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ABSTRACT

Barcoded vectors are promising tools for investigat-
ing clonal diversity and dynamics in hematopoietic
gene therapy. Analysis of clones marked with bar-
coded vectors requires accurate identification of po-
tentially large numbers of individually rare barcodes,
when the exact number, sequence identity and abun-
dance are unknown. This is an inherently challeng-
ing application, and the feasibility of using contem-
porary next-generation sequencing technologies is
unresolved. To explore this potential application em-
pirically, without prior assumptions, we sequenced
barcode libraries of known complexity. Libraries con-
taining 1, 10 and 100 Sanger-sequenced barcodes
were sequenced using an Illumina platform, with a
100-barcode library also sequenced using a SOLiD
platform. Libraries containing 1 and 10 barcodes
were distinguished from false barcodes generated
by sequencing error by a several log-fold difference
in abundance. In 100-barcode libraries, however, ex-
pected and false barcodes overlapped and could not
be resolved by bioinformatic filtering and cluster-
ing strategies. In independent sequencing runs mul-
tiple false-positive barcodes appeared to be repre-
sented at higher abundance than known barcodes,
despite their confirmed absence from the original li-
brary. Such errors, which potentially impact barcod-
ing studies in an application-dependent manner, are
consistent with the existence of both stochastic and
systematic error, the mechanism of which is yet to
be fully resolved.

INTRODUCTION

Retroviral vectors, such as gammaretroviral and lentivi-
ral vectors, have demonstrated great therapeutic poten-
tial, particularly for gene therapy applications targeting
the hematopoietic compartment. Therapeutic efficacy fol-
lowing retroviral gene delivery to hematopoietic progenitor
cells (HPCs) has been reported following trials of gene ther-
apy for several genetic diseases (1–12), leukemia (13) and
attenuation of graft-versus-host disease (14). Analyses of
vector integration sites (ISs), which uniquely tag individ-
ual gene-marked HPC clones, are yielding important in-
sights into clonal complexity, clonal dynamics and geno-
toxicity following gene therapy. For example, analysis of
samples taken 12–102 months post-transplant from eight
patients treated in the groundbreaking French SCID-X1
trial showed that diversity of reconstituted T cells corre-
lated positively with the dose of genetically modified HPCs
received by each patient (15). Additionally, the propor-
tion of genetically modified HPCs that contributed to long-
term hematopoiesis was estimated to be 1%. In the same
and subsequent trials involving other disease indications, IS
analysis has also been successfully used to investigate ad-
verse events including leukemia, myelodysplasia and non-
malignant clonal expansions (16–19). The underlying mech-
anism proved to be insertional mutagenesis and is now rec-
ognized as an important genotoxic risk associated with gene
therapy applications using integrating vector systems. While
indispensable for investigating the mechanism underlying
the above adverse events, IS analysis has a number of limi-
tations when used to assess clonal dynamics, including early
and reliable detection of potentially pathological clonal ex-
pansions. These limitations include methodological com-
plexity and, with the most widely used protocols involving
use of both restriction endonucleases and extensive rounds
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of polymerase chain reaction (PCR), the risk of detection
biases that can reduce sensitivity and even preclude detec-
tion of certain clones (20). Despite efforts to address these
limitations (20–24), there remains considerable impetus for
the development of alternative methods with improved sen-
sitivity and greater quantitative potential.

Barcoded vectors, containing random nucleotide (nt) se-
quences at defined positions, are a conceptually attrac-
tive alternative to IS analysis. Individual HPCs would be
uniquely tagged provided the barcoded vector stock has
sufficiently high complexity. Such an approach could offer
more reliable quantitation of clonal contributions if mini-
mal PCR cycles are used to amplify the barcode from the
genomic DNA, as well as methodological simplicity. Given
that doses in excess of 106 transduced HPCs per kg of body
weight have been used in hematopoietic gene therapy trials
(2,4,6–10), an ideal barcode library may need to contain up
to 108 different barcodes to ensure HPC clones are uniquely
tagged. Analyzing the diversity of such a highly complex
barcode library would require the ability to accurately iden-
tify large numbers of unique barcode variants of unknown
sequence, individually present at low frequency.

The capacity of next-generation sequencing (NGS) to an-
alyze tens to hundreds of millions of short sequence reads
raises the possibility of identifying and possibly quantifying
very large numbers of barcode variants recovered from ge-
nomic DNA extracted from clinical samples. The suitability
of existing NGS technologies for this extremely demanding
application is yet to be resolved. Current NGS technologies
have higher error rates than traditional Sanger sequencing
(25,26), and each of the platforms has different error profiles
(27,28). Although several analyses of barcodes amplified
from integrated retroviral vectors have been reported (29–
36), at present it is unknown to what extent sequencing error
might impact on the analysis of complex barcoded libraries,
and whether there is a limit to the degree of complexity
that can be reliably resolved using contemporary NGS tech-
nologies. To address these questions empirically, we ampli-
fied barcodes of known sequence identity within mixtures of
low to moderate complexity using minimal PCR cycles, and
sequenced those barcodes using Illumina and SOLiD plat-
forms. Our analysis of these mixtures enabled evaluation of
the effect of analytical strategies for reducing background
caused by error, the feasibility of setting frequency-based
cut-offs for eliminating background, the potential pitfalls
that may be encountered when analyzing complex libraries
and the extent of contribution to error from PCR and se-
quencing.

MATERIALS AND METHODS

Barcode design and construction of complex barcoded plas-
mid libraries

A primer extension method was developed to construct
platform-specific double-stranded barcode inserts for
cloning into the NsiI site of a previously described
lentiviral construct, pEF1�.�c (37), which is based on
pRRLsin.cPPT.hCMV.EGFP.WPRE (38) and wherein
expression of the common gamma chain (�c) is un-
der the transcriptional control of a 1177-bp human

elongation factor 1� (EF1�) promoter-enhancer frag-
ment (Figure 1A). Oligonucleotides were synthesized
to contain random nucleotides at defined positions
and adaptor sequences for either the Illumina or
SOLiD platforms (Supplementary Table S1). Anneal-
ing of either primer 5’-[phos]GGCACCCGTGCAC
for the Illumina-compatible barcode or primer 5’-
[phos]GCTGCTGTACGGCCAAGGCG for the SOLiD-
compatible barcode produced an NsiI-compatible end at
one end of the barcode insert. The complementary strands
of both barcode inserts were synthesized using the 5’ →
3’ exo− Klenow Fragment (New England Biolabs) and an
NsiI-compatible end was generated at the other end of
the barcode insert by cleavage with PstI (New England
Biolabs). After ligation of the insert with NsiI-linearized
pEF1�.�c, the NsiI site was not reconstituted, which
enabled digestion of the ligation product with NsiI to
eliminate vector molecules that re-ligated without the
barcode insert. Electrocompetent SURE cells (Agilent
Technologies) were transformed with the ligation prod-
ucts to produce highly complex Illumina-compatible
and SOLiD-compatible barcoded plasmid libraries, with
complexities of ∼15 million and 1.8 million, respectively.

