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Abstract: Corneal transparency relies on the precise arrangement and orientation of collagen fibrils,
made of mostly Type I and V collagen fibrils and proteoglycans (PGs). PGs are essential for correct
collagen fibrillogenesis and maintaining corneal homeostasis. We investigated the spatial and
temporal distribution of glycosaminoglycans (GAGs) and PGs after a chemical injury. The chemical
composition of chondroitin sulfate (CS)/dermatan sulfate (DS) and heparan sulfate (HS) were
characterized in mouse corneas 5 and 14 days after alkali burn (AB), and compared to uninjured
corneas. The expression profile and corneal distribution of CS/DSPGs and keratan sulfate (KS)
PGs were also analyzed. We found a significant overall increase in CS after AB, with an increase in
sulfated forms of CS and a decrease in lesser sulfated forms of CS. Expression of the CSPGs biglycan
and versican was increased after AB, while decorin expression was decreased. We also found an
increase in KS expression 14 days after AB, with an increase in lumican and mimecan expression, and
a decrease in keratocan expression. No significant changes in HS composition were noted after AB.
Taken together, our study reveals significant changes in the composition of the extracellular matrix
following a corneal chemical injury.

Keywords: glycosaminoglycans; proteoglycans; corneal stroma; scar formation; corneal wounding

1. Introduction

The cornea is a transparent tissue that forms the outermost part of the eye and is
responsible for the initial refraction of light from the external environment into the eye, and
ultimately onto the retina, resulting in the manifestation of an image [1–3]. Transparency,
defined as the capacity that the cornea possesses to transmit light without significant
scattering, is a unique physical property of the cornea that is essential for vision [4–6].
The cornea is formed of a highly organized dense connective tissue, the stroma, flanked
on the outer side by stratified squamous epithelia, the epithelium, and on the inner side
by simple epithelia, the endothelium [7,8]. The structural makeup of the cornea directly
correlates with its function. The corneal stroma comprises approximately 90 percent of the
total corneal thickness and provides the majority of its structural framework [6,8–12]. The
stroma is composed of a highly organized network of largely Type I and V collagen fibrils
with an extracellular matrix (ECM) consisting of four main structural components, water,
salts, glycoproteins, and proteoglycans (PGs) [3,13]. The types of specialized PGs that are
primarily present in the corneal stroma include lumican, keratocan, mimecan, decorin,
byglican, and versican [14–17]. Collagen fibrils in the stroma form highly organized parallel
layers, namely the lamella, which ensure corneal transparency [7,18]. Small leucine rich
proteoglycans (SLRPs) have been shown to regulate both collagen spacing and orthogonal
organization in the cornea [7,18]. Lumican, keratocan, mimecan, decorin, and biglycan are
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all members of the SLRP family of PGs. SLRPs are composed of a core protein, 25–65 kDa in
size characterized by tandem arrays of leucine-rich repeats flanked by cysteine-rich amino
and carboxyl domains with putative covalently bound glycosaminoglycans (GAGs) [19–21].
GAGs are composed of repeating disaccharide units containing sulfate esters and can be
divided into six main subtypes: keratan sulfate (KS), chondroitin sulfate (CