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Abstract

The soil-related Bacillus and Paenibacillus species have increasingly been implicated in
various human diseases. Nevertheless, their identification still poses problems in the clinical
microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, lit-
tle is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-
assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in
the identification of clinical isolates of these genera and conducted genotypic and pheno-
typic analyses to highlight specific virulence properties. Seventy-five clinical isolates were
subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and
supplemental tests were used to solve any discrepancies or failures in the identification
results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct
species identification and no misidentification was obtained. One third of the collected
strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis
were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus,
B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus
lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-
encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest
virulence potential. However, although generally considered nonpathogenic, most of the
other species were shown to swim, swarm, produce biofilms, and secrete proteases that
can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast
and accurate identification of Bacillus and Paenibacillus strains whose virulence properties
make them of increasing clinical relevance.

Introduction

A variety of classic and emerging soil-related bacterial and fungal pathogens causes serious
human disease that frequently presents in primary care settings. Members of the genus Bacillus
and Paenibacillus (originally Bacillus group 3) [1] are large, gram-positive rod bacteria that are
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ubiquitous in the environment and often found in soil, air, water, and food. They form spores
that are resistant to heat, cold, and common disinfectants, allowing them to survive on envi-
ronmental surfaces for prolonged periods [2]. Very few species belonging to these genera are
considered medically relevant so far. Bacillus anthracis is the etiological agent of the acute and
often lethal disease anthrax and Bacillus cereus, commonly known to cause food-borne intoxi-
cations, also causes local and systemic infections [3]. The other species are generally perceived
of little clinical significance and they are commonly considered as contaminants in clinical cul-
tures. However, recent reports indicate that these organisms can be responsible for local or sys-
temic infections in humans [4-11].

The pathogenicity of non-anthrax Bacillus species has been poorly investigated, except for
B. cereus. The pathogenic potential of this bacterium has been related to the secretion of several
virulence proteins [3, 12] and to motility factors, such as swimming and swarming [13]. The
virulence proteins include several hemolysins, phospholipases, trimeric toxins (hemolysin BL,
HBL; non-hemolytic enterotoxin, NHE), cytotoxin K (CytK) and proteases [3, 12, 14, 15].
HBL, NHE, and CytK act as tissue destructive/reactive proteins damaging the integrity of the
plasma membrane of several cells [12]. In addition, B. cereus produces biofilms, which can play
a major role in attachment to catheters [16, 17]. Some other Bacillus spp. were shown to con-
tain DNA sequences encoding the HBL, CytK or NHE [18, 19] or to be able to produce biofilms
[20,21].

The identification of species in the genus Bacillus by classical methods is often difficult, due
to similarities among closely related species that share a pattern of morphological, biochemical,
and genetic characteristics. These unusual similarities are particularly evident among members
of the B. cereus sensu lato group that comprises, other than B. cereus and B. anthracis, other
species, such as Bacillus thuringiensis and Bacillus mycoides [22], showing almost identical 16S
rRNA gene sequences and a high level of chromosomal synteny [23].

The use of matrix-assisted laser desorption—ionization time of flight mass spectrometry
(MALDI-TOF MS) as a diagnostic technique for bacterial identification could prove quite use-
ful in addressing the challenges associated with the identification of these organisms. This tech-
nology has been shown to successfully identify a wide range of clinically relevant bacteria and
studies have also applied MALDI-TOF MS to some Bacillus [24-29] and Paenibacillus spp. [5,
30]. However, no comprehensive studies have evaluated the application of MALDI-TOF MS
for the identification of clinical isolates of these genera.

The aim of the present study was to evaluate the use of MALDI-TOF MS for the identifica-
tion of clinical Bacillus and Paenibacillus isolates and to investigate on their virulence potential
by assessing hemolytic, phospholipase, and protease activities, motility and ability to form bio-
films, as well as the presence of toxin encoding genes.