Production of defined barcode libraries

From the Illumina-compatible and SOLiD-compatible
plasmid libraries, individual plasmids containing 119 and
100 unique barcodes, respectively, were isolated, quanti-
fied using a NanoDrop 1000 spectrophotometer (Thermo
Fisher Scientific), and Sanger-sequenced using an AB
3730xl instrument (Australian Genome Research Facility).
For all isolated plasmids, concentrations ranged from 36.3
to 235.7 ng/�l. Barcode libraries of defined complexity
comprising known sequence identities were produced by
mixing the plasmids containing these sequenced barcodes
in equimolar proportions. For the Illumina-compatible
barcode, plasmids containing unique and defined bar-
code sequences were mixed to provide libraries contain-
ing 10 known and 100 known barcode sequences, the ‘10-
barcode’ and ‘100-barcode’ libraries. The 10-barcode and
100-barcode libraries contained six barcodes with the same
sequence identities; the sequence comprising the single bar-
code was also represented within the 100-barcode library
(Supplementary Tables S2 and S3). A SOLiD-compatible
100-barcode library was prepared in a similar manner. A
single pipette was used during plasmid mixture prepara-
tions to minimize pipetting error. The two plasmid mix-
tures of 100 Illumina-compatible and SOLiD-compatible
barcodes contained different barcode sequences, because
they were composed of individual plasmids selected at ran-
dom from the two complex plasmid libraries. The need to in-
corporate platform-specific adaptor sequences into the bar-
code inserts necessitated the preparation of separate com-
plex libraries for each platform.

Preparation and NGS of barcode amplicons

The barcode regions in each of the Illumina-compatible and
SOLiD-compatible defined libraries were flanked by part of
the platform-specific adaptor sequences required for cap-
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Figure 1. Experimental design and analytical workflow for analysis of the Illumina-compatible barcode. (A) Structure and sequence of the Illumina-
compatible barcode insert cloned into the NsiI site of the pEF1�.�c lentiviral construct. The insert contained a PstI site, 32 bp of the Illumina adaptor
sequence, a 16-bp random sequence that functioned as the lentiviral barcode and an 18-bp known sequence. Numbers indicate the position of every fifth
random nucleotide in the barcode. The SOLiD-compatible barcode followed a similar configuration, with the insert containing a PstI site, 23 bp of the P1-T
adaptor, a 15-bp random sequence for the lentiviral barcode and the internal adaptor. For both barcode configurations, the barcode regions were amplified
with 10 PCR cycles using primers that introduced the adaptor sequences required for the Illumina or SOLiD platforms. (B) Strategy for analyzing sequence
data for the Illumina-compatible barcode. Raw sequence reads were filtered using the known sequence immediately following the barcode at positions 17–30
to eliminate indel errors. The lentiviral barcode was trimmed to positions 2–16 to avoid errors at position 1. The number of unique barcode sequences was
counted with and without phred score filtering (Q30), and with and without allowing one mismatch. For the SOLiD-compatible barcode, raw sequence
reads were filtered using 10 internal adaptor sequences and the number of unique barcode sequences were counted with and without allowing one mismatch.

ture and sequencing on either the Illumina or SOLiD plat-
forms (Figure 1A). Barcode samples were therefore PCR-
amplified using primers that introduced the remaining por-
tions of the adaptor sequences as well as a sample in-
dex (Supplementary Table S1). High fidelity Phusion poly-
merase (Thermo Fisher Scientific) and only 10 PCR cycles
(95◦C for 30 s, 55◦C for 30 s and 72◦C for 30 s) were used for
amplification, to minimize the potential for PCR bias and
polymerase error. Amplicons were gel-purified and quan-
tified using the NanoDrop 1000. Amplicon samples of the
single barcode, and the 10- and 100-barcode libraries were
mixed to contain ∼100 000 copies of each barcode ampli-
con. Sequencing of Illumina-compatible barcodes was con-
ducted on a HiSeq 2000 instrument using 50 base single-
end reads (Beijing Genomics Institute), with 22 057 163
reads dedicated to these samples. The same plasmid mix-
ture that constituted the Illumina-compatible100-barcode
library was amplified for sequencing a second time on the

HiSeq 2000, producing 82 508 636 reads. Small-scale se-
quencing of SOLiD-compatible barcodes (1 219 079 reads)
was conducted on a 5500xl instrument (Victor Chang Car-
diac Research Institute). For both libraries sequence het-
erogeneity was ensured at the proximal ends of sequence
reads, since they commenced with the 16- and 15-nt bar-
code sequences of the Illumina-compatible and SOLiD-
compatible libraries, respectively. To further maximize se-
quence heterogeneity in the first Illumina sequencing run,
the defined libraries were spiked into a complex background
that comprised 90% of sequence reads. Thus the single bar-
code, 10- and 100-barcode libraries comprised 0.09%, 0.9%
and 9% of sequence reads, respectively. To examine the po-
tential for the 10-cycle PCR to influence the relative abun-
dance of barcodes, selected barcode amplicons were mixed
in equimolar proportions after PCR amplification and gel-
purification. Samples derived from corresponding pre- and
post-amplification mixing were sequenced in a third inde-
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pendent sequencing run on the HiSeq 2000, with 173 560
reads dedicated to these samples.

