
Submitted 3 March 2020
Accepted 14 February 2021
Published 16 March 2021

Corresponding author
Jarosław Stolarski,
stolacy@twarda.pan.pl

Academic editor
Bruce Lieberman

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.11062

Copyright
2021 Frankowiak et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Photosymbiosis in Late Triassic
scleractinian corals from the Italian
Dolomites
Katarzyna Frankowiak*, Ewa Roniewicz and Jarosław Stolarski*

Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
*These authors contributed equally to this work.

ABSTRACT
During the Carnian, oligotrophic shallow-water regions of the western Tethys were
occupied by small, coral-rich patch reefs. Scleractinian corals, which already con-
tributed to the formation of the reef structure, owed their position most probably
to the symbiosis with dinoflagellate algae (zooxanthellae). Using microstructural
(regularity of growth increments) and geochemical (oxygen and carbon stable isotopes)
criteria of zooxanthellae symbiosis, we investigated whether this partnership was
widespread among Carnian scleractinians from the Italian Dolomites (locality Alpe di
Specie). Although corals from this locality are renowned from excellent mineralogical
preservation (aragonite), their skeletons were rigorously tested against traces of
diagenesis Irrespective of their growth forms, well preserved skeletons of corals from
the Dolomites, most frequently revealed regular growth bands (low values of coefficient
of variation) typical of modern zooxanthellate corals. Paradoxically, some Carnian
taxa (Thamnasteriomorpha frechi and Thamnasteriomorpha sp.) with highly integrated
thamnasterioid colonies which today are formed exclusively by zooxanthellate corals,
showed irregular fine-scale growth bands (coefficient of variation of 40% and 41%
respectively) that could suggest their asymbiotic status. However, similar irregular
skeletal banding is known also in some modern agariciids (Leptoseris fragilis) which
are symbiotic with zooxanthellae. This may point to a similar ecological adaptation
of Triassic taxa with thamnasterioid colonies. Contrary to occasionally ambiguous
interpretation of growth banding, all examined Carnian corals exhibited lack of distinct
correlation between carbon (δ13C range between 0.81h and 5.81h) and oxygen (δ18O
values range between−4.21h and−1.06h) isotope composition of the skeletonwhich
is consistent with similar pattern inmodern zooxanthellates. It is therefore highly likely,
that Carnian scleractinian corals exhibited analogous ecological adaptations as modern
symbiotic corals and that coral-algal symbiosis that spread across various clades of
Scleractinia preceded the reef bloom at the end of the Triassic.

Subjects Marine Biology, Paleontology, Zoology
Keywords Scleractinia, Carnian, Diagenesis, Symbiosis, Microstructure, Geochemistry

INTRODUCTION
Scleractinian corals engineer one of the most diverse ecosystems on Earth–coral reefs.
Their success in oligotrophic tropical marine habitats was enabled by the emergence of
symbiotic associationwith dinoflagellate algae (zooxanthellae) (e.g., Stanley Jr , 1981;Wood,
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1999; Hallock, 2001; Kiessling, 2010). Their mutualistic relationship base on the nutrient
exchange, with corals providing shelter and inorganic nutrients to their algal partners,
and zooxanthellae supplying their hosts with substantial amounts of photosynthates
(review in Allemand et al., 2011; Davy, Allemand &Weis, 2012). Despite the rich fossil
record of scleractinian corals beginning about 245 Ma and extensive studies concerning
mechanisms underlying coral-zooxanthellae symbiosis, little is known about its origin and
early evolution.

The mass emergence of scleractinian corals took place in the Middle Triassic (Anisian),
ca. 8–10 Ma after the end-Permian mass extinction (e.g., Flügel & Stanley Jr, 1984; Stanley
Jr, 1988; Flügel & Senowbari-Daryan, 2001; Martindale, Foster & Velledits, 2019). Although
already diverse in their growth form, the earliest corals only occasionally participated in the
reef formation (review in Martindale, Foster & Velledits, 2019). The rapid expansion and
diversification of Scleractinia occurred later, during the Late Triassic and appear to coincide
with the radiation of modern dinoflagellates (MacRae, Fensome & Williams, 1996; Bucefalo
Palliani & Riding, 2000; Shaked & De Vargas, 2006; LaJeunesse et al., 2018; Simpson, 2018;
Mantle, Riding & Hannaford, 2020). In fact, Late Triassic coral-algae coevolution is
regarded as an impetus for the success of corals as major reef builders (e.g., Stanley Jr
, 1981; Stanley Jr, 1988; Stanley Jr, 2003; Flügel, 1994; Stanley Jr & Swart, 1995;Wood, 1995;
Rosen et al., 2000; Payne & Van de Schootbrugge, 2007; Stanley Jr & Cairns, 1988; Kiessling,
2009; Kiessling, 2010; Martindale, Foster & Velledits, 2019). Wells (1956) hypothesized that
scleractinians were initially symbiotic with algae, and asymbiotic corals appeared much
later, in the Jurassic. This concept was originally supported by somemolecular data showing
that the oldest scleractinian lineages were associated with zooxanthellae (Barbeitos, Romano
& Lasker, 2010). Consistently, fossil corals from the Middle and Upper Triassic carbonates
were described as photosymbiotic (Morycowa & Szulc, 2007; Stanley Jr & Cairns, 1988;
Kiessling, 2010; Stanley Jr & Helmle, 2010; Kiessling & Kocsis, 2015; Kołodziej et al., 2018)
and coral-algal partnership played a key role in the Late Triassic global reef bloom—first
major expansion event after the end-Permianmass extinction (Flügel & Senowbari-Daryan,
2001; Stanley Jr & Fautin, 2001; Flügel, 2002; Kiessling, 2010;Martindale, Foster & Velledits,
2019).