Materials and Methods
Clinical isolates

The clinical isolates tested in this study were collected in routine clinical workflow from speci-
mens submitted to the Pisa University Hospital, Italy, over a two-year period (S1 Table). Multi-
ple isolates from the same patient and body site were excluded. Cultures were processed per
standard laboratory practices and, once pure culture was obtained on blood agar plates, strains
were identified according to the operating procedures of our laboratory. This included micros-
copy of Gram-stained preparations and biochemical analysis using the API 50 CHB test kit
according to the manufacturer’s instructions and the ATBPlus software (bioMérieux, Marcy
I'Etoile, France). In parallel, bacteria from single colonies were used for MALDI-TOF MS anal-
ysis in a MALDI Biotyper Microflex LT mass spectrometer (Bruker Daltonik, Bremen,
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Germany). Failure to identify the organism, or any discrepancies between MALDI-TOF MS
and biochemical identification, prompted 16S rRNA gene sequencing of the isolate.

The study was approved by the Ethical Committee Area Vasta Nord-Ovest, University of
Pisa, and conducted in full accordance with the principles of the Declaration of Helsinki. Sam-
ples were taken as part of the standard patient care and used anonymously. For this type of
study, no written informed consent was necessary.

MALDI-TOF MS analysis

The isolates were tested in duplicate. A colony was directly spotted on the MALDI plate, and
then overlaid with 1 pl of saturated o.-cyano-4-hydroxycinnamic acid and air-dried. The loaded
plate was then placed in the instrument according to the manufacturer’s instructions. The
mass spectra were acquired within 10 minutes. The spectra were imported into the integrated
MALDI Biotyper software (version 3.0) and analyzed by standard pattern matching with a
default setting. A score of > 2.00 indicated identification at the species level, a score from 1.70
to 1.99 indicated identification at the genus level, whereas any score under 1.70 meant no sig-
nificant similarity of the obtained spectrum with any database entry. If the results were ques-
tionable, bacteria were retested after the standard protein extraction step employing formic
acid and acetonitrile.

16S rRNA gene sequencing

Genomic DNA was extracted and purified as previously described [31]. The universal primers
27F (5" ~GAGAGTTTGATCCTGGCTCAG-3' ) and 1495R (5’ ~-CTACGGCTACCTTGTTACG
A-3" ) were used for 16S rRNA gene amplification and sequencing (Eurofins MWG Operon,
Germany). Sequences were compared with those contained in the Ribosomal Database Project.
The isolates were identified according to the Clinical and Laboratory Standards Institute
(CLSI) guidelines [32] by an identity score of 97% for genus and 99% for species.

Supplemental testing and taxonomic resolution

The isolates identified by any of the methods as B. cereus, B. thuringiensis, or B. mycoides were
analyzed for the presence of parasporal crystals, which are discriminative for B. thuringiensis.
Sporulating cultures were propagated on sporulation medium and microscopically examined
for the presence of the typical parasporal crystals in methanol-fixed preparations stained with
0.5% basic fuchsin [33]. The previously described B. thuringiensis RM1 strain was used as a
positive control [33]. The same isolates were also analyzed for rhizoidal growth and inability to
swim, which are discriminative for B. mycoides [34]. The rpoB gene sequences were amplified
from the strains identified by 16S rDNA sequencing as B. cereus/B. thuringiensis using the
primers rpoB1206 (5 ~ATCGAAACGCC TGAAGGTCCAAACAT-3’ ) and rpoBR3202 (5 -
ACACCCTTGTTACCGTGACGACC-3" ) [35]. Amplification and sequencing reactions were
performed as previously described by Ki and coworkers [35]. Sequences were compared with
nucleotide sequences in the GenBank database using the BLAST search algorithm.

Susceptibility testing

MIC:s to penicillin (PEN), ciprofloxacin (CIP), tetracycline (TET), tigecycline (T'GC), and van-
comycin (VCM) were determined by E-test (bioMérieux, Inc., Hazelwood, MO) on Mueller
Hinton agar containing 5% blood and incubated at 35°C in air for 24h. Staphylococcus aureus
ATCC 29213 was included as a control. The CLSI interpretative criteria for PEN (S: < 0.12; R:
>0.25), TET (S: < 4; I: = 8; R: > 16), and VCM (S: < 4) against fastidious Gram positive bacilli
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were used [36]. The interpretative criteria described for Bacillus strains by Luna and colleagues
[37],i.e.S: <1.0,R: > 4 for CIP and S: < 0.5 for TGC, were tentatively adopted.