Data filtering, analysis of unique barcodes and analysis of a
constant region flanking the barcode

Raw sequence reads obtained from the Illumina HiSeq
2000 were initially filtered for the known sequence, ‘GGT-
GCACGGGTGCC’, at positions 17–30 (Figure 1B). This
facilitated elimination of errors caused by nucleotide in-
sertions or deletions. Subsequent analyses of the processed
reads were conducted using a combination of standard
UNIX tools for string manipulation, the MySQL (Version
5.1.47) relational database for sequence counting and cus-
tomized Perl scripts for data manipulation, filtering, clus-
tering and error analysis (scripts provided as Supplemen-
tary Methods). Reads were trimmed to positions 2–16 of
the barcode using barcode-parse.pl, since previous analy-
ses of the distribution of error frequencies at different nu-
cleotide positions during preliminary sequencing runs had
indicated that the first position of an Illumina read can be
highly error-prone (data not shown), a phenomenon also
reported by others (27). Reads wherein any of the barcode
positions had a Phred score below 30 were filtered out us-
ing barcode-filter.pl to produce Q30-filtered data. Unique
barcode sequences were counted and then listed in order of
decreasing abundance using a simple MySQL query. The
clustering program, cluster.pl, was designed to assume no
prior knowledge of real versus artifactual barcodes and pro-
cessed barcodes in a hierarchical fashion using the correct
order produced by MySQL. Briefly, all detected sequences
were compared with the first-most abundant barcode and
their counts were added to those of the first-most abun-
dant barcode if they differed by one position, which was
determined by calculating the Hamming distance of each
sequence relative to the first-most abundant barcode. The
process was repeated for the second-most abundant barcode
and then the third-most abundant barcode, etc., until all re-
maining barcodes had been processed. Raw sequence reads
obtained from the SOLiD 5500xl were processed similarly,
with filtering based on the presence of the first 10 nt of the
internal adaptor sequence, ‘ACGCCTTGGC’, at positions
16–25, followed by one-mismatch clustering. The known
sequence, ‘GGTGCACGGGTGCC’, at positions 17–30 of
the Illumina-compatible barcode (Figure 1A) was analyzed
similarly. Raw sequence reads from the first and second Il-
lumina sequencing runs were filtered based on the presence
of the expected index sequences at the expected positions,
31–36. Reads were then trimmed to positions 17–30 and
Q30-filtered using barcode-filter.pl. The number of unique
sequences was counted using MySQL, and sequences that
differed by one mismatch were clustered using cluster.pl.
The potential misassignment of reads to another sample
(attributable to incorrect assignment of Illumina index se-
quences) was assessed for the three libraries sequenced in
the first sequencing run. Using agrep and allowing two mis-
matches, Q30-filtered reads were screened for barcode se-
quences belonging to the other respective samples. Barcode
sequences known to be contained within more than one li-
brary were excluded from this analysis.

The clustering program was also used to establish the
maximum number of mismatches that could be permitted
before each of the known sequences in the 100-barcode li-
braries could no longer be unambiguously identified. Al-
though up to five mismatches could theoretically be tol-
erated, in practice allowing two to four mismatches did
not eliminate high-frequency false-positive barcodes or dis-
tinguish expected barcodes from background. Within the
plasmid mixture of 100 Illumina-compatible barcodes, 18
plasmids contained at least two barcodes. For these bar-
codes the relative abundance of the apparently least abun-
dant barcode was compared to that of the other barcode(s)
present on the same plasmid molecule, following sequenc-
ing in the first and second Illumina runs, Q30 filtering and
one-mismatch clustering.

Analyses of empirical error rates, one-mismatch errors and
barcode sequence characteristics

Empirical error rates were assessed using mismatch-
barcode.pl, which compared each position in the barcode
region to the expected nucleotide for that position across
all reads of the single barcode. Analysis of one-mismatch
errors was performed using error-analysis.pl, which com-
pared the one-mismatch error sequences identified by clus-
ter.pl to the expected barcode sequences from which they
differed by one mismatch. The first 89 records from the clus-
ter.pl output were used, since these contained expected bar-
code sequences. This method assumed that the sequences
that differed from expected barcodes by one mismatch were
generated by errors at the mismatch position. While this
analysis provided insight into the type and location of
stochastic single nucleotide substitution-like errors, it was
uninformative with regard to the systematic errors that re-
sulted in high-frequency false barcodes that appeared to
contain six or more mismatches. GC content for each of
the 100 known barcode sequences was calculated using
gatc-string.pl. Minimum Gibbs Free Energy (MFE) val-
ues for the 100 known barcode sequences and whole bar-
code amplicons were calculated using UNAfold (39). Pu-
tatively false barcodes that were detected within the top
120 unique barcodes for the Illumina-compatible barcode
library were compared to each of the 100 expected bar-
codes using Hamming distances calculated by 100-noise-
hamming-distance.pl. The maximum length of perfect ho-
mology between high-frequency false barcodes and the 100
known barcodes was calculated using compare-false-to-
known.pl. Multiple sequence alignments and analyses of
conserved regions were conducted using BioEdit (Version
7) (40).

PCR assays to determine individual barcode representation
within the 100-barcode library

The presence of individual barcode sequences within the
Illumina-compatible 100-barcode plasmid mixture was as-
sessed using semi-quantitative PCR. Each PCR assay used
a primer designed to anneal specifically to the barcode se-
quence and a vector-binding primer designed to produce
an ∼120-bp product (Supplementary Table S1). The 3’ end
of the barcode-specific primers contained 11 nt that specifi-
cally bound to the barcode, such that the remaining 5 nt of
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the barcode sequence served as template for amplification.
These 5 nt functioned as a ‘signature’ for each barcode se-
quence and were used to confirm the specificity of amplifica-
tion when PCR products were Sanger-sequenced. Although
each PCR assay was set up as a quantitative PCR (qPCR),
the constraints on primer placement that were necessary to
ensure specific amplification of barcodes were not compat-
ible with optimal qPCR primer design. Consequently, the
assays were used to assign the absence or presence of spe-
cific templates within their specific detection limits. For each
PCR assay, a 1 × 1010-copy standard of the plasmid con-
taining the barcode of interest was prepared and then seri-
ally diluted 1 in 10 into the pEF1�.�c construct without the
barcode insert, such that 1 × 105-copy to 1 × 109-copy stan-
dards were produced for constructing standard curves. Ten
million-copy samples were prepared for each of the sam-
ples that were analyzed, which included the plasmid mix-
ture comprising the 100-barcode library, a 10-barcode plas-
mid mixture including the barcode of interest, the plasmid
containing the barcode of interest and three plasmids con-
taining different barcodes. Reactions used the SYBR Green
JumpStart Taq ReadyMix (Sigma-Aldrich) and were ana-
lyzed using a Rotor-Gene 6000 real-time PCR detection sys-
tem (Corbett). Cycles consisted of an initial denaturing step
(95◦C for 10 min), followed by 25 cycles of template dena-
turing (95◦C for 20 s) and primer annealing and extension
(72◦C for 20 s) and a final extension step (72◦C for 7 min).
The specificity of barcode amplification was confirmed by
Sanger-sequencing of the PCR product that was produced
when the 100-barcode library served as template for amplifi-
cation, for those samples that yielded an amplification prod-
uct.