Although it is most commonly assumed that scleractinian corals have been symbiotic
with zooxanthellae for over 230–210 myr, alternative scenarios have also been proposed.
For example, Stanley Jr (1981) argued that early scleractinians originally lacked symbionts
(which would be consistent with the ancestral state of the clade, see Kitahara et al., 2010;
Stolarski et al., 2011), and began to be associated with algae only near the end of the
Triassic. Recently, Middle to Late Jurassic (ca. 160 Mya) evolutionary divergence times
among Symbiodiniaceae clades (multiple genera previously assigned to the zooxanthella
genus Symbiodinium) were proposed by new recalibrated molecular clock based on nuclear
large subunit (LSU) rDNA sequences (LaJeunesse et al., 2018). Following the LaJeunesse et
al. (2018) hypothesis, the modern-day coral-algal symbioses would first emerge during the
second Jurassic scleractinian radiation (not during the first Triassic one) when scleractinian
communities began to build reef structures composed of lineages of modern reef corals.
However, molecular analyses include only living representatives of Symbiodiniaceae and all
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extinct clades of the group are, by definition, excluded from consideration. It is therefore
of paramount importance to provide time calibration of origin of coral-algal symbiosis
based on fossil evidence.

The major difficulty in tracing symbiosis into deep time is a lack of direct evidence:
no coral tissues with symbionts have been fossilized nor algal cells are incorporated
into the coral skeleton. Among the variety of proposed indirect indicators of coral-
algal symbiosis (e.g., Cowen, 1983; Coates & Jackson, 1987; Stanley Jr & Swart, 1995;
Insalaco, 1996; Gautret, Cuif & Freiwald, 1997 Cuif et al., 1999a; Cuif, Dauphin & Gautret,
1999b; Wood, 1999; Rosen et al., 2000; Nose & Leinfelder, 1997; Helmle & Stanley Jr, 2003;
Muscatine et al., 2005; Stanley Jr & Helmle, 2010; Leinfelder et al., 2006; Martindale, Bottjer
& Corsetti, 2012; Frankowiak et al., 2016b; Tornabene et al., 2017), the simplest criteria
are based on macromorphological differences between skeletons of modern symbiotic
and asymbiotic taxa (Coates & Jackson, 1987): zooxanthellates produce highly integrated
colonies with small corallites, while azooxanthellates form relatively large solitary or
phaceloid skeletons. However, such simple approach appeared to be problematic because
of: (i) modern exceptions like Fungia, Cynarina (both solitary and symbiotic) or Astrangia
danae (cerioid and asymbiotic), (ii) questionable assessment of phaceloid and epithecate
corals that are rare today but prevailed in the Early Mesozoic (Roniewicz & Stolarski, 1999),
and (iii) disputable classification of corals with intermediate corallite size. The reliability
of morphological criteria is particularly problematic when applied to fossil scleractinian
taxa (e.g., Kiessling & Kocsis, 2015; Frankowiak et al., 2016a). Conversely, geochemical
proxies describing variations in the isotopic composition of elements involved in algae
photosynthesis (oxygen, carbon, and nitrogen), have no evident exceptions, thus can be
successfully applied to ancient scleractinians (Stanley Jr & Swart, 1995; Gruszczyński et al.,
1990; Muscatine et al., 2005; Frankowiak et al., 2016b; Tornabene et al., 2017). However,
since diagenetic processes may obscure the original isotopic signal, the application of
geochemical proxies is reasonable only with the pristine aragonite skeletons (Frankowiak et
al., 2013; Tornabene et al., 2017). New opportunities to identify the former photosymbiosis
are provided by microstructural observations of the fibrous part of the coral skeleton
(Frankowiak et al., 2016a). This recently proposed proxy describes the differences in the
regularity of the fine-scale growth increments between zooxanthellates and their asymbiotic
counterparts. A considerable advantage of the microstructural criterion over geochemical
characteristics is that the banding pattern can be observed even in coralla with some traces
of diagenetic alteration which could affect geochemical proxies.

All Late Triassic corals examined geochemically to date were recognized as
zooxanthellates (e.g., Stanley Jr & Swart, 1995; Muscatine et al., 2005; Frankowiak et al.,
2016a; Frankowiak et al., 2016b; Tornabene et al., 2017), suggesting that symbiosis was
common if not exclusive lifestyle among corals occupying the western Tethys. While
progress continues to be made in the identification of Triassic symbiosis, the scarcity of
primary preserved coral material, followed by the fact that most of the previous studies
focus on fossils from one Norian site Alakir Çay Valley, Turkey (Stanley Jr & Swart, 1995;
Muscatine et al., 2005; Frankowiak et al., 2016a; Frankowiak et al., 2016b; Tornabene et al.,
2017) indicate that further investigations in other localities are needed. Herein, we take
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advantage of the well-preserved coral fauna from Alpe di Specie, Italy, in order to assess
coral-algae symbiosis in the early Carnian. Although symbiosis in Carnian corals was
previously addressed by Stanley Jr & Swart (1995), the application of only one symbiotic
criterion to a total of five specimens points to the need for more comprehensive studies.
Using high-precision analytical tools combined with various skeletal-based criteria, we
investigated whether symbiosis was widespread among previously not examined Carnian
scleractinian species. We have also estimated how the diagenetic alteration could influence
original geochemical signatures of the examined fossil skeletons.