Motility and biofilm

Swimming and swarming motility were examined as previously described [38, 39]. Briefly, for
swimming motility assays, 0.5 pl of an overnight culture (2x10° cells ml™") were spotted onto
the center of TrM plates (1% tryptone, 0.5%, NaCl, 0.25% agar) and growth halo diameters
were measured after a 6-8 h incubation at 37°C in a humidified chamber. Swimming motility
was also confirmed under a phase-contrast microscope. Assays for swarming were initiated by
spreading 50 pl of a culture (2x10* cells ml™") onto TrA plates (1% tryptone, 0.5%, NaCl, 0.7%
agar) and incubating at 37°C in humidified chambers. Bacteria were tested for biofilm forma-
tion in Luria Bertani (LB) and, when biofilm was not formed in this medium, the assays were
repeated in EPS, a low nutrient medium that contains 7 g of K,HPO,, 3 g of KH,PO,, 0.1 g of
MgSO, - 7H20, 0.01 g of CaCl,, 0.001 g of FeSO,, 0.1 g of NaCl, 1 g of glucose, and 0.125 g of
yeast extract (Difco) per liter [40]. Overnight cultures were adjusted to an optical density at
620 nm (ODgj) of 0.01 in LB or EPS. Then, 2 ml were transferred to wells of polystyrene
24-well plates (Falcon/Becton Dickinson, Franklin Lakes, NJ), followed by incubation at 37°C
and 50 rpm shaking for 8 h. The total growth (ODg,,) in each well was measured; planktonic
bacteria were removed and the wells washed with distilled water and air-dried. Biofilms were
stained with 2 ml of 0.3% crystal violet for 10 min, washed with distilled water, and air-dried.
The crystal violet was solubilized with 2 ml of 70% ethanol and the optical density at 590 nm
(ODsg) was measured.

Detection of virulence factors and toxin encoding genes

The bacterial ability to secrete hemolysins was assessed on blood agar medium (Columbia agar
+ 5% horse-blood, Oxoid, Basingstoke, UK) after incubation at 30°C for 18 h. HBL activity was
visualized by seeding bacteria onto sheep blood agar (Columbia agar + 5% sheep-blood,
Oxoid) [41]. The production of phosphatidylcholine specific phospholipase-C (PC-PLC) was
measured by a gel-diffusion assay with a gel containing crude phosphatidylcholine as previ-
ously described [41]. Protease secretion was assessed on agar plate containing 1.5% skim-milk
[42] after incubation at 37°C for 18 h. For the detection of plcA, sph, cytK, nheA, nheB, and
nheC genes, PCR amplification was performed on genomic DNA as previously described [43]
and amplicons identified by DNA sequencing.

Statistical analysis

Comparison of API 50 CHB with the Bruker Biotyper for the identification of species was
made using the Pearson’s chi-squared test. P values of < 0.05 were considered statistically
significant.

Results
Strain collection and identification

In this study, 75 strains belonging to the genus Bacillus or Paenibacillus were collected. Fifty
isolates derived from deep, usually sterile, body sites, such as blood (n = 21), bile (n = 7), drain-
age (n = 14), urine (n = 3), central venous catheter (n = 2), cranial ventricular catheter (n = 1),
sperm (n = 1), and bronchial aspirate (n = 1). Twenty-five isolates were collected from nails

(n =2), sputum (n = 1), as well as from cutaneous (n = 10), ear (n = 4), nasal (n = 5), pharyn-
geal (n = 1), ocular (n = 1) or oral (n = 1) swabs (S1 Table).
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All strains were subjected to biochemical identification by the API 50 CHB and identifica-
tion by MALDI-TOF MS. Sequencing of the 16S rRNA gene, the reference technique to iden-
tify clinical isolates, was applied to solve identification discrepancies or failures with one of the
other methods. The five strains that were identified by 16S rDNA sequencing as B. cereus/B.
thuringiensis were also subjected to sequencing of the rpoB gene [35]. BLAST analysis of these
sequences revealed a > 98% identity with either B. cereus or B. thuringiensis sequences present
in the database. Therefore, as already demonstrated for these two species [35, 44], our analysis
confirmed that the five isolates belonged to the B. cereus/B. thuringiensis clade. Parasporal crys-
tals, swimming and growth behavior were analyzed for the taxonomic resolution of all the iso-
lates belonging to B. cereus sensu latu group [22, 23]. All strains (n = 28) did not produce B.
thuringiensis-specific parasporal crystals and three of them were identified as B. mycoides for
their typical rhizoidal growth and inability to swim [34]. In S1 Table, the collected strains are
divided based on their final identification.