In order to estimate the limit of sensitivity of this ap-
proach for detecting specific barcodes, a barcode sequence
that was absent from the 100-barcode library was spiked
into the 100-barcode library in known proportions (0.1%,
0.5%, 0.75%, 1%, 1.25%, 2.5%, 5%, 10% and 20%) and ana-
lyzed by semi-quantitative PCR using a recessed primer spe-
cific for that barcode (Supplementary Table S1). The limit of
sensitivity of this approach for detecting specific barcodes
was thus established as ≥0.1%. The specificity of amplifi-
cation of the spiked-in barcode sequence was validated by
Sanger sequencing of the products yielded when the mix-
tures containing 0.1% and 1% of the spiked-in barcode were
used as template. Additionally, end-point PCR was per-
formed to detect the presence of selected barcodes. A simi-
lar recessed primer design was employed for the barcode-
specific primers and two different vector-binding primers
were used to accommodate either forward or reverse ori-
entations of the barcode insert (Supplementary Table S1).
Cycling conditions were identical to those used for the semi-
quantitative PCR. End-point PCR was employed to evalu-
ate the presence or absence of certain barcodes in four dif-
ferent samples of the 100-barcode library after the 10 am-
plification cycles. The samples analyzed included the two
post-amplification samples that were used in the Illumina
HiSeq 2000 sequencing runs, of which insufficient quanti-
ties remained for analysis using semi-quantitative PCR.

Statistical analyses

Comparisons between observed and expected proportions
of errors at barcode positions and each of the possible types
of substitution errors were made using � 2 tests (Graph-
Pad Prism Version 5). Comparisons of the observed and
expected abundance of barcodes mixed after 10 PCR cy-
cles were also performed using � 2 tests. Comparisons of the
maximum length of perfect homology between certain bar-
codes and the 100 known barcodes were performed using a
t-test (GraphPad Prism). Correlation between the detected
abundance of barcodes in the 100-barcode library during
the first and second sequencing runs was calculated using
Pearson R (GraphPad Prism).

RESULTS

Sequencing of defined barcodes reveals distinct categories of
error

Barcoded plasmid libraries were constructed, and the bar-
code regions were amplified from a single known barcode
and the defined 10- and 100-barcode libraries using 10 PCR
cycles, for sequencing on the Illumina platform (Figure 1A).
Additionally, a separate defined 100-barcode library was se-
quenced on the SOLiD platform. For each of these defined
samples, raw sequence reads were processed and the number
of unique barcode sequences was analyzed (Figure 1B).

One-barcode sample. For the sample containing a single
barcode, 92.66% of Q30-filtered sequence reads were ac-
counted for by the expected sequence when one mismatch
was permitted (Table 1). The remaining reads, however, de-
tected 8099 unique false-positive barcodes in this sample
known to contain only a single barcode. Misassignment
of reads originating from the 10-barcode and 100-barcode
libraries accounted for 0.013% of reads (or 0.17% of ob-
served error). The distribution of the relative frequency
of the 500 most abundant barcodes detected in the one-
barcode sample, however, indicated that the expected bar-
code had greater than four log-fold higher abundance than
background (Figure 2A and F). Background could thus be
eliminated using a frequency-based cut-off. The average em-
pirical error rate across the barcode positions for the sin-
gle barcode was calculated as 4.62% (SD = 0.15%) after
Q30 filtering and 5.55% (SD = 0.30%) before Q30 filtering.
Empirical error rates were not calculated for the 10- and
100-barcode libraries because these samples did not have a
unique reference sequence.

10-barcode library. The number and proportion of back-
ground sequences were lower for the 10-barcode library
compared to the one-barcode sample. The 10 expected bar-
codes accounted for 99.92% of Q30-filtered sequence reads
when one mismatch was tolerated (Table 1). Incorrect as-
signment of reads of the single barcode and barcodes in
the 100-barcode library contributed 0.016% of sequence
reads (19.0% of total error). Although 520 putatively false
barcodes were detected, the distribution of the relative fre-
quency of the 500 most abundant barcodes indicated that
the 10 expected barcodes had an ∼3 log-fold higher abun-
dance than background (Figure 2B and F). Interestingly,
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Figure 2. Distribution of the relative abundance of the 500 most abundant barcode sequences detected following analysis of the defined barcode libraries
using different sequencing platforms. Libraries containing (A) 1, (B) 10 and (C) 100 defined Illumina-compatible barcode(s) sequenced using the first
sequencing run. For the 100-barcode library, the first 89 most abundant barcodes matched expected sequences, and a point of inflection in the distribution
of the relative frequencies of barcodes occurred at the 82nd-most abundant barcode. Six putatively false barcodes that were not in the 100-barcode library
were detected within the top 100. (D) Library containing the same 100 defined Illumina-compatible barcodes sequenced using the second sequencing
run after an independent amplification. Seven putatively false barcodes were detected within the top 100. A point of inflection occurred at the 79th-most
abundant barcode and again, the first 89 most abundant barcodes matched expected sequences. (E) Library containing 100 defined SOLiD-compatible
barcodes. The first 82 most abundant barcodes matched expected sequences; however, 13 putatively false barcodes were detected in the top 100. (F) Mean
and range of relative abundances of expected and false barcodes, for each sample.



PAGE 7 OF 14 Nucleic Acids Research, 2014, Vol. 42, No. 16 e129

Table 1. Effect of analytical strategies on the reduction of background error

Illumina HiSeq 2000 SOLiD 5500xl

1-barcode 10-barcode 100-barcode 100-barcode 100-barcode

Property (Run 1) (Run 1) (Run 1) (Run 2)

Analysis Fold coverage of
each barcode

134 364× 81 714× 211 057× 825 086× 12 191×

Counting unique Processed
sequence reads

134 364 817 135 21 105 664 82 508 636 1 219 079

Total unique
barcodes detected

9691 1073 7977 14 672 112 624

Processed reads
accounted for by
expected
sequence(s)

91.45% 98.02% 97.59% 97.73% 55.86%

Q30 filtering,
counting unique

Processed
sequence readsa

111 766 (16.8%) 705 473 (13.7%) 17 694 272
(16.2%)

75 076 957 (9.0%) 546 409 (55.2%)

Total unique
barcodes detected

8219 819 3638 5241 7068

Processed reads
accounted for by
expected
sequence(s)

92.48% 99.55% 99.32% 99.42% 96.86%

Q30 filtering,
clustering 1
mismatch,
counting unique

Processed
sequence reads

111 766 705 473 17 694 272 75 076 957 546 409

Total unique
barcodes detected

8100 530 687 1014 6963

Processed reads
accounted for by
expected
sequence(s)

92.66% 99.92% 99.67% 99.74% 97.33%

Q30 filtering,
clustering 1
mismatch,
excluding
error-prone
positions,
counting unique

Processed
sequence reads

113 198 717 794 18 109 912 75 532 263 n.a.b

Total unique
barcodes detected

8351 545 706 902 n.a.

