped traits in PGS catalog.

(XLSX)

S2 Table. The cohort characteristics. For each ancestry group in UK Biobank, the number of

individuals (n), age (mean and standard deviation [sd]), sex (percentage of individuals in

male), the fraction of individuals genotyped on the UK Biobank Axiom Array. The statistics

for the white British ancestry group were shown for the 70% training set, 10% validation set,

and 20% test set.

(XLSX)

S3 Table. The number of variants with non-zero BETAs is shown across four traits. For

each trait, we compared two models: without and with penalty factors to prioritize the medi-

cally relevant alleles.

(XLSX)

S4 Table. The variant consequence grouping. We grouped the Ensembl’s variant effect pre-

dictor (VEP)-predicted consequence of the genetic variants into six groups (Consequence

group): protein-truncating variants (PTVs), protein-altering variants (PAVs), protein-coding

variants (PCVs), intronic variants (Intronic), variants in untranslated region (UTR), and other

non-coding variants (Others). The links to the sequence ontology (SO) term detailing the defi-

nition of each of the predicted consequences are shown.

(XLSX)

S5 Table. The penalty factor assignment rule. We used the VEP-predicted consequence and

ClinVar annotation to prioritize protein-truncating, protein-altering, and (likely) pathogenic

variants by assigning lower penalty factor values. The penalty factor and the number of vari-

ants stratified by genetic variants (genotype or allelotype), predicted consequence, and ClinVar

annotation is shown.

(XLSX)

S6 Table. The predictive performance of PRS models. For each trait (Trait category,

GBE_ID, and Trait Name), we show the types of link functions in a generalized linear model

(GLM family column, Gaussian for quantitative traits and binomial for binary traits), the pop-

ulation split (population), the types of the predictive model (model column), the types of eval-

uation metric (R2 [R2], Nagelkerke’s pseudo-R2 [NagelkerkeR2], AUROC [AUC], or Tjur’s

Coefficient of Discrimination [TjurR2]), the value of the specified metric and its lower and

upper bound of 95% confidence interval, and the statistical significance (p-value).

(XLSX)

S7 Table. Estimated SNP-based heritability. For each trait with a significant PRS model

(trait, trait_name, and trait_category), we show the types of link functions in a generalized
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linear model (family column, Gaussian for quantitative traits and binomial for binary traits),

estimated SNP-based observed scale heritability with standard error (h2_obs and h2_obs_se),

lambda GC (lambda_GC), mean chi-square statistic (mean_chi2), LD score regression inter-

cept and its standard error (intercept and intercept_se), and the proportion of the inflation

attributed to the LD score regression intercept, defined by (intercept -1)/(mean(chi-square)-

1), and its standard error (ratio and ratio_se).

(XLSX)
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