MATERIALS & METHODS
Geological setting and coral material
Fossil corals used in the present study were collected in Julian (early Carnian) deposits of
the Dürrenstein/Heiligkreuz Formation in the Alpe di Specie (Seelandalpe), NE Dolomites,
Italy (see Fig. 2 in Tosti et al., 2014). Despite the abundance of publications concerning the
coral-bearing erratic reef boulders, their origin is still a matter of debate. They have been
regarded as autochthonous remains of small shallow-water coral patch reefs (Ogilvie, 1893;
Salomon, 1895) or as ‘‘Cipit-blocks’’—downward displacements either from the Cassian
Formation (e.g., Wendt, 1982; Sánchez-Beristain et al., 2011) or Dürrenstein/Heiligkreuz
Formation (Russo et al., 1991; for a detailed discussion see Sánchez-Beristain & Reitner,
2016; Tosti et al., 2014). Leaving aside the issue of their exact origin, erratic boulders
record a broad spectrum of organisms involved in the formation of Carnian reefs in
this area, including calcareous sponges, corals, echinoderms, mollusks, and foraminifera,
etc. The invertebrate fauna is typically characterized by excellent preservation of original
skeletal mineralogy, microstructures, and geochemistry (Cuif, 1973; Montanaro-Gallitelli,
Morandi & Pirani, 1974; Scherer, 1977; Laghi, Martinelli & Russo, 1984; Frisia-Bruni &
Wenk, 1985; Russo et al., 1991; Nützel, Joachimski & Correa, 2010). Impermeable sediments
surrounding corals provided protection from diagenesis, ensuring exceptional preservation
of their skeletons (e.g.,Wendt, 1977; Russo et al., 1991).

The diversified coral assemblage from the studied site shows a broad spectrum
of morphologies (from solitary to complex thamnasterioid) known from modern
scleractinians (Figs. 1A–1C). With few exceptions, scleractinian fauna of Alpe di Specie
differs taxonomically from previously studied corals from Antalya localities (Frankowiak
et al., 2016a; Frankowiak et al., 2016b) but further, in-depth taxonomic description of the
coral fauna is a subject of a separate study (Roniewicz et al. in preparation). Based on
observations under an optical microscope, corals with well-defined ultrastructures (Rapid
Accretion Deposits - RAD and Thickening Deposits—TD; after Stolarski, 2003) were
selected (Table S1). Comparative Recent material included Leptoseris fragilis from the Red
Sea andMontipora sp. from Mayotte (Indian Ocean). Material is housed at the Institute of
Paleobiology, Polish Academy of Sciences, Warsaw (abbreviation ZPAL).

Analytical techniques
As a reliable interpretation of isotopic signatures of fossil samples requires using only
primary aragonitematerial, we performed various tests against traces of diagenetic alteration
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Figure 1 Various growth forms of scleractinian corals from Alpe di Specie and example of variable
preservation within one corallum. Solitary Craspedophyllia sp. (A, calicular; E, lateral views), pheceloid
Margarosmilia sp. (B, calicular; F, lateral views), cerioid Tropiastraea sp. (C, detail; G, side view of the
colony), meandroid Curtoseris sp. (D, detail; H, side view of the colony). I–M Transmitted light (I–K) and
catholdoluminescence (L, M) photomicrographs of the cerioid colony of tropiastreiid sp. E. At glance,
structural characteristic of the examined colony suggests its good state of preservation (J). In close-up,
parts of the colony are indeed well preserved and exhibit aragonite composition (I, L; lack of luminescence
in L is indicative for aragonite), however, some regions were diagenetically altered to calcite (K, M; strong
red luminescence in M is characteristic for calcite). Scale bars A–H = 5 mm, I–M = 500 µm.

Full-size DOI: 10.7717/peerj.11062/fig-1

in the Carnian skeletons. Following Frankowiak et al. (2013); Frankowiak et al. (2016b), the
Carnian skeletons were considered as well preserved and therefore suitable for geochemical
studies only when TDs met the following criteria: (a) microstructural components,
especially TD, were not visually altered in comparison of those of living Scleractinia; (b)
lack of Mn-induced luminescence; and (c) aragonite composition exclusively. In order
to minimize possible contamination, altered TD regions, diagenetic aragonite cements
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on lateral faces of the skeleton, and sparry calcite from corallite infilling were excluded
from geochemical sampling. Moreover, the primary area of the skeleton had to be large
enough to be easily sampled (size of the drill-bit was about 350 µm). Based on these
criteria, 37 specimens from the Alpe di Specie collection were selected. The microscopic
and spectroscopic techniques applied for diagenetic testing are listed below.