All B. cereus strains (n = 25) were correctly identified by MALDI-TOF MS. Six of these
strains were misidentified and three unidentified by the API 50 CHB tests. The Bruker Biotyper
MS system also allowed the identification of all B. mycoides (n = 3) isolates, while API 50 CHB
misidentified one of these strains.

Biochemical testing misidentified three strains among the 11 B. subtilis isolates. Three B.
subtilis strains were unidentified by MS. All B. pumilus (n = 14), B. megaterium (n = 5), and B.
flexus (n = 3) strains were correctly identified by MS. One B. pumilus, one B. megaterium, and
all B. flexus strains were misidentified by biochemical testing. Two out of the five B. lichenifor-
mis isolates were correctly identified by biochemical or MS analysis. However, two strains were
misidentified by the API 50 CHB system and no misidentification was obtained by the use of
MALDI-TOF MS. All B. simplex (n = 5) and Paenibacillus (n = 4) isolates were misidentified
by biochemical testing. The B. simplex strains, one Paenibacillus glucanolyticus, one Paenibacil-
lus amylolyticus, and one Paenibacillus lautus were unidentified by MALDI-TOF MS. The Bru-
ker Biotyper identified one B. simplex and one P. amylolyticus at the genus level.

The frequency of correct species identification by biochemical API 50 CHB analysis and by
MALDI-TOF MS is shown in Table 1. The overall performance of MALDI-TOF MS was signif-
icantly better (P = 0.004) than that of API 50 CHB for the identification of the species in our
collection of isolates (81.3% and 60.0% respectively).

Table 1. Percentage of bacteria correctly identified to the species level by API 50 CHB and MALDI-TOF MS.

Species(n. of API 50 CHB(n. of
strains) strains)

B. cereus (25) 64.0 (16)

B. pumilus (14) 92.8 (13)

B. subtilis (11) 72.7 (8)

B. licheniformis (5)  40.0 (2)
B. megaterium (5) 80.0 (4)

B. simplex (5) 0.0 (0)
B. mycoides (3) 66.7 (2)
B. flexus (3) 0.0 (0)

P. glucanolyticus 0.0 (0)
@

P. amylolyticus (1) 0.0 (0)

P. lautus (1) 0.0 (0)

Total (75) 60.0 (45)

doi:10.1371/journal.pone.0152831.1001

API 50 CHB(n. of unidentified/ MALDI-TOF MS(n. of MALDI-TOF MS(n. of unidentified-
misidentified strains) strains) misidentified strains)
(3-6) 100 (25) (0-0)

(0-1) 100 (14) (0-0)

(0-3) 72.7 (8) (8-0)

(1-2) 40.0 (2) (3-0)

(0-1) 100 (5) (0-0)

(0-5) 0.0 (0) (5-0)

(1-0) 100 (3) (0-0)

(0-3) 100 (3) (0-0)

(0-2) 50.0 (1) (1-0)

(0-1) 0.0 (0) (1-0)

(0-1) 0.0 (0) (1-0)

81.3 (61)
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Prevalence and antimicrobial susceptibility

One third of the isolates resulted to belong to the B. cereus species (Table 2). Interestingly, also
B. pumilus and B. subtilis were isolated at high rate (18.7% and 14.7%, respectively). While B.
cereus was isolated at similar rates from deep, usually sterile body sites and from superficial
and/non-sterile body sites, most of B. pumilus isolates derived from deep sites (11/14 strains)
and accounted for 22% of the total isolations from these samples, while B. subtilis accounted
for 24% of the total isolations from superficial sites. The frequency of the other species from
total samples was less than 7%. However, B. licheniformis and Paenibacillus spp. strains were
only isolated from sterile body sites and accounted for 10% and 8% of the total isolates from
these districts, respectively (4% P. glucanolyticus, 2% P. amylolyticus, 2% P. lautus) (Table 2).