Processed reads
accounted for by
expected
sequence(s)

92.58% 99.92 99.67% 99.74% n.a.

aProportion of processed sequence reads eliminated during Q30 filtering given in parentheses.
bn.a., analysis not performed.

the 10 known barcodes were not detected in the expected
equal proportions (Supplementary Table S2).

100-barcode library. For the 100-barcode library, while the
number and proportion of background sequences were also
low, expected barcodes overlapped with background (Fig-
ure 2F). The 100 expected barcode sequences accounted
for 99.99% of Q30-filtered sequence reads when one mis-
match was allowed, with the remaining background com-
prising 677 putatively false barcodes (Table 1). Misassigned
reads of barcodes from the 10-barcode library accounted
for 0.00061% of reads (0.19% of total error). The distri-
bution of the relative frequency of the 500 most abundant
barcode sequences displayed no clear distinction between
the 100 expected barcodes and background, with some ex-
pected barcodes being detected at lower abundance than

putatively false barcodes (Figure 2C, Supplementary Table
S3). Three of the expected barcodes were detected outside
of the 100 most abundant sequences, and a further three
expected barcodes were undetected. When the same plas-
mid mixture of 100 barcodes was sequenced using 4.2-fold
higher coverage in an independent run following an inde-
pendent 10-cycle PCR, a similar pattern was observed. The
100 expected barcodes accounted for 99.74% of filtered se-
quence reads after Q30 filtering and clustering, and 914 pu-
tatively false barcodes were detected (Table 1). Although
baseline levels of background were lower compared to the
previous sequencing run of the same sample, the distribu-
tion of the 500 most abundant barcodes displayed a similar
overlap between the 100 expected barcodes and background
(Figure 2D and F, Supplementary Table S3). Five of the ex-
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pected barcodes were detected outside of the top 100, and
a further two expected sequences were not detected. A bar-
code library containing 100 known sequences could there-
fore not be fully resolved from background using the Illu-
mina platform.

SOLiD-compatible library. A separate 100-barcode li-
brary was sequenced using the SOLiD platform. This was
a preliminary analysis to explore whether an independent
technology was more suitable for analyzing complex bar-
code libraries, given the potential advantages of di-base in-
terrogation and color-space mapping. While the 100 ex-
pected barcodes accounted for 97.33% of filtered sequence
reads, 6863 putatively false barcodes were detected (Table
1). The distribution of the 500 most abundant sequences
indicated that the expected sequences could not be distin-
guished from background (Figure 2E and F; Supplemen-
tary Table S4). Eleven of the expected barcodes were de-
tected outside of the top 100 and a further two expected
barcodes were not detected.

Analysis of a known sequence outside the barcode. The
number and abundance of unique sequences detected were
analyzed for a constant region downstream of the barcode
that was introduced by the primers used to amplify the bar-
code and also sequenced using the Illumina platform (Fig-
ure 1A). The expected sequence accounted for 99.99% and
99.999% of sequence reads after Q30 filtering and cluster-
ing for the first and second Illumina sequencing runs, re-
spectively, with totals of 146 and 141 unique sequences de-
tected for the first and second runs, respectively (Supple-
mentary Table S5). The overall proportion of error for this
known sequence was lower than that for the barcode region
in each of the samples. Errors detected in the barcode re-
gion represented the combination of errors generated dur-
ing the 10-cycle PCR and sequencing. Therefore, further
analyses sought to attribute the source of errors detected
in the barcode region to either PCR or sequencing for each
of the categories of error observed, namely, discrepancies of
relative barcode abundance, loss of barcodes, generation of
false barcodes and random errors.

Discrepancies of relative barcode abundance arise during se-
quencing

Analyses of the Illumina-compatible 10- and 100-barcode
libraries revealed a discrepancy between the expected equal
abundance of each of the known barcode sequences and
an observed uneven abundance. For the 10-barcode library,
where each barcode was expected at 10% abundance, there
was a 3.7-fold discrepancy between the most and least fre-
quently detected known barcodes (Supplementary Table
S2). The observed uneven distribution of apparent abun-
dance for each of the known barcodes in the 100-barcode
library, expected at 1%, followed a pattern that was con-
sistent overall, but non-identical for both sequencing runs
(Figure 3A). The most frequently detected known barcodes
were detected at 2.59% and 2.99% abundance in both se-
quencing runs, while the 89th-most abundant barcodes were
detected at 0.21% and 0.15% abundance by the first and

Figure 3. Analysis of the relative abundance, GC content and likelihood
of secondary structure formation for each of the 100 expected Illumina-
compatible barcode sequences. (A) Relative abundance of the 100 expected
barcode sequences, as detected during the first and second sequencing runs
using the Illumina HiSeq 2000 (Pearson r(98) = 0.93, p<0.0001). (B) Dis-
tribution of the relative abundance of each barcode sequence as a function
of the percentage GC content of that sequence. (C) Distribution of the rel-
ative abundance of each barcode sequence as a function of the MFE value
calculated for that sequence. MFE values provide an estimate of the likeli-
hood of secondary structure formation, with lower values associated with
a higher likelihood.
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second sequencing runs, respectively. The sequence identi-
ties of the three most abundant barcodes and the three un-
detected barcodes were the same between sequencing runs
(Supplementary Table S3). The relative abundance of each
of the 100 barcode sequences did not correlate with GC
content or MFE values, as a prediction of the likelihood
of secondary structure formation (Figure 3B and C). Vari-
ance in GC content was high for both high-abundance and
low-abundance barcodes, and the amplitude in MFE values
was small overall. Multiple sequence alignments and analy-
ses of conserved regions failed to reveal any common motifs
among the 10 most abundant and 10 least abundant bar-
codes.

Since some of the plasmids used to prepare the plasmid
mixture of 100 barcodes contained multiple barcode inserts,
the relative abundance of barcodes present on the same
molecule was compared. For plasmids containing two or
more barcodes, 11 out of 23 and 13 out of 23 barcodes were
detected at greater than 1.5-fold higher abundance than the
less abundant barcode in the first and second sequencing
runs, respectively. The plasmid molecule that contained one
of the undetected barcodes contained a second barcode,
which was detected at 0.68% and 0.71% relative abundance
in the first and second sequencing runs, respectively. To map
the source of consistent over- and under-representation of
certain barcodes, two mixtures of barcodes were prepared
so as to be represented at equimolar proportions after PCR
and before sequencing. The observed abundance of bar-
codes in each of these mixtures was still unequal after an
independent Illumina sequencing run and differed signifi-
cantly from the expected equal abundance (p < 0.0001; Sup-
plementary Table S6).