Optical microscopy
Nikon Eclipse 80i transmitted light microscope fitted with a DS-5Mc cooled camera head
(located at the Institute of Paleobiology, Polish Academy of Sciences) was used to assess the
microstructural organization of the skeletons in thin-sections in transmitted and polarized
light. Samples of Triassic corals with overall microstructural features similar to those of
extant corals (though the arrangement of RAD and TD is often different frommodern taxa)
were considered prospective for further studies. Skeletons with different ultrastructural
arrangement (e.g., composed of large sparry calcite crystals, a sign of diagenetic alteration)
were excluded from further analyses.

Scanning Electron Microscopy (SEM)
SEM analyses weremade using a Phillips XL20 scanning electronmicroscope at the Institute
of Paleobiology, Polish Academy of Sciences to provide detailed information about crystal
textures andwere performed as support of transmitted-light observations. Polished sections
were etched for 10 seconds in 0.1% formic acid and then rinsed with Milli-Q water and
air-dried. After drying, the specimens were put on stubs with double-sided sticky tape and
sputter-coated with a conductive platinum film.

Cathodoluminescence Microscopy (CL)
Following established procedures (Frankowiak et al., 2013; Frankowiak et al., 2016b), the
hot cathode microscope HC1-LM at the Institute of Paleobiology, Polish Academy of
Sciences was used to visualize cathodoluminescence of the thin-sectioned fossil coral
skeletons. The following parameters were used: electron energy of 14keV and a beam
current density of 0.1 µAmm-2. CL method was used to determine the spatial distribution
of aragonite (original mineralogy of the skeleton) and secondary, diagenetic calcite within
the skeletons. Since secondary calcite is typically characterized by highMn2+ concentrations
(the main activator of luminescence in carbonates) it exhibits strong orange to red
luminescence (Marshall, 1988). In contrast, primary coral aragonite typically contains
much lower amounts of Mn, resulting in a lack of luminescence.

Chemical staining with Feigl’s solution
Feigl’s chemical staining is a simplemethod used to identify aragonite from other carbonate
minerals (e.g., calcite). The surfaces of coral skeletons were polished with an aluminum
oxide suspension with 0.25 µm particle size and rinsed with distilled water. Next, the
specimens were immersed in several milliliters of Feigls’s solution (Friedman, 1959) and
stained for 10 minutes. The aragonite in the skeleton was stained black, whereas the calcite
remained uncolored. Afterward, samples were cleaned in distilled water and dried.
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Analysis of incremental regularity
Thickness of growth increments was measured based on SEMmicrographs and transmitted
light (TL) images of fossil specimens. Growth increments were measured precisely along
individual fibers according to the protocol described in Frankowiak et al. (2016a). For each
set of measurements taken from the individual specimen, mean value, standard deviation,
coefficient of variation (CV) and confidence interval were calculated using the Past 3.02
software (Hammer, Harper & Ryan, 2001). The regularity of growth bands was expressed
by the CV parameter, which describes the measure of the dispersion of values of bands
thickness obtained from one skeleton. In order to check whether the results are repetitive,
measurements were taken from two different specimens of the same species.

Oxygen and carbon stable isotopes
The samples of coral carbonate powders and corresponding infilling cement were prepared
for isotopic analysis according to the method described by McCrea (1950). Next, samples
(min. 20 µg) were treated with 100% orthophosphoric acid under vacuum at 70 ◦C in a
Thermo Kiel IV Carbonate Device coupled with Finnigan Delta Plus mass spectrometer.
Isotope ratios were reported in per mil (h) delta notation relative to the Vienna Pee
Dee Belemnite (VPDB) standard (defined via NBS 19). The spectrometer external error
amounts ± 0.03h for δ13C and ± 0.07h for δ18O. Analyses were performed at the
Institute of Geological Sciences, Polish Academy of Sciences.

RESULTS
Our results show that corals from Alpe di Specie exhibit both, primary skeletal features
and diagenetic alterations (Fig. 1). At the ultrastructural level, two main regions of the
skeleton were distinguished: (i) the first region situated in the central regions of septa
which in modern corals is recognized as composed of Rapid Accretion Deposits (RADs),
and (ii) the main skeletal component recognized in modern corals as Thickening Deposits
(TDs) (Fig. 2). SEM observations of Carnian specimens show that the crystal textures in
the central region of septa (RADs) are typical of calcite spar (Fig. 2) and under CL exhibit
strong red luminescence typical for diagenetic calcite (Fig. S2F). The susceptibility to
secondary alterations RADs owe to the high amount of organic matter and nanocrystalline
structure (e.g., Cuif & Dauphin, 1998; Stolarski, 2003; Stolarski & Mazur, 2005; Benzerara
et al., 2011). Contrary, fibrous crystals of TDs originally consist of denser and organic-poor
material that is more resistant to diagenetic processes. As a result, TDs tend to preserve
their original mineralogy and microstructure in skeletons as old as Triassic (e.g., Cuif,
1977; Roniewicz, 1989). The TDs of examined Carnian skeletons locally exhibit a distinct
pattern of doublets of optically dark and light bands (squares in Fig. 3). Although these
bands are regarded as growth increments and thus are expected to occur commonly,
their appearance in modern, as well as fossil coralla is often restricted to small areas (Fig.
S1). In such optically preserved specimens, the banding pattern of alternating layers with
positive and negative etching reliefs was observed under SEM (Fig. 2). Lack of luminescence
indicates aragonite mineralogy of fibrous crystals (Figs. S2–S5), an observation supported
by chemical staining with Feigl’s solution. Occasionally, TDs were locally altered to calcite,