The results of the E-test assay expressed as MIC range, MIC 90%, MIC 50% for the 75 iso-
lates are shown in Table 3. All B. cereus, B. licheniformis, B. simplex, B. mycoides, P. glucanolyti-
cus, and P. lautus strains resulted to be resistant to PEN. All the other species were susceptible
to this antibiotic. All bacteria were also susceptible to CIP, TET, TGC, and VCM.

Pathogenic potential

Hemolysis on blood agar emerged with all B. cereus and 92.8% of the B. pumilus isolates

(Table 4). HBL and PC-PLC secretion were typical features of B. cereus strains, being the first
toxin produced by 84% and the second by 88% of the B. cereus isolates. In contrast, most of the
species produced extracellular proteases, with the exception of B. simplex, P. glucanolyticus and
P. lautus (Table 4). In particular, protease secretion was revealed for all B. pumilus, B. subtilis,
B. megaterium, B. flexus, and P. amylolyticus strains, while different frequencies of producers
were found in B. licheniformis (60%) and B. mycoides (33.3%).

The presence of the plcA, sph, cytK, as well as nheA, nheB and nheC genes encoding the
phosphatidylinositole-specific phospholipase C, sphingomyelinase, CytK, and the three com-
ponents of NHE, respectively, was evaluated by PCR amplification with available specific prim-
ers [43]. While plcA, sph, and cytK genes were only detected in B. cereus strains, nheA, nheB or
nheC sequences were found in B. cereus, B. pumilus, B. subtilis, B. megaterium, B. flexus and P.
amylolyticus (Table 4). However, 10 B. cereus and four B. pumilus strains only (representing
40.0% and 28.6% for each species respectively) contained the three genes encoding the entire
toxic complex.

Table 2. Frequency of isolation of Bacillus and Paenibacillus species from deep, usually sterile body sites or superficial and/or non-sterile body

sites.

Species Total samples(n. of strains) Deep body sites(n. of strains) Superficial body sites(n. of strains)
B. cereus 33.3% (25) 32.0% (16) 36.0% (9)
B. pumilus 18.7% (14) 22.0% (11) 12.0% (3)
B. subtilis 14.7% (11) 10.0% (5) 24.0% (6)
B. licheniformis 6.7% (5) 10.0% (5) 0.0% (0)
B. megaterium 6.7% (5) 6.0% (3) 8.0% (2)
B. simplex 6.7% (5) 6.0% (3) 8.0% (2)
B. mycoides 4.0% (3) 2.0% (1) 8.0% (2)
B. flexus 4.0% (3) 4.0% (2) 4.0% (1)
P. glucanolyticus 2.7% (2) 4.0% (2) 0.0% (0)
P. amylolyticus 1.3% (1) 2.0% (1) 0.0% (0)
P. lautus 1.3% (1) 2.0% (1) 0.0% (0)
Total 100% (75) 100% (50) 100% (25)

doi:10.1371/journal.pone.0152831.1002
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Table 3. MICs (mg/L) of penicillin, ciprofloxacin, tetracycline, tigecycline, and vancomycin against clinical Bacillus and Paenibacillus isolates.

Species(n. of PEN CIP TET TGC VCM

strains)
range* 50%% 90%° range 50% 90% range 50% 90% range 50% 90% range 50% 90%

B. cereus (25) 8 to >256 >256 0.064— 0.125 0.19 0.047-4 0.5 4 0.094— 025 05 0.094-4 075 1
>256 0.25 0.5

B. pumilus (14) 0.008- 0.032 0.064 0.047- 0.064 0.125 0.25-1 0.38 05 0.19— 0.38 0.5 0.094- 0.125 0.125
0.094 0.15 0.5 0.19

