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Reduction of microwave ablation 
needle related metallic artifacts 
using virtual monoenergetic 
images from dual‑layer detector 
spectral CT in a rabbit model 
with VX2 tumor
Guorong Wang1,4, Qinzong Gao1,4, Zhiwei Wang1*, Xiaomei Lu2, Shenghui Yu3 & 
Zhengyu Jin1*

The purpose of the study was to investigate the application of virtual monoenergetic images (VMIs) 
in reducing metal artifacts in rabbit VX2 liver cancer models treated with microwave ablation (MWA) 
therapy. A total of 31 VX2 liver cancer models that accepted CT-guided percutaneous microwave 
ablation were analyzed. Conventional images (CIs) with the most severe metallic artifacts and their 
corresponding energy levels from 40 to 200 keV with 10 keV increment of VMIs were reconstructed 
for further analysis. Objective image analysis was assessed by recording the attenuation (HU) and 
standard deviation of the most severe hyper/hypodense artifacts as well as artifact-impaired liver 
parenchyma tissue. Two radiologists visually evaluated the extent of artifact reduction, assessed 
data obtained by a diagnostic evaluation of liver tissues, and appraised the appearance of new 
artifacts according to the grade score. Statistical analysis was performed to compare the difference 
between CIs and each energy level of VMIs. For subjective assessment, reductions in hyperdense and 
hypodense artifacts were observed at 170–200 keV and 160–200 keV, respectively. The outcomes of 
the diagnostic evaluation of adjacent liver tissue were statistically higher at 140–200 keV for VMIs than 
for CIs. In terms of objective evaluation results, VMIs at 90–200 keV reduced the corrected attenuation 
of hyperdense and of artifact-impaired liver parenchyma compared with CIs (P < 0.001). When VMIs 
at 80–200 keV decreased the hypodense artifacts (P < 0.001). Therefore, we concluded that VMIs at 
170–200 keV can obviously decrease the microwave ablation needle-related metal artifacts objectively 
and subjectively in rabbit VX2 liver cancer models.

Microwave ablation (MWA) is a technique that is effective in destroying tumor tissue owing to its dielectric 
heating mechanism1,2. MWA has been widely used to treat liver cancer, and the rabbit VX2 liver tumor model 
is the most commonly used animal model for percutaneous MWA procedures3. Computed tomography (CT) is 
considered to be one of the typical image-guidance techniques for MWA therapy4. The inserted location of the 
microwave antenna within the targeted tumor influences the efficacy of MWA. It is known that metallic micro-
wave antennas can generate artifacts because of beam hardening, photon starvation, and increased scattering and 
noise5. Thus, the metallic ablation antenna used in interventional procedures can create artifacts on conventional 
images (CIs), especially images of animals. Whether the ablation process is accurate or effective greatly depends 
on the relationship between the microwave ablation antenna position and the lesion. Nevertheless, pronounced 
artifacts around the metallic microwave ablation needle are not suitable to use to determine the association 
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between the microwave ablation antenna position and the lesion and can even cover the display of the target 
lesion. Moreover, MWA will further influence the adjustment of the puncture position of the ablation antenna. 
Therefore, reducing metallic material-related artifacts is vitally important for MWA treatment.

There are various methods to reduce metal artifacts obtained from CIs. The application of high tube voltage 
and increased tube current, appropriate reconstruction procedures, a narrow collimation and larger layer thick-
ness is recommended to achieve metal artifact reduction (MAR)6. However, subjects experience an additional 
dose of radiation due to increased tube voltage and tube current7. Hence, an appropriate image postprocessing 
method needs to be developed for clinical practice.

Virtual monoenergetic images (VMIs) generated from dual-layer detector spectral CT (DLSCT) are a helpful 
means for MAR. DLSCT can separate high- and low-energy photons8, which makes it possible to reconstruct 
VMIs with different energy levels. VMIs with higher keV values have higher beam hardening resistance. Some 
studies have shown that this reconstruction technology can reduce metal artifacts created by human metallic 
implants9–12, but it has rarely been applied to MWA therapy for liver cancer. The purpose of this animal study 
was to investigate the application of VMI in reducing metal artifacts in liver cancer in a rabbit VX2 model treated 
with MWA.

Methods and materials
The study was carried out in compliance with the ARRIVE guidelines.