Frankowiak et al. (2021), PeerJ, DOI 10.7717/peerj.11062 7/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.11062#supp-5
http://dx.doi.org/10.7717/peerj.11062#supp-4
http://dx.doi.org/10.7717/peerj.11062#supp-4
http://dx.doi.org/10.7717/peerj.11062#supp-5
http://dx.doi.org/10.7717/peerj.11062#supp-8
http://dx.doi.org/10.7717/peerj.11062


Figure 2 Growth increments in Carnian (Alpe di Specie) andmodern scleractinian thamnasterioid
corals. SEM images of fossil Thamnasteriomorpha frechi (A) and modern symbiotic coral Leptoseris frag-
ilis (ZPAL.H.25/48) (B). Skeleton of T. frechi shows irregular microscale banding, that differs from regu-
lar banding pattern typical of modern zooxanthellate species (vs. generally irregular banding in asymbiotic
corals). Similar irregular increments are observed in modern zooxanthellate L. fragilis. Note, that all liv-
ing thamnasterioid are exclusively zooxanthellate, thus regular banding pattern would be expected in pre-
sented skeletons. Skeletal microstructure units: Rapid Accretion Deposits (RAD) and Thickening Deposits
(TD). Scale bar 50 µm.

Full-size DOI: 10.7717/peerj.11062/fig-2

and these secondary areas were of few micrometers in size (Fig. S5D). The aragonite
composition and microstructural arrangement argue for the exceptional preservation
of the examined corals, which facilitates the study of original O and C isotopic ratios.
Nevertheless, some minor altered TD regions together with diagenetic aragonite cements
developed on lateral faces of the skeleton (Fig. S3J) and sparry calcite in the corallite infilling
(Fig. S2–S5) were also detected.

Fine-scale skeletal banding of Carnian corals that met conditions of good preservation
described above is formed by regular and continuous aragonite layers, similar to those
observed in modern symbiotic corals. The regularity of these growth increments was
expressed using the coefficient of variation (CV) (Table S2 and Fig. S6). Almost all examined
corals, regardless of their morphological form (solitary or complex colonial), exhibit low
CV between 4% and 17%, which are typical for modern zooxanthellates (green area in Fig.
3). High CV values that are placed in the range of modern asymbiotic species (yellow area
in Fig. 3) were calculated only for two scleractinian specimens. Surprisingly, these corals are
highly integrated Thamnasteriomorpha sp. (CV of 41%) and Thamnasteriomorpha frechi
(CV of 40%). Banding measurements also show that results are repeatable, and similar
CVs have been calculated for different specimens of the same species. For example, two
specimens of Remismilia sp. have a CV of 5% and 9% respectively, and two specimens
of Margarosmilia cf. confluens exhibit CV of 8% and 10%. These variations could result
either from researchers’ subjective assessment, different responses to the etching or some
secondary alterations that might slightly affect banding pattern –either way, these minor
differences do not influence the final interpretation.

Oxygen isotopic composition of corals studied herein ranges between −4.21h and
−1.06h , and carbon signatures vary from 0.81h to 5.81h (Table S3). As shown
in Fig. 4, examined corals tend to group together in carbon and oxygen isotope space.
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Figure 3 Statistical analysis of regularity of growth increments in Carnian Scleractinia from Italian
Dolomites (Alpe di Specie locality). Plot shows regularity of increments (expressed as coefficient of vari-
ation [%]) in skeletons of fossil corals (red dots) with respect to the morphological form of their skeletons
(low morphological integration indicates solitary and phaceloid forms; medium and high morphologi-
cal integration indicate cerioid and thamnasterioid colonies, respectively). The CV values of each speci-
men were calculated for band thickness measured along individual fibers. Squares show transmitted light
photomicrographs of the skeleton of Thamnasteriomorpha sp. with irregular bands andMargarosmilia cf.
confluens with regular increments. Green shaded area corresponds to CV values characteristic for mod-
ern zooxanthellate species whereas, the yellow shaded area indicates CV values of modern azooxanthel-
lates (based on the data presented in Frankowiak et al., 2016a). Database of all measurements is given in
Table S2.

Full-size DOI: 10.7717/peerj.11062/fig-3

Possible contamination with secondary material was verified by comparison of δ 18O
and δ 13C of the coral skeleton and calcite cement, and any similarities were considered
as suggestive for diagenesis. However, as shown in Fig. S7 skeletons and the secondary
infilling exhibit different isotopic signatures e.g., Margarastraea klipsteini (skeletal δ18O
= −3.77h and δ13C = 3.19h, calcite cement δ18O = −1.85h and δ13C=1.96h), and
Tropiastraea carinata morphotype A (skeletal δ 18O = −2.98h and δ 13C=4.56h, calcite
cement δ 18O=−5.09h and δ 13C= 0.93h). In addition, differences in the preservation
state of the skeletons are not always reflected in their isotopic composition. For example,
diagenetic patterns within a single colony of the tropiastreiid sp. E range from unaltered
bioaragonite to nearly completely recrystallized to calcite (Fig. 1). These regions, however,
are not characterized by radically different geochemistry: the aragonite part of the skeleton
exhibit δ18O = −3.30h and δ13C = 4.59h, whereas secondary skeleton yield δ18O =
−3.07h and δ13C = 4.73h (Fig. 4).
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Figure 4 Carbon and oxygen isotopic composition of Carnian corals from the Italian Dolomites (Alpe
di Specie locality). All examined fossil corals (color symbols) group in the zooxanthellate field. Pink trian-
gle is Thamnasteriomorpha sp. and green diamond is T. frechi. Shaded areas show previous measurements
of modern symbiotic (green) and asymbiotic (grey) scleractinians, and Triassic corals (yellow: separately
Carnian and other Triassic (Norian) coral) presented by Stanley Jr & Swart (1995) and Frankowiak et al.
(2016a), Frankowiak et al. (2016b); Z–zooxanthellate coral, AZ–azooxanthellate coral. Database of all mea-
surements are given in Table S3.