Loss of barcodes is attributable to PCR, not sequencing

The same three barcodes were undetected (or detected be-
low background) in two Illumina sequencing runs (Supple-
mentary Table S3). PCR analysis detected these barcodes
in the original pre-amplification plasmid mixture, but not
in the post-amplification barcode mixtures. Therefore, the
loss of barcodes was attributable to the 10-cycle PCR used
to introduce the Illumina adaptor sequences.

Generation of false barcodes during sequencing

Certain unexpected barcodes were consistently detected
within the 120 most abundant barcodes for the 100-barcode
library in both sequencing runs, despite implementation of
background reduction strategies (Table 1). When the false
barcodes detected in both sequencing runs were compared
to the 100 expected sequences at each position, they dif-
fered by a minimum of 6 nt from the expected sequences
to which they were most closely related. Six mismatches ex-
ceeded the maximum of five mismatches that could be toler-
ated in retaining lack of ambiguity among the 100 expected
sequences. Additionally, the maximum lengths of homol-
ogy were calculated when the six highest-frequency false
barcode sequences, their reverse complements and six ran-
domly generated sequences were compared to each of the
100 expected sequences. There was no evidence of a dif-
ference in the maximum lengths of homology for the six

false barcodes or their reverse complements relative to the
six random sequences (p = 0.55 and 1.0, respectively). The
high-frequency false barcodes thus bore no recognizable re-
semblance to the known sequences. The six putatively false
barcodes could not be detected by PCR in the original plas-
mid mixture containing the 100 expected barcodes. For the
first two of these barcodes, which were detected at 0.17%
and 0.14% abundance, and 0.05% and 0.08% abundance, in
the first and second sequencing runs, respectively, the sensi-
tivity of the PCR analysis method used was ≥ 0.01% (Sup-
plementary Figure S1). These two sequences also failed to
be detected in the two post-amplification samples of the
100-barcode library that were sequenced, indicating that
their apparent presence arose during sequencing and not
during the 10 cycles of PCR.

Characterization of error location and substitution type for
stochastic errors

The location and substitution type of stochastic errors iden-
tified by one-mismatch clustering of Q30-filtered data were
characterized. Analyses revealed that the locations of er-
rors were not evenly distributed and differed between se-
quencing runs (Figure 4A). Elimination of the more error-
prone positions resulted in fewer reads being discarded, but
overall levels of background remained unchanged (Table 1).
Analyses of each of the 12 possible types of substitution-like
errors indicated that these were also unevenly distributed
(Figure 4B). There was an over-representation of substitu-
tions to G and an under-representation of substitutions to
C, both of which were reproducible across both sequencing
runs.

DISCUSSION

The growth of clinical trial activity for gene therapy target-
ing the hematopoietic compartment has spurred the need to
develop improved methods for monitoring clonal diversity
and size, and particularly greater sensitivity for early detec-
tion of potentially pathological clonal expansions. Since the
sequence identities of barcodes in a barcode library of the
complexity required for clinical use would be unknown, the
veracity of barcode variants identified using NGS must be
assumed, unless there is a clear distinction between true bar-
codes and erroneously generated sequences. In this study,
the feasibility of vector barcoding coupled with NGS was
investigated for potential use in analyzing clonal diversity,
using mixtures of defined complexity comprising known
barcode sequences. We describe an empirical approach to
evaluate the size of a barcode library that can be resolved by
NGS, using over 100 000-fold coverage in two independent
sequencing runs to analyze the same library of known bar-
code sequences. In doing so, similar limitations applicable
to independent NGS technologies were identified, pertain-
ing to the analyzable degree of complexity, sensitivity and
specificity of analysis and assessable clone size.

In the context of our experimental configuration, se-
quencing error was found to impose an upper limit on the
degree of complexity that could be resolved using NGS.
Barcode libraries of low complexity, containing just one
or 10 unique barcodes, could readily be distinguished from
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Figure 4. Analysis of the position and substitution-like type of error for
all one-mismatch sequence errors for both Illumina HiSeq 2000 sequenc-
ing runs. One-mismatch errors were compared to the known barcode se-
quences from which they were derived. Errors from the first sequencing
run represent the sum of one-mismatch errors after Q30 quality filtering
for the one-barcode sample and 10- and 100-barcode libraries, although
one-mismatch errors from the 100-barcode library comprise 95.3% of all
errors. Errors from the second sequencing run represent one-mismatch er-
rors after Q30 quality filtering for the 100-barcode library. (A) Distribution
of one-mismatch errors across each position of the barcode (positions 2–
16 of the sequence reads). This distribution differed significantly from an
expected even distribution (� 2 = 30 064, df = 14, p < 0.0001 for the first
sequencing run; � 2 = 90 717, df = 14, p < 0.0001 for the second sequenc-
ing run). (B) Distribution of each possible substitution-like error type. This
distribution also differed significantly from an expected even distribution
(� 2 = 26 127, df = 11, p < 0.0001 for the first sequencing run; � 2 = 82 229,
df = 11, p < 0.0001 for the second sequencing run). df, degrees of freedom.

background produced by error. However, this was not the
case for libraries containing 100 barcodes. While implemen-
tation of bioinformatic strategies reduced the total levels
of background to below 0.5% of total sequence reads for
a library containing 100 barcodes, no cut-off could be es-
tablished between foreground and background. In the ex-
perimental configuration used here, the upper limit on the
analyzable degree of complexity thus lies between 10 and
100 known barcodes. It is estimated that a barcode library
with complexity of 2500 would be sufficient to mark 90%
of transduced HPCs that undergo hematopoiesis in a clin-

ical trial (36). Our findings therefore imply that it may be
difficult to use current NGS technologies to fully resolve li-
brary complexities in the order of magnitude required for
clinical applications. However, this does not negate the use
of barcoding in studies that are less sensitive to the level of
background comprising individual false positives, such as
comparisons of barcode complexity in different treatment
groups or cell types.