Establishment of rabbit VX2 model.  This study was approved by the Ethics Committee of Peking Union 
Medical College Hospital and performed in accordance with the National Institutes of Health for the care and 
use of laboratory animals. The animals used as their own control in the present study because it is designed to 
test the feasibility of a reconstruction method. We chose a small sample size because the objective of the preclini-
cal study was mainly to assess the application of VMIs in reducing metal artifacts during microwave ablation 
process. Thirty-one New Zealand white rabbits (male or female, 3.32 ± 0.19 kg) were purchased from our study 
institution. The individual rabbit was seen as the experimental unit in this study. Approximately 1 mm3 of VX2 
carcinoma tissue was injected into the liver parenchyma of rabbits by CT-guided percutaneous puncture. The 
rabbits with tumors were injected intramuscularly with a dose of 40,000 units of penicillin to prevent infection. 
Randomization was not used to allocate experimental units, since the images of rabbits that been reconstructed 
at different energy levels were considered as their own control in this study.

CT‑guided percutaneous MWA process.  The marked skin surface site was sterilized and draped in a 
sterile fashion under general anesthesia (3% pentobarbital sodium injected intravenously through the ear vein, 
1 ml/kg). All ablations were performed by a microwave ablation system (2450 MHz generator, MICRO TECH, 
KANG YOU, Nanjing, China) and a 19-gauge antenna. The antenna was inserted into the tumor lesion with the 
guidance of DLSCT (IQon spectral CT system, Philips Healthcare, Cleveland, USA). The acquisition parameters 
were as follows: tube voltage 120 kVp, tube current 100 mAs, collimation 64 × 0.625 mm, pitch 1.171 and gantry 
rotation time 0.75 s, slice thickness 3 mm, and slice interval 3 mm. All the MWA procedures were performed at 
a constant power of 40 W, and the ablation time per tumor was 1 min. The ablation margin of the tumor was at 
least 5 mm. The average size of lesions was 0.92 ± 0.22 mm.

The rabbits were included within this study if they accepted successful MWA treatment. The rabbits were 
excluded if they died prematurely due to any reasons. All operations on rabbits were performed by the same 
doctor.

The Philips ISP (IntelliSpace Portal version 6.5) workstation was used to conduct standard reconstruction 
and spectral-based image (SBI) reconstruction on all scanned images. The reconstruction slice thickness and 
slice interval were both 1 mm. Conventional mixed energy CT image reconstruction was performed by following 
the hybrid iterative reconstruction method (iDose4 level 3). The single VMI was obtained from the SBI dataset 
(40 keV to 200 keV with 10 keV increments). The slice thickness and slice section increment of the single VMI 
were the same as those of CI. The window width and window level were 350 HU and 60 HU, respectively.

The volume CT dose index (CTDIvol) of each rabbit was recorded.

Evaluation methods.  Two radiologists (with 4 and 11 years of experience in abdominal imaging) reviewed 
the CI and each level of VMI through the Philips ISP (IntelliSpace Portal version 6.5) workstation with blind 
independent reading. The images with the most pronounced artifacts, including microwave ablation needles and 
tumor lesions, were selected for further analysis. Disagreements were resolved through the mutual discussion 
and negotiation between the two radiologists based on their respective radiology experience in radiology.

Subjective image analysis.  A total of 17 single levels of VMIs were selected for qualitative analysis. The 
two radiologists mentioned earlier independently assessed the extent of hyper- and hypodense artifacts and the 
diagnostic quality of surrounding liver parenchyma by 5-point Likert scales; they further evaluated whether 
VMIs demonstrated new artifacts compared to CI according to 3-point Likert scales. The subjective assessment 
of the image quality is based on the following aspects10,12:

	 (i)	 extent of hyperdense (artifacts with higher CT attenuation) and hypodense artifacts (artifacts with lower 
CT attenuation): 5-metal artifacts are/almost absent; 4-minor artifacts; 3-moderate artifacts; 2-pro-
nounced artifacts; 1-massive artifacts);
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	 (ii)	 diagnostic assessment of surrounding liver parenchyma around artifacts: 5-full diagnostic quality without 
artifacts, the surrounding liver parenchyma showing pretty clearly; 4-minor artifacts do not influence 
diagnostic interpretability, and the surrounding liver parenchyma showing clearly; 3-diagnostic interpret-
ability is only marginally influenced by minor artifacts, and the surrounding liver parenchyma showing 
moderate clearly; 2-restricted diagnostic interpretability, and the surrounding liver parenchyma showing 
restrictively; 1-insufficient diagnostic interpretability with the surrounding liver parenchyma covered 
by metallic artifacts;

	 (iii)	 appearance of new/unexpected artifacts compared to CIs: 3-no signs of new/unexpected artifacts are 
observed; 2-new/unexpected artifacts appear but without impairing the diagnostic assessment; 1-new/
unexpected artifacts appear with impairing the diagnostic assessment.

Objective image analysis.  Objective image evaluation was performed by another radiologist with five 
years of experience in abdominal imaging. The elliptical regions of interest (ROIs) were placed in the following 
areas on CI first: hyperdense artifacts (ROI1), hypodense artifacts (ROI2), surrounding liver parenchyma with 
the presence of artifacts (ROI3) and distant regions of back muscles that were not affected by artifacts (ROI4). The 
CT attenuation values in Hounsfield units (CT1, CT2, CT3, and CT4) and standard deviations (SD1, SD2, SD3, and 
SD4) were recorded. Single VMIs with different levels were then “copy-pasted” in the same region to ensure that 
the position, shape and size of the ROIs remained the same. We ensured that the size of the ROI1 and ROI2 were 
completely within the range of hyperdense artifacts and hypodense artifacts, respectively. The size of the ROIs 
was approximately 15 mm2, which probably changed to adjust to the target lesion (Fig. 1a,b). We calculated the 
difference between the SD value in soft tissue impaired by artifacts (in the surrounding liver parenchyma) and 
the corresponding undamaged reference tissue (back muscle) as the corrected image noise (CIN) to eliminate 
the lower image noise in VMIs with high keV levels10,12. The corrected attenuation, which referred to the differ-
ence between the HU values in the region with (hyper- and hypodense artifacts, surrounding liver parenchyma) 
and without (back muscle) artifacts, was also calculated to be compared12.

Statistical analysis.  SPSS software (version 20.0, SPSS Inc., Chicago, USA) was used for statistical analysis. 
Discrete variables are expressed as the median and interquartile range, and continuous variables are described 
as the mean ± SD. The Shapiro–Wilk test was applied to test the normal distribution. The Friedman test was 
used for multiple comparisons between CI and VMI, including corrected attenuation of hyperdense artifacts, 
hypodense artifacts and surrounding liver parenchyma impaired by artifacts, corrected image noise and sub-
jective scores. For variables with statistical significance, the Dunn-Bonferroni post-hoc test was performed to 
analyze all pairwise comparisons. The intraclass correlation coefficient (ICC) test was used for the consistency of 
observers in subjective evaluation of image quality under different levels of VMI: ICC > 0.75: excellent consist-
ency, ICC > 0.6: good consistency, ICC > 0.4: moderate consistency, ICC ≤ 0.4: poor consistency13. P < 0.05 was 
considered statistically significant.

Results
Qualitative evaluation results.  The subjective image quality scores determined by two radiologists 
showed great consistency (ICC = 0.925). The reduction of hyperdense artifacts was observed at 170–200 keV. 
The hypodense artifacts were decreased at 160–200 keV. The diagnostic evaluation of adjacent liver tissue was 
statistically higher in VMIs than CI, specifically at 140–200 keV.

New artifacts were presented in VMIs compared with CI reconstructions [VMIs at 90、100, 110, 120 and 
140 keV: 2 out of 31 (6.5%); VMIs at 150 and 160 keV: 4 out of 31 (12.9%); VMIs at 170 keV: 8 out of 31 (25.8%); 
VMIs at 180 keV: 5 out of 31 (16.1%); VMIs at 190 and 200 keV: 7 out of 31 (22.6%)]; however, none of them 
impaired diagnostic image quality (Table 1).

Quantitative evaluation results.  Compared with CIs, 90–200 keV reduced the corrected attenuation of 
hyperdense artifacts (P < 0.001), and the corrected attenuation decreased with the increasing energy levels. Nota-
bly, VMIs at 90–100 keV had a higher corrected attenuation value of hyperdense artifacts than those at 200 keV 
(P < 0.001). When the energy level was higher than 110 keV, the corrected attenuation of the strong hyperdense 
artifact was not significantly different between each energy level group. In contrast, 40–60 keV increased the 
corrected attenuation of hyperdense artifacts compared with CIs (P < 0.001). On the other hand, there was no 
significant difference between CIs and 70–80 keV considering the corrected attenuation of hyperdense artifacts 
(P > 0.05) (Table 2, Fig. 2a). Regarding the hypodense artifacts, VMIs at 40–60 keV allowed for extra increased 
hypodense artifacts compared with CIs (P < 0.001). The difference between 70 keV and CI was not statistically 
significant (P > 0.05). Higher energy levels at 80–200 keV enabled a decrease in hypodense artifacts compared 
with CIs (P < 0.001) and decreased extent with increasing energy levels. Notably, 80–110 keV had obviously more 
hypodense artifacts than 200 keV (P < 0.001), while 120 keV and even higher levels did not lead to an additional 
increase in hypodense artifacts (Table 2, Fig. 2b).