Full-size DOI: 10.7717/peerj.11062/fig-4

DISCUSSION
Reconstruction of photosymbiosis
Scleractinian corals are traditionally divided into two ecophysiological groups: asymbiotic
corals (typically but not exclusively deep-water) and symbiotic corals that host dinoflagellate
algae (zooxanthellae) and dwell in shallow-waters (photic zone). Based on the link
observed between the skeletal growth forms and coral symbiotic status, Coates & Jackson
(1987) proposed a morphological criterion of symbiosis. According to these authors,
zooxanthellates form highly integrated colonies with small corallites (i.e., cerioid,
meandroid and thamnasterioid; <5 mm in diameter), whereas azooxanthellates form
solitary or phaceloid pseudo-colonies with relatively large corallites (>5 mm in diameter).
Using solely this criterion, the predominance of solitary and phaceloid growth forms
within the Carnian coral assemblages (including corals from Alpe di Specie examined
herein) would strongly suggest that majority of shallow-water corals from western Tethys
were analogous to modern azooxanthellates (for taxonomic and growth form overview see:
Roniewicz & Morycowa, 1989; Riedel, 1990; Turnšek & Senowbari-Daryan, 1994; Roniewicz
& Michalik, 2002; Schäfer, 1979; Flügel, 1981; Wurm, 1982 Stanley Jr & Senowbari-Daryan,
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1986; Stanton & Flügel, 1989; Stanton & Flügel, 1987; Bernecker, Weidlich & Flügel, 1999;
Flügel & Senowbari-Daryan, 2001; Flügel, 2002; Bernecker, 2005; Zonneveld et al., 2007;
Roniewicz, 2011; Martindale, Bottjer & Corsetti, 2012; Peybernes, Chablais & Martini, 2015;
Stanley Jr & Onoue, 2015). Such conclusions would match reconstructions proposed for
the entire Triassic and Jurassic scleractinian fauna (Kiessling & Kocsis, 2015). However, all
sufficiently well preserved coral from Alpe di Specie locality (including taxa with solitary
and phaceloid growth forms) exhibited a regular pattern of micro-scale growth increments
and narrow ranges of isotopic compositions, typical of modern zooxanthellates. These
observations support the hypothesis that coral-algal symbiosis was established prior to the
Norian-Rhaetian massive reef bloom and that symbiotic were taxa representing a much
wider spectrum of growth forms in comparison to modern coral fauna (Veron, 1995;
Kiessling et al., 2009; Kiessling & Kocsis, 2015; Frankowiak et al., 2016b). Our results thus
extend Stanton’s (2006) conclusion that the skeletal macromorphology, although helpful in
inferring the presence of photosymbiosis in ancient coral assemblages regarded as a whole,
can be misleading for particular species (which in the Triassic were dominated by taxa of
simple morphological forms).

The regularity of growth bands within skeletons of corals from Alpe di Specie strongly
suggests light-controlled responses. As the regular secretion of skeletal carbonate inmodern
corals is linked to the diurnal, cyclical activity of photosynthesizing algae (e.g.,Moya, 2006;
review in Allemand et al., 2011; Levy et al., 2011; Sorek et al., 2013; Sorek et al., 2014; Inoue
et al., 2018) we assume that the banding pattern of studied corals results analogously from
the symbiosis. To optimize photosynthetic energy acquisition that allows coral holobiont
(coral host with endosymbiots) to thrive in oligotrophic tropical settings, corals had to
develop various strategies ensuring efficient collecting and processing of light. It was
observed that modern corals exhibit different ecomorphotypes, some of which seem to
increase light-capturing abilities of endosymbionts e.g., platy morphology is a common
feature for zooxanthellate corals living in deeper, poorly-lit waters (Insalaco, 1996; Rosen
et al., 2000; Martindale, Bottjer & Corsetti, 2012). However, such an approach can be
misleading in case of solitary and phaceloid taxa. Enríquez et al. (2017) showed that solitary
corals also exhibit high light-scattering abilities, and even corals with less efficient optical
properties with phaceloid growth forms, may develop robust holobionts. For example,
phaceloid Retiophyllia corals formed very large colonies (up to 4 m) that contributed to
the formation of the Early Norian patch reef formation (Martindale et al., 2013).