B. subtilis (11) 0.008- 0.016 0.032 0.047- 0.064 0.064 0.125-4 2 3 0.19— 0.38 0.5 0.094- 0.125 0.25
0.032 0.094 0.5 0.75

B. licheniformis 0.25 to >256 >256 0.047- 0.047 0.064 0.125-2 019 2 0.094— 0.38 05 0.19- 0.19 0.25

(5) >256 0.064 0.5 0.38

B. megaterium 0.047- 0.064 0.125 0.047- 0.094 0.125 0.19- 025 0.38 0.19- 0.38 0.5 0.094- 0.094 0.19

(5) 0.125 0.125 0.38 0.5 0.19

B. simplex (5) 0.25-05 025 0.5 0.125- 0.125 0.19 0.094- 0.125 0.125 0.094- 038 05 0.094- 019 05

0.19 0.125 0.5 0.5

B. mycoides (3) 16 to >256 0.064 0.064 0.38- 0.5 0.19- 0.5 0.75 0.75
>256 0.5 0.5

B. flexus (3) 0.023- 0.125 0.064— 0.064 0.094— 0.125 0.5 0.5 0.094 0.094
0.125 0.125 0.19

P. glucanolyticus 4 0.064— 0.54 0.016— 0.5 0.5

2) 0.125 0.032

P. amylolyticus 0.047 0.032 0.19 0.032 0.125 0.125

(1)

P. lautus (1) 32 0.19 4 0.19 0.5 0.5

* Maximal and minimal MIC values.
& MIC at which 50% or 90% of tested isolates are inhibited. The used interpretative criteria were S: <0.12, R: > 0.25 for PEN; S: < 1.0, R: > 4 for CIP; S:
<4,1:=8,R: > 16 for TET; S: < 0.5 for TGC, and S: < 4 for VCM.

doi:10.1371/journal.pone.0152831.t003

Swimming and swarming motility assays were performed with all the isolates. With the
exclusion of B. simplex and B. mycoides, most of the strains belonging to the other species were
motile in the swimming assays (Table 5). The swarming motility assays were performed in cul-
ture conditions proved efficient for B. cereus and B. subtilis [38, 39]. A high percentage (from

Table 4. Percentages of strains among clinical Bacillus and Paenibacillus isolates producing extracellular toxins/enzymes or possessing viru-
lence genes.

Species(n. of strains) Toxins/enzymes Virulence genes
Hemolysins HBL PC-PLC Proteases plca sph cytK nheA nheB nheC

B. cereus (25) 100 84.0 88.0 56.0 40.40.0 52.0 24.0 60.0 56.0 56.0
B. pumilus (14) 92.8 0.0 0.0 100 0.0 0.0 0.0 71.4 50.8 57.1
B. subtilis (11) 0.0 0.0 0.0 100 0.0 0.0 0.0 18.2 0.0 0.0
B. licheniformis (5) 0.0 0.0 0.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0
B. megaterium (5) 0.0 0.0 0.0 100 0.0 0.0 0.0 20.0 0.0 0.0
B. simplex (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B. mycoides (3) 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0
B. flexus (3) 0.0 0.0 0.0 100 0.0 0.0 0.0 33.3 0.0 33.3
P. glucanolyticus (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P. amylolyticus (1) 0.0 0.0 0.0 100 0.0 0.0 0.0 100 0.0 100
P. lautus (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total (75) 50.6 28.0 29.3 69.3 13.3 17.3 8.0 40.0 28.0 32.0

doi:10.1371/journal.pone.0152831.t004
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Table 5. Percentages of strains among clinical Bacillus and Paenibacillus isolates showing virulence-related behaviors.

Species(n. of strains)

B. cereus (25)

B. pumilus (14)

B. subtilis (11)

. licheniformis (5)
. megaterium (5)
. simplex (5)

. mycoides (3)

B. flexus (3)

P. glucanolyticus (2)
P. amylolyticus (1)
P. lautus (1)

Total (75)

T I T

Swimming Swarming Biofilm*
88.0 76.0 96.0
100 93.0 100
100 100 100
80.0 80.0 100
100 0.0 40.0
0.0 0.0 60.0
0.0 0.0 100
66.6 0.0 100
100 100 100
100 0.0 0.0
100 100 100
82.6 6.6 90.6

*Biofilm production as resulting from evaluation in LB or EPS media.

doi:10.1371/journal.pone.0152831.t005

76.0% to 100%) of the B. cereus, B. pumilus, B. subtilis, B. licheniformis, P. glucanolyticus, and P.
lautus isolates were able to swarm. In agreement with the absence of swimming motility that is
required for swarming [45], the B. simplex and B. mycoides isolates did not swarm on the agar
plates. No swarming migration was also shown for B. megaterium, B. flexus and P. amylolyticus
strains in the used culture conditions (Table 5).