For the adjacent liver parenchyma impaired by metallic artifacts, its corrected attenuation value was statisti-
cally higher at 40–50 keV than CI (P < 0.001). There was no statistically significant difference between CI and 
60–80 keV (P > 0.05). At 90–200 keV of VMIs, the corrected attenuation value of adjacent liver tissue decreased 
with the increasing energy levels. Within-group comparison showed that the value was the lowest when the 
energy level was 100–200 keV, and the difference was statistically significant (P < 0.001) (Table 2, Fig. 2c).

VMIs at 40–60 keV instead had a higher CIN than CIs (P < 0.001). However, as the energy level was further 
increased, no statistically significant difference was observed in CIN values between VMI and CI (P > 0.05) 
(Table 2, Figs. 2d, 3a,b).
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Radiation exposure.  The CTDIvol was 9.0 mGy for each rabbit.

Discussion
This animal study objectively and subjectively evaluated the ability of VMIs to exhibit reduced metallic microwave 
ablation needle-related hyperdense or hypodense artifacts in a rabbit VX2 model. The results showed that VMIs 
at high keV could decrease the HU values of hyperdense artifacts and increase those of hypodense artifacts, 
which allowed the operator to clearly observe the location of the ablation needle and tumor lesion and provided 
a greater possibility for an accurate MWA procedure.

Traditional single-energy CT scanners adopt a higher tube voltage (kVp setting) or tube current (mAs setting) 
to reduce these artifacts, making it possible to bring more radiation dose to patients14. The appearance of VMIs 
generated from spectral CT provides another feasible method for MAR. The spectral CT system in the present 
study was equipped with a single source and a dual layer detector made of different scintillating crystal materi-
als. When X-rays arrive through the detector, low-energy photons are absorbed in the top layer detector, and 
high-energy photons are absorbed in the bottom layer detector, allowing the separation of different energy levels 
of X-ray photons15. The data from these two detectors can be combined into a single projection data set, similar 
to the data from a conventional CT system. These data can be reconstructed by standard filtered projection or 

Figure 1.   (a) Place the regions of interest on conventional images (CIs) in the hyperdense artifacts (ROI1), 
hypodense artifacts (ROI2), surrounding liver parenchyma with the presence of artifacts (ROI3) and distant 
regions of back muscles that were not affected by artifacts (ROI4). (b) The single virtual monoenergetic image 
with different levels was then “copy-paste” to ensure that the position, shape and size of the ROIs were exactly 
the same.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9295  | https://doi.org/10.1038/s41598-021-88853-w

www.nature.com/scientificreports/

Table 1.   Qualitative assessment of artifact reduction and surrounding liver parenchyma. CI conventional 
images. Data in italics indicate no statistical significance between any two energy levels.

Artifact extent

New artifactHyperdense Hypodense Surrounding liver parenchyma

CI 1 (1,1) 1 (1,1) 2 (1,2) –

40 keV 1 (1,1) 1 (1,1) 1 (1,1) 1 (1,1)

50 keV 1 (1,1) 1 (1,1) 1 (1,1) 1 (1,1)

60 keV 1 (1,1) 1 (1,1) 1 (1,1) 1 (1,1)

70 keV 1 (1,1) 1 (1,1) 2 (1,2) 3 (3,3)

80 keV 1 (1,2) 1 (1,1) 2 (2,2) 3 (3,3)

90 keV 2 (1,2) 2 (2,2) 2 (2,3) 3 (3,3)

100 keV 2 (2,2) 2 (2,2) 3 (3,4) 3 (3,3)

110 keV 2 (2,3) 3 (3,3) 3 (3,4) 3 (3,3)

120 keV 3 (2,3) 3 (3,3) 4 (3,4) 3 (3,3)

130 keV 3 (3,4) 3 (3,4) 4 (3,5) 3 (3,3)

140 keV 3 (3,4) 4 (3,4) 5 (4,5) 3 (3,3)