Our analyses uncovered four categories of error, namely
stochastic errors, generation of false barcodes, discrepan-
cies of relative barcode abundance and loss of barcodes.
For each of these error categories, we sought to discrimi-
nate between PCR and sequencing as the dominant source.
We minimized the contribution of polymerase infidelity to
stochastic error by using just 10 PCR cycles and the high-
fidelity Phusion polymerase, which has a reported error rate
of 4.4 × 10−7 (41). At this error rate, 0.0066% of PCR prod-
uct molecules would have contained errors in the 15 bp bar-
code sequence. By contrast, NGS technologies are known
to have error rates several orders of magnitude higher, rang-
ing from 10−3 to 10−2, and greater than 10−2 in certain se-
quence contexts such as motifs with high GC content (42–
44). In our analysis of the single barcode, the average error
rate was 4.62% for Q30-filtered reads. However, since the
overall proportion of background detected for that sample
was higher than for the other samples in the same sequenc-
ing run, it is likely to overestimate the true error rate for that
run. Even at a low sequencing error rate of 10−3, 1.5% of se-
quence reads would contain errors. Therefore, the stochastic
errors contributed to our data by sequencing are expected to
outnumber the PCR-generated ones by more than two or-
ders of magnitude. Indeed, errors were also detected within
the known sequence outside the barcode, which was intro-
duced by the primers used for amplification and was there-
fore not prone to polymerase error (although a proportion
could represent errors within the primers due to inefficient
coupling during oligonucleotide synthesis). The impact of
stochastic errors upon the analysis of a complex library can
be reduced using analytical strategies such as the clustering
approach we used, which in principle is similar to many of
the reported error correction algorithms (45–49).

Our study also revealed biases toward certain types of
stochastic sequencing error. Many of the stochastic se-
quencing errors generated on the Illumina platform in this
study were single nucleotide substitution-like errors, the ma-
jority of which occurred at specific positions in a sequenc-
ing run-dependent manner, yet involved specific types of
substitutions in a sequencing run-independent manner. The
dependence and independence of position effects and sub-
stitution effects, respectively, on individual sequencing runs
implies that these effects are not related. Such biases in error
types underscore the value of including a known barcode se-
quence, which in this study facilitated development of ana-
lytical strategies, including identification of any error-prone
positions. The observation of biases toward certain types of
stochastic sequencing errors is consistent with other reports
(47,50), although the specific biases observed in this study
have not previously been reported. For example, analysis of
single Sanger-sequenced TCR sequences found most erro-
neous reads could be accounted for by C to T, G to A, A to
G and T to C substitutions (51).
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Systematic errors, such as those that gave rise to high-
frequency false barcodes in our study, have implications dis-
tinct from stochastic errors and cannot be computationally
curtailed using the clustering-based approach. The same six
false barcodes, which were detected in the top 100 barcodes
after two independent sequencing runs, shared little homol-
ogy with any of the expected barcode sequences, suggesting
they were unlikely to have arisen from recombination or
polymerase strand jumping during PCR. Our analyses of
the same two post-amplification 100-barcode library sam-
ples that were sequenced after independent amplification
eliminated PCR as the source of these errors. Intriguingly,
such high-frequency errors entailed the same substitution-
like error occurring at the same nucleotide thousands of
times. For example, the most frequently detected false bar-
code was counted 30 529 and 105 067 times after Q30 fil-
tering and clustering of reads generated by the first and sec-
ond Illumina sequencing runs, respectively. Although mis-
assigned reads of known barcodes did not account for the
majority of the error detected in the single barcode, and
10-barcode and 100-barcode libraries sequenced during the
first run, it is likely that misassigned reads originating from
the complex background into which these samples were
spiked would have contributed additional error. This high-
lights a need for vigilance when using multiplexed index se-
quences.

Our findings are consistent with a recently reported ob-
servation that even three defined barcodes of different abun-
dance could not be resolved from false-positive barcodes
in all 28 replicates of a control experiment (29). The ob-
servation of this high-abundance false-positive barcode oc-
curred despite the use of a more tolerant clustering ap-
proach (applied to fewer variable barcode positions) and
additional detection thresholds that were not implemented
in our study. Moreover, the researchers capitalized upon
the additional accuracy imparted by overlapping paired-
end reads, accepting only those reads that matched per-
fectly in both directions. These added measures could ex-
plain why the frequency of detecting high-abundance false-
positives was marginally lower than in our experimental set-
ting, while recognizing that the barcode complexity of three
was considerably less than 100. In a gene therapy context,
such high-frequency false barcodes would misleadingly sug-
gest the presence of non-existent clones. The detection of
these false positives indicates that NGS analysis of complex
barcode libraries has limited specificity. The mechanism by
which these high-frequency systematic errors arise remains
to be determined.

The potential for quantitative and unbiased analysis was
an attractive advantage of barcoding over IS methodolo-
gies. For a barcode library of moderate complexity, con-
taining 100 unique barcodes, only a crude approximation
of clone size could be obtained. There was over one log-
fold difference in the measured abundance of barcodes that
had been mixed in equal proportions, despite minimizing
PCR bias by using only 10 amplification cycles. Even bar-
codes that were present on the same plasmid molecule were
detected at different abundances, to the extent that one bar-
code was readily detected, while the other was undetected
or detected at levels below background, depending on the
sequencing run. This indicates that the discrepancy in their

relative abundance was independent of possible pipetting
error during preparation of the plasmid mixture of 100 bar-
codes. Furthermore, analysis of barcodes that were mixed
in equimolar proportions after amplification but before se-
quencing indicated that the discrepancy in the relative abun-
dance of barcodes can arise solely during sequencing, al-
though additional contributions of preferential amplifica-
tion during PCR cannot be ruled out for other barcodes not
tested in this way. Despite analyses of GC content of the
100 expected barcodes and predictions of their secondary
structure, it remains unclear whether and how the barcode
sequences themselves could contribute to discrepancies in
their measured relative abundance.

Our investigation has shown that analysis of barcode li-
braries can give rise not only to false positives but also false
negatives. In two independent Illumina sequencing runs, the
same barcodes failed to be detected. Our empirical vali-
dation studies indicated that those barcodes were absent
from both post-amplification samples derived from the 100-
barcode plasmid library used for the first and second se-
quencing runs, even though these samples were generated
in separate reactions using only 10 amplification cycles and
the same primers homologous to constant sequences out-
side the barcode. The possibility that genuine clones could
be missed during analysis of clinical gene therapy samples
is of particular concern when monitoring for clonal domi-
nance and malignancy. The danger that a malignant clone
could be marked with a sequence that cannot be reliably
detected limits the potential of this approach as a tool for
clinical monitoring. Such a malignant clone may have to at-
tain a greater level of dominance before expansion is iden-
tified as abnormal, risking further disease progression in a
patient. Applications of barcoding that involve analyses of
vector barcodes integrated in genomic DNA inescapably in-
volve a PCR-based sample preparation stage in order to en-
rich for the barcode sequences and introduce the appropri-
ate sequencing adaptors. For example, one or two rounds of
amplification involving 25–45 PCR cycles have been used in
other reports to retrieve barcode sequences from genomic
DNA and introduce adaptor sequences (29–34). Even with
a minimal number of PCR cycles, we observed biases caused
by the failure of certain barcode sequences to amplify. Fur-
ther optimizations of the PCR-based sample preparation
step may ameliorate some of the biases we observed. For ex-
ample, the performance of Kapa HiFi (Kapa Biosystems) is
less affected by GC-rich and GC-low sequences compared
to Phusion, and additives such as betaine and tetramethy-
lammonium chloride may assist amplification of GC-rich
and low-GC sequences (52,53). Again, depending on the
particular application of barcoding, the failure to detect a
minority of specific barcode sequences would not necessar-
ily impugn the interpretability of the results.