Since nutrient availability is one of the major factors affecting biofilm formation, we first
analyzed the ability of the collected strains to develop biofilms in rich medium (LB) and, if
strains were not able to form biofilm in this condition, they were retested in low-nutrient
medium (EPS) [40]. All B. pumilus, B. subtilis, B. licheniformis, B. mycoides, B. flexus, P. gluca-
nolyticus, and P. lautus isolates produced biofilm in at least one of the tested conditions. With
the exception of the single P. amylolyticus isolate, the remaining species contained variable
amounts of strains (from 96% of B. cereus to 40% of B. megaterium) able to form biofilm com-
munities (Table 5 and S1 Table).

Discussion

Conventional methods based on biochemical and phenotypic techniques for the identification
of aerobic Gram-positive spore bearing bacilli still prevail in the clinical microbiology labora-
tory. However, due to the similarities among closely related species, species identification is
sometimes difficult. 16S rRNA gene sequencing remains the gold standard approach in many
cases, although it is not always practical for routine use due to its high cost and burden on labo-
ratory technicians. In the last years, MALDI-TOF MS has emerged as rapid, reliable diagnostic
tool for the identification of most microorganisms [46] and several platforms and databases
have been developed, including the Bruker Biotyper. Phyloproteomic analysis by MALDI-TOF
MS has been shown to provide more information on the classification of strains within the
Bacillus genus compared to 16S rDNA sequencing [28] and its accuracy in Bacillus and Paeni-
bacillus spp. identification has been proven [5, 24-30]. In our study, the Biotyper correctly
identified 61 out of the 75 clinical Bacillus and Paenibacillus isolates, while API 50 CHB only
identified 45 of them. By using the Biotyper, no misidentification was obtained. While all B.
cereus, B. mycoides, B. pumilus, and B. megaterium strains were correctly identified by our
MALDI-TOF MS system, this method was unable to identify B. simplex and most Paenibacillus
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strains. We can hypothesize that this identification failure is due to the limited number of
strains (one or two) of B. simplex, P. glucanolyticus, P. amylolyticus, and P. lautus included in
the MALDI-TOF database. In fact, commercial databases are mostly designed for the identifi-
cation of species that are encountered at higher frequency in clinical practice [27]. To over-
come this limitation, a new platform using open reference databases for microorganism
identification has been developed [27].

In this study, despite a standard protein extraction step (formic acid and acetonitrile) was
applied, the Biotyper could not identify three out of the 11 B. subtilis and three out of the five
B. licheniformis isolates too. As previously indicated for many Gram-positive bacteria [46], we
cannot exclude that additional and/or alternative pretreatment strategies could help in enhanc-
ing lysis of the thick peptidoglycan layer these bacteria possess, thus leading to better MALDI--
TOF MS results.

Within the Bacillus and Paenibacillus genera, B. anthracis and B. cereus are the predominant
pathogens of medical importance, although few B. anthracis isolations are currently reported.
In this study, B. cereus emerged as the species most frequently isolated from either deep sterile
or superficial non-sterile body sites (Table 2). This finding correlates with the role of this bacte-
rium as pathogen/opportunistic pathogen in local and systemic infections in humans [3]. B.
pumilus was also frequently isolated, particularly from sterile body sites. Although known for
its plant growth promoting activity, reports of infections due to B. pumilus are becoming more
frequent in the literature [8].

According to its wide distribution throughout the environment, particularly in soil, air, and
decomposing plant residue, B. subtilis was predominantly isolated from non-sterile body sites.
This species was isolated from sterile body sites at an equal or comparable frequency to that of
B. licheniformis, B. megaterium and B. simplex. Due to the lack of information about the clinical
history of the patients from which these bacteria were isolated, we can only speculate that the
immune state of these patients and/or long-term indwelling foreign bodies, such as catheters,
could have favored the entrance and maintaining of these bacteria in deep body sites.