150 keV 4 (3,4) 4 (4,4) 5 (4,5) 3 (3,3)

160 keV 4 (4,4) 4 (4,4) 5 (4,5) 3 (3,3)

170 keV 4 (4,5) 4 (4,5) 5 (5,5) 3 (2,3)

180 keV 4 (4,5) 4 (4,5) 5 (5,5) 3 (3,3)

190 keV 4 (4,5) 4 (4,5) 5 (5,5) 3 (3,3)

200 keV 5 (4,5) 5 (4,5) 5 (5,5) 3 (3,3)

P values

CI vs. 40–80 keV P > 0.05 P > 0.05 P > 0.05 –

CI vs. 90–200 keV P < 0.001 P < 0.001 P < 0.001 –

Table 2.   Quantitative assessment of artifact reduction and surrounding liver parenchyma. CI conventional 
images. Data in italics indicate no statistical significance between any two energy levels.

Corrected attenuation

Corrected image noiseHyperdense artifact Hypodense artifact Surrounding liver parenchyma

CI 337.9 ± 104.2 (−)479.2 ± 132.0 75.8 ± 25.5 7.0 ± 5.7

40 keV 1251.4 ± 380.4 (−)1074.6 ± 90.1 251.5 ± 101.6 34.1 ± 27.4

50 keV 772.7 ± 295.5 (−)928.5 ± 149.4 160.3 ± 62.8 19.4 ± 13.6

60 keV 508.9 ± 176.2 (−)711.3 ± 155.3 106.6 ± 40.7 18.4 ± 30.8

70 keV 330.1 ± 128.3 (−)516.4 ± 138.4 74.5 ± 28.5 8.1 ± 6.7

80 keV 230.4 ± 82.7 (−)378.2 ± 121.0 54.2 ± 22.2 5.6 ± 5.5

90 keV 160.4 ± 63.0 (−)284.1 ± 107.9 41.0 ± 19.1 4.5 ± 4.7

100 keV 113.0 ± 52.5 (−)218.8 ± 100.0 32.3 ± 17.6 4.0 ± 4.4

110 keV 79.2 ± 47.9 (−)173.2 ± 95.5 25.7 ± 17.3 3.8 ± 4.3

120 keV 54.9 ± 46.2 ( −)139.9 ± 93.5 21.1 ± 17.2 5.0 ± 7.9

130 keV 36.8 ± 46.0 ( −)115.2 ± 92.7 17.7 ± 17.3 3.8 ± 4.4

140 keV 23.0 ± 46.5 ( −)96.1 ± 92.4 15.1 ± 17.5 3.9 ± 4.5

150 keV 12.1 ± 47.3 ( −)73.2 ± 105.9 13.0 ± 17.7 3.9 ± 4.6

160 keV 3.6 ± 48.1 ( −)69.6 ± 92.7 11.5 ± 17.9 4.2 ± 4.4

170 keV (-)3.3 ± 48.9 ( −)60.1 ± 92.9 10.2 ± 18.0 4.1 ± 4.7

180 keV (-)9.0 ± 49.7 ( −)52.4 ± 93.2 9.1 ± 18.2 4.1 ± 4.7

190 keV (-)12.2 ± 49.5 ( −)44.6 ± 94.5 7.9 ± 20.5 4.1 ± 4.7

200 keV (-)17.5 ± 51.0 ( −)40.7 ± 93.7 7.5 ± 18.1 4.1 ± 4.8

P values

CI vs. 40–50 keV P < 0.001 P < 0.001 P < 0.001 P < 0.001

CI vs. 60 keV P < 0.001 P < 0.001 P > 0.05 P < 0.001

CI vs. 70 keV P > 0.05 P > 0.05 P > 0.05 P > 0.05

CI vs. 80 keV P > 0.05 P < 0.001 P > 0.05 P > 0.05

CI vs. 90–200 keV P < 0.001 P < 0.001 P < 0.001 P > 0.05
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iterative reconstruction of mixed energy images. Moreover, the dual-layer detector can simultaneously receive 
and measure low-energy and high-energy X-rays projected from the same space and angular position for dual-
energy postprocessing, with perfect time and space registration16. Therefore, dual-energy decomposition can be 
performed using the projection space, which makes the polychromatic CT image based on the dual-energy data 
processing method better than the traditional single-energy method, especially high energy level of keV in reduc-
ing the beam hardening correction related to metal implants17. In addition to the VMIs reconstruction series 
generated from this spectral CT system, other vendors also have their own techniques for VMIs reconstruction18, 
such as dual-source dual energy CT (SOMATOM Force, Siemens Healthcare, Erlangen, Germany)19 and rapid-
kilovoltage-switching dual energy scanner (Discovery CT750 HD system with Gem-stone Spectral Imaging, GE 
Healthcare)20,21. Although the technical approaches are different, it has been suggested that the reconstruction 
of VMIs can make metal artifact reduction possible.

