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ABSTRACT Pseudomonas koreensis CI12 was coisolated with Bacillus cereus from a
root of a soybean plant grown in a field in Arlington, WI. Here, we report the draft
genome sequence of P. koreensis CI12 obtained by Illumina sequencing.

Pseudomonas koreensis was first proposed as a novel Pseudomonas species to classify
several isolates from Korean agricultural soils (1). Since then, strains worldwide have

been identified with diverse capacities ranging from the production of antibacterial
compounds (2) to the suppression of plant diseases caused by oomycete pathogens (3).
Recently, whole-genome sequenced-based analyses designated P. koreensis as a de-
fined phylogenomic group within the physiologically and genetically heterogeneous
Pseudomonas fluorescens complex (4, 5). The P. koreensis group contains members that
have been isolated from Populus root systems (6) and is, more generally, enriched with
isolates recovered from diverse plants (7). Additionally, a comparative genomic analysis
within the P. fluorescens complex showed an overrepresentation of traits related to
plant-bacterium interactions in genomes from P. koreensis isolates (4).

P. koreensis CI12 was isolated as one of several microbial “hitchhikers” from Bacillus
cereus cultures purified from field-grown soybean roots (8). These hitchhikers are
bacteria that are not visible in colony-purified B. cereus cultures until 2 to 4 weeks of
incubation at 4°C; although 3 to 5% of B. cereus isolates from soybean roots carry
hitchhikers, the mechanism underlying the association is unknown. The classification of
CI12 within the P. fluorescens complex was determined by independent phylogenetic
reconstruction of the gyrB, rpoD, and rpoB genes, as has been described previously (4).
Pseudomonas koreensis CI12 was selected as a model for studying bacterial interactions
in the rhizosphere. In vitro growth of P. koreensis CI12 in root exudate is not significantly
affected by the presence of B. cereus, but P. koreensis CI12 can impair the growth of
other hitchhikers, which is in contrast to the hitchhikers’ growth enhancement by B.
cereus (8).

The P. koreensis CI12 genome was sequenced on the Illumina MiSeq platform. A total
of 8,588,279 paired-end reads of 300 bp from a library with an average insert size of 1
kb were generated. Low-quality sequences were trimmed using Trimmomatic (9), and
the resulting sequences were then assembled using Velvet (10) and VelvetOptimiser.
Contigs were ordered by Mauve (11) using the P. fluorescens Pf0-1 genome (12) as a
reference, assembled manually by joining with a linker sequence of unknown nucleo-
tide character “N,” and then gaps were filled with GapFiller (13). The resulting assembly
was 6,622,028 bp, consisting of 16 contigs, with an N50 contig size of 608,098 bp.

We predict that sequencing new strains of P. koreensis will help delineate traits that
may mediate its interactions with plant hosts and their associated microbiota. Further-
more, additional genomes belonging to members of the P. fluorescens complex may
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help define the phylogenomic groups and determine their relationship with ecophysi-
ological groups of the complex.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession no. MPLD00000000. The version described in
this paper is the first version.
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