For the treatment of infections caused by Bacillus or Paenibacillus strains, little advice is
available. We found that all B. cereus, B. licheniformis, B. simplex, B. mycoides and most Paeni-
bacillus isolates are resistant to PEN, whereas the other species are susceptible to this antibiotic.
Resistance of B. cereus and B. mycoides to PEN was previously reported [37]. Our data indicate
that the susceptibility of B. cereus and B. mycoides towards CIP, TET, TGC, and VCM, already
shown by Luna and coworkers [37], is actually widespread in the Bacillus genus. These results
are in agreement with the effective eradication of Bacillus or Paenibacillus bacteria from deep
infections, which is usually obtained in our hospital following the treatment with TET or
VCM.

As expected, many of the B. cereus isolates in our collection synthesize a variety of virulence
proteins, in particular hemolysins, HBL, PC-PLC, and proteases and possess the sph, plcA, and
the three NHE encoding genes. Moreover, we found a 24% positivity for the cytK gene. The
finding that the frequency of strains containing cytK is lower than usually reported for this
gene [47, 48] can be due to the fact that our collection includes clinical isolates and no food poi-
soning or food related strain.

Few data are available on the production of B. cereus-like toxins by Bacillus species outside
the B. cereus sensu lato group. Even if the genes encoding HBL were sporadically found in B.
licheniformis, B. simplex, B. megaterium, and B. subtilis [18, 19], in this study no HBL activity
was detected for isolates outside the B. cereus species. In agreement with the ability of B. pumi-
lus to secrete hemolysins and proteases [49], we found that all our B. pumilus isolates are pro-
teolytic, most of them are hemolytic, but no strain is able to produce PC-PLC. In addition, the
finding that most of the strains in our collection is able to secrete extracellular proteases
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correlates with the notion that Bacillus species are among the most prominent groups of extra-
cellular protease producers in bacteria. Secreted proteases, that are essential for the prolifera-
tion and growth of bacteria, can degrade host-associated proteins, thereby playing a direct role
in bacterial virulence.

The presence of B. cereus-like toxin genes was previously found in Bacillus species outside
the B. cereus sensu latu group. Sequences of the NHE encoding genes were detected in B. liche-
niformis, B. simplex, B. subtilis, and Paenibacillus spp., and cytK sequences were found in B.
licheniformis, B. simplex and B. subtilis [18]. In this study, we detected the presence of the three
genes encoding NHE in four B. pumilus strains and sequences of nheA and/or nheC were
found in B. pumilus, B. subtilis, B. megaterium, B. flexus, and P. amylolyticus. Gene transfer or
evolutionary mechanisms could explain the presence of such sequences in non-B. cereus
species.

Flagellum-driven bacterial motility, such as swimming or swarming, may facilitate the inva-
sion of human and nonhuman host cellular barriers [45]. As previously reported for B. cereus
[13, 38], the high frequency of swimming- (82.6%) and swarming-proficient (66.6%) isolates in
our collection suggests that these behaviors contribute to the capacity of these strains to colo-
nize and potentially establish an infection in humans. In addition, this is the first report in
which this kind of motility has been demonstrated for B. pumilus, B. licheniformis, and P.
glucanolyticus.

Biofilm formation is a microbial strategy allowing cells to survive in hostile conditions and
providing resistance to natural host defenses. Biofilms are associated with an increased capacity
of bacteria to survive within hospital environments and on implanted medical devices [50].
Biofilms can also facilitate wound chronicity and persistence by creating a barrier against neu-
trophils, macrophages, and antimicrobials [51]. In this study, we demonstrate that biofilm for-
mation is a widespread virulence behavior of clinical Bacillus and Paenibacillus isolates. This
result highlights the importance of catheter removal, commonly practiced in our hospital, in
the case of deep Bacillus or Paenibacillus infections.

In conclusion, the isolation of bacteria belonging to the Bacillus or Paenibacillus genera
should not be disregarded and their identification performed, particularly when samples derive
from patients in any preexisting disease condition or immunocompromised. In fact, despite
these bacteria are commonly considered soil-related organisms, they are increasingly isolated
from hospitalized patients and appear sufficiently equipped of virulence properties that can
allow them to behave as pathogens/opportunistic pathogens for humans.

Supporting Information

S1 Table. Contains details regarding identification and virulence potential of each isolate.
(DOCX)
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