Several studies have suggested that VMIs is an efficient approach for artifact reduction. Wellenberg et al.22 
found that VMIs led to an obvious reduction in metallic artifacts in a water-filled total hip arthroplasty phantom. 
A recent article23 evaluated the ability of VMIs to exhibited reduced hypo- and hyperdense artifacts generated 
from the port chamber and the distal tip of the port catheter. They hold that VMIs at high keV allows artifact 
reduction and then achieves improved image quality. Yoo et al.24 reviewed VMIs at 50–200 keV in 33 patients 
with metallic orthopedic implants. The authors concluded that 110–130 keV was the optimal energy range for 
showing the slightest artifacts and achieving the most satisfied image quality. Another study from Dangelmaier 
et al.25 also concluded that VMIs at high energy levels, especially at 180 keV, could significantly reduce the metal-
lic artifacts of posterior spinal fusion. Our findings are similar to those depicted above. We found that VMI at a 
high keV level could reduce microwave ablation antenna-related hyper- and hypodense artifacts in a rabbit VX2 
model, subjectively and objectively. This can improve the CT image quality around the ablation needle visually. 
In addition, VMI could also make the surrounding soft tissue impaired by artifacts more clearly revealed, which 
helped the accurate distribution of the ablation antenna. VMIs at each energy level can be reconstructed in real 
time with DLSCT, which has vital importance for the ablation process.

However, there was no statistical difference in image noise between CI and VMI at high energy levels in our 
research, which is consistent with a previous study12. Although VMIs can generate new artifacts as compared to 
CIs, these new artifacts do not affect the diagnostic assessment.

The following limitations need to be considered. First, we only had 31 rabbits in this study, and a larger sam-
ple size should be conducted to verify the outcomes. Second, the experiment was performed in a rabbit model. 
Although CT-guided MWA is also feasible in human patients. It may be limited to spreading our findings cur-
rently in clinical practice given the congenital difference between the rabbit VX2 model and human liver cancer. 
Nonetheless, we believe that this study provides reliable preclinical evidence that can significantly reduce the 
impact of ablation needle-related metallic artifacts and further improve ablation efficiency. Future prospective 

Figure 2.   Box-plot diagram showing corrected attenuation of hyperdense artifacts (a), hypodense artifacts (b) 
and the surrounding liver parenchyma impaired by artifacts (c) and corrected image noise (d) on conventional 
images (CI) and virtual monoenergetic images (VMIs) at 40–200 keV. VMIs at high energy levels can 
significantly reduce corrected attenuation but cannot reduce corrected image noise compared to CI.
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clinical studies are necessary to evaluate its application in human patients. In addition, the survival and outcomes 
of rabbits are ignored since this experimental study mainly focused on the image quality of VMIs. This should 
be further supplemented and improved in future research. Due to the special time requirements of the ablation 
process, although VMI can allow convenient and complete reconstruction, it does require additional reconstruc-
tion time. In practical clinical applications, the reconstruction algorithms may need to be further improved.

Conclusion
In conclusion, VMI can obviously reduce artifact interference and provide better image quality visually dur-
ing the CT-guided MWA process in a rabbit VX2 model. VMI at 170–200 keV is the best observation energy 
level for decreasing metal artifacts around the ablation zone, reducing image noise, ensuring image contrast, 
and improving subjective image quality; these characteristics are advantageous for suitable visualization of the 
ablation needle and surrounding tissue structure, as well as the relationship between the location of the lesion. 
VMIs makes it possible to acquire clearer image series, which in turn provides theoretical support for future 
clinical practices.

Figure 3.   (a) Contrast-enhanced CT of VMIs at 40 keV showing the liver cancer (red arrow) in a rabbit. (b) 
Axial plain CT in the same rabbit with MWA treatment. Images were reconstructed as conventional images 
(CIs) and as different energy levels of virtual monoenergetic images (40 keV, 60 keV, 80 keV, 100 keV, 120 keV, 
140 keV, 160 keV, 180 keV and 200 keV, window width/level: 350/60 for all images).
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