The relatively higher error rates of NGS technologies
have been identified as a challenge for applications of NGS
and led to the development of error correction algorithms
to facilitate data analysis. For example, sequence reads are
known to be more accurate toward the beginning, and er-
rors have been found to be associated with motifs such as
G, inverted repeats and GGC (54–56). Many applications of
NGS involve filtering sequence reads for known sequences
or alignment to a reference sequence such as a genome.
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These processes could account for the lack of precedence
in the literature for systematic errors of the nature that we
report. For example, around 60–90% of sequence reads typ-
ically pass alignment criteria during data analysis (25,56–
59). It is likely that systematic errors are filtered out during
these analytical steps.

Given the limitations to the analyzable degrees of com-
plexity and clone size, and sensitivity and specificity, bar-
coding could not be used as a sole method for clinical mon-
itoring of clonal diversity. Nonetheless, there could be some
utility in barcoding if used in conjunction with conventional
IS analysis, for providing a faster read-out, albeit crude.
Furthermore, barcoding may still serve utility as an experi-
mental tool for investigating hematopoiesis in small animal
models, if library complexity fits within the limitations im-
posed by sequencing error. For example, a previous analysis
of a similarly configured barcode identified 30–50 barcodes
per transplanted mouse, which was sufficient to provide in-
sights into hematopoietic differentiation (35). Other gene
marking studies utilizing different barcode designs have de-
tected fewer than 100 different barcodes in different lin-
eages of transplanted mice (31,32). The reliability of such
analyses could be further enhanced if fully characterized
barcode libraries of moderate complexity, such as that in
the present study, are used to validate data analysis strate-
gies. It may also be possible to design fault-tolerant bar-
codes wherein the effect of sequencing error can be miti-
gated through the use of built-in features that enable er-
ror correction. Such a barcode could comprise, for exam-
ple, tandem copies of known trinucleotide repeats. An error
in 1 nt of the repeat could be corrected by reference to the
other 2 nt. In practice, however, the construction of a com-
plex barcode library with such a configuration may be dif-
ficult. Our findings imply that sequencing error may pose a
challenge to the analysis of highly diverse TCR repertoires,
which face similar difficulties, owing to the unknown num-
ber of TCR sequences of indefinite identity. For example,
in a similar study to the present one, three single TCR se-
quences were analyzed using an Illumina platform and over
500 false TCR sequences were detected in each sample (51).
Analytical strategies that take account of sequencing error
are therefore required for identification of unique TCR se-
quences using NGS (60). Applications of TCR repertoire
analysis that involve investigation of lower complexity TCR
repertoires, such as monitoring for residual disease in pa-
tients treated for leukemia, especially when the malignant
clonotype is known, are likely to be less affected by sequenc-
ing error (61,62).

In conclusion, we have shown that sequencing error lim-
its the analysis of complex barcode libraries using contem-
porary NGS technology. Even with very high coverage of
a defined library of moderate complexity, containing 100
barcodes, it was impossible to reliably distinguish all ex-
pected barcodes from false barcodes. Sequencing error thus
imposes a limitation on the degree of complexity that can
be resolved using NGS and highlights the importance of
including known sequences in barcoding experiments. As
has been demonstrated in other studies, applications where
absolute distinction between true and false barcodes is not
required because the acceptance of defined thresholds of er-
ror do not impugn the findings, analysis of barcoded sam-

ples can produce important biological insights (29,31,35).
Furthermore, there may be applications for barcoding that
involve lower orders of complexity and fall within the ana-
lyzable limit, such that the potential of contemporary NGS
technology can be better capitalized upon for such applica-
tions. The use of paired-end sequencing in the configuration
of a study such as the one described here would be expected
to reduce background, and NGS technologies will continue
to improve in terms of accuracy and reduction of systematic
error. It is noteworthy that the resolution of complex bar-
code libraries constitutes a non-standard NGS application,
and there will remain a need for vigilance of error pertain-
ing to the use of methodologies lying outside their originally
envisaged scope of application.
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Koehl,U., Glimm,H., Kühlcke,K., Schilz,A., Kunkel,H. et al. (2006)
Correction of X-linked chronic granulomatous disease by gene
therapy, augmented by insertional activation of MDS1-EVI1,
PRDM16 or SETBP1. Nat. Med., 12, 401–409.

9. Cartier,N., Hacein-Bey-Abina,S., Bartholomae,C.C., Veres,G.,
Schmidt,M., Kutschera,I., Vidaud,M., Abel,U., Dal-Cortivo,L.,
Caccavelli,L. et al. (2009) Hematopoietic stem cell gene therapy with
a lentiviral vector in X-linked adrenoleukodystrophy. Science, 326,
818–823.

10. Boztug,K., Schmidt,M., Schwarzer,A., Banerjee,P.P., Dı́ez,I.A.,
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30. Cornils,K., Thielecke,L., Hüser,S., Forgber,M., Thomaschewski,M.,
Kleist,N., Hussein,K., Riecken,K., Volz,T., Gerdes,S. et al. (2014)
Multiplexing clonality: combining RGB marking and genetic
barcoding. Nucleic Acids Res., 42, e56.

31. Cheung,A.M.S., Nguyen,L. V, Carles,A., Beer,P., Miller,P.H.,
Knapp,D.J.H.F., Dhillon,K., Hirst,M. and Eaves,C.J. (2013) Analysis
of the clonal growth and differentiation dynamics of primitive
barcoded human cord blood cells in NSG mice. Blood, 122,
3129–3137.

32. Verovskaya,E., Broekhuis,M.J.C., Zwart,E., Ritsema,M., van Os,R.,
de Haan,G. and Bystrykh,L. V (2013) Heterogeneity of young and
aged murine hematopoietic stem cells revealed by quantitative clonal
analysis using cellular barcoding. Blood, 122, 523–532.
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