Many studies show that photosynthetic activity affects coral carbon isotopic pool (e.g.,
Swart, 1983; McConnaughey, 1989; Allison, 1996; McConnaughey et al., 1997; Grottoli &
Wellington, 1999; Reynaud et al., 2001, see review in Grottoli, 2000; Linsley et al., 2019),
resulting in higher values of δ13C in the skeleton of zooxanthellate corals in comparison
to the azooxanthellate forms inhabiting similar environment (e.g., Stanley Jr & Swart,
1995; Frankowiak et al., 2016b). In contrast, oxygen isotopic signatures of the skeletons
are not directly influenced by endosymbiotic algae (e.g., Swart, 1983; Juillet-Leclerc, 2019),
however, variations in δ18O between different taxa are considered to originate from
‘‘vital effects’’–biologically controlled modifications of skeletal geochemistry (e.g., Urey
et al., 1951; McConnaughey, 1989; review in Schoepf et al., 2014; Devriendt, Watkins &
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McGregor, 2017). When combined, the δ18O and δ13C parameters differ significantly
between symbiotic and asymbiotic scleractinians (Fig. 4; Swart, 1983; Stanley Jr & Swart,
1995; Cohen & McConnaughey, 2003; Adkins et al., 2003; Frankowiak et al., 2016b; Prada
et al., 2019). The oxygen and carbon isotopic signatures from Alpe di Specie corals fall
within the range of values measured for Late Triassic scleractinians previously recognized
as symbiotic (yellow ellipse in Fig. 4; Stanley Jr & Swart, 1995; Frankowiak et al., 2016b)
and do not show a clear correlation (r2 = 0.1 for linear regression) which is consistent
with similar observation for modern zooxanthellate and in contrast to azooxanthellate
corals (Stanley Jr & Swart, 1995; Prada et al., 2019). These observations corroborate with
photosymbiotic status of all studied herein corals.

Exceptions
Our study revealed also an irregular character of growth increments in highly integrated
colonies ofThamnasteriomorpha sp. andThamnasteriomorpha frechi. Thesemicrostructural
traits may suggest their asymbiotic status. However, the oxygen and carbon isotope
signatures are like those of modern symbiotic coral skeletons (Swart, 1983;McConnaughey,
1989; McConnaughey et al., 1997; Grottoli & Wellington, 1999; Devriendt, Watkins &
McGregor, 2017). The possible modern analog of such microstructural and isotope data
discrepancy is symbiotic deep-water coral Leptoseris fragilis. Similar to Triassic specimens,
L. fragilis forms thamnasterioid colonies with irregular banding patterns (Frankowiak et al.,
2016a; Fig. 2). Moreover, both L. fragilis and two examined species of Thamnasteriomorpha
have septal faces covered by menianes—a ledge-like structures, which in modern L.
fragilis serve to hold gastric ducts responsible for suspension-feeding (Schlichter, 1991).
Structural similarities between these corals may suggest that Thamnasteriomorpha was also
symbiotic but adopted to suspension-feeding trophic strategy. Similar conclusions were
drawn also about the symbiotic mode of life of Jurassic microsolenid corals (Leinfelder,
1994; Insalaco, 1996; Morycowa & Roniewicz, 1995). Nonetheless, unique gastral anatomy
and mode of feeding were recognized only in modern L. fragilis (Schlichter, 1991) and not
confirmed/recognized in othermodern taxa that developmenianes (e.g.,Dactylotrochus, see
Kitahara et al., 2012). Consequently, suspension-feeding strategy of all menianae-bearing
Carnian species remains speculative.

Triassic history of coral-algae symbiosis
The earliest scleractinian corals appeared in the Anisian, about 8–10 Ma after extinction at
the end of the Permian (e.g., Flügel, 2002; Martindale, Foster & Velledits, 2019). Although
already diverse and complex in skeletal morphologies, these corals played minor role in
reef and non-reef marine ecosystems (Kolosváry, 1958; Scholz, 1972;Mostler, 1976; Deng &
Kong, 1984; Qi, 1984; Martin & Braga, 1987; Morycowa, 1988; Morycowa, 1990; Richter,
1999; Emmerich et al., 2005; Deng, 2006; Morycowa & Szulc, 2007; Morycowa & Szulc,
2010). TheMiddle Anisian to Carnian reefs were dominated by sponges, while reef-dwelling
corals rarely participated in the framework construction (review in Martindale, Foster &
Velledits, 2019). Scleractinians emerged as a structure-building component of reefs later
at the Carnian-Norian transition. This interval marks the beginning of Carnian-Rhaetian
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taxonomic turnover among coral species, with the most intense reef period, that of the
Norian ‘‘global reef-bloom’’(e.g., Stanley Jr & Swart, 1995; Flügel & Senowbari-Daryan,
2001; Flügel, 2002; Stanley Jr, 2003; Stanley Jr & Van de Schootbrugge, 2009; Kiessling, 2010;
Martindale, Foster & Velledits, 2019. A massive expansion in the number of reefs, since then
built primarily by corals, was followed by an increase in their latitudinal range that slightly
exceeded limits of modern tropical coral reefs (Kiessling, 2010). Late Triassic emergence
of the coral reefs was extensively discussed and explained by the appearance of symbiosis
with zooxanthellae (e.g., Stanley Jr , 1981; Flügel, 2002; Stanley Jr, 2003; Stanley Jr & Van de
Schootbrugge, 2009; Kiessling, 2010.

The warm tropical climate conditions of the Late Triassic favored the extensive
development of carbonate platforms and reefs at the western margin of the Tethys.
The shallow-water seas were characterized by normal marine salinities and sea-surface
temperatures (SST) of 27–32 ◦C (Nützel, Joachimski & Correa, 2010). Although data
concerning nutrient dynamics and its exact availability in the Triassic seas are still scarce,
the former status of the Late Triassic Ocean has been inferred as oligotrophic (Riedel,
1991; Nützel, Joachimski & Correa, 2010; Martindale et al., 2015). Consistently, recent
studies of nitrogen isotopic composition of the intraskeletal organic matrix show that
Late Triassic corals from NW Tethys inhabited nutrient-poor waters, similar to modern
Bermuda (Frankowiak et al., 2016b; Tornabene et al., 2017). Reconstructed environmental
conditions roughly correspond to present-day shallow-water tropical reefs, suggesting
that like in modern reef corals, symbiosis was the most profitable adaptation for the
early scleractinians. By supporting the host’s energy demands for metabolism, growth,
reproduction, and calcification, zooxanthellae would facilitate corals diversification and
expansion in Triassic oceans (e.g., Stanley Jr, 1981; Stanley Jr, 1988; Cowen, 1988; Stanley Jr
& Swart, 1995; Stanley Jr & Helmle, 2010;Kiessling, 2010). Furthermore, such enhancement
would constitute a major advantage over other reef constructors (coralline sponges,
calcareous algae or ‘‘Tubiphytes’’; Flügel, 2002) in the competition for benthic substrate,
and thus promoting the evolution of scleractinians into prominent builders (e.g., Chadwick
& Morrow, 2011). Both, ecological and evolutionary benefits of the early photosymbiosis
are indisputable, however, it remains to be clarified what stimuli triggered corals and algae
to establish such close relationship. Was the appearance and spread of this partnership
governed by environmental factors or was it self-organization mechanism? Kiessling (2010)
postulated that photosymbiosis was related to long-term climate cooling and the decline
of CO2 levels, that forced zooxanthellae into coral polyp tissue. On the other hand, many
studies show that the coral host, rather than the algae dictate the symbiotic relationship
(review in Davy, Allemand &Weis, 2012).

The patch reefs from Alpe di Specie constitute one of the earliest examples of skeletal
framework biotically similar to modern tropical reefs composed mainly of corals and
coralline algae (Tosti et al., 2014). The coral fauna exhibit a diverse array of growth forms
known from living reef-building corals: highly integrated colonies (cerioid, meandroid,
and thamnasterioid) as well as solitary and phaceloid forms. As described above, unlike
present-day reef corals, Carnian communities were predominantly composed of corals with
solitary and phaceloid growth forms. The Alpe di Specie patch reefs probably developed
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in relatively muddy, low-energy and photic (or mesophotic) conditions of the back reef
(e.g., Fürsich & Wendt, 1977; Russo et al., 1991; Tosti et al., 2014; Roden et al., 2020). Such
quiet environments were preferable for phaceloid corals due to their fragile structure
(Bernecker, Weidlich & Flügel, 1999; see Martindale, Bottjer & Corsetti, 2012) and mud-
sticking adaptations to a muddy substrate (sensu Seilacher, 1984; Roniewicz & Stolarski,
1999; Flügel, 2002). Since polyps occupied only the tips of corallites, phaceloid forms were
also able to sustain increased sedimentation (Lathuilière et al., 2005).

CONCLUSIONS
Our findings match the scenario that symbiosis preceded the Late Triassic reef bloom. We
suggest that the coral-algae relationship was common among corals living on the patch reefs
developed in the present-day Alpe di Specie area. The skeletal evidence of symbiosis was
found in taxa that previously were considered as azooxanthellate e.g., Craspedophyllia and
Margarophyllia (Kiessling & Kocsis, 2015). This observation suggests that either previous
classification of Craspedophyllia and Margarophyllia as asymbiotic was incorrect (new
systematic studies of these taxa, possibly from different locations, are needed) or that both
corals, similarly to modern Tubastrea, represent ’’‘exceptions’’ from the microstructural
criterion. Such possible exceptions from themicrostructural criterion call formore in-depth
observations of microecology of modern shallow-water corals with mixotrophic nutrition
mode. It may appear that in some cases behavioral and/or environmentally controlled
factors such as cyclic food supply may influence regularity of biomineralization cycles.

No compelling evidence of asymbiotic species was found among studied Late Triassic
coral assemblage. The fossil record of asymbiotic scleractinian corals has long been
suggested (macromorphological reconstructions excluded; Stanley & Cairns, 1988;
(Gruszczyński et al., 1990; Stanley Jr & Swart, 1995; Gill, Santantonio & Lathuilière, 2004)
but only recently, Tornabene et al. (2017) presented reliable geochemical data pointing on
azooxanthellate status of Early Miocene Caryophyllia sp. Such a result, however, could be
expected considering that all shallow- and deep-water extant species of Caryophyllia lack
photosymbionts. In agreement with previous reports of Late Triassic symbiosis, our results
suggest that either all corals were symbiotic or that asymbiotic scleractinians inhabited
different niches than shallow-water tropics. Data presented in this study support the
conclusion that photosymbiotic corals prevailed in the Early Mesozoic oceans and their
partners involved most likely entirely extinct lineages of Symbiodiniaceae (LaJeunesse et
al., 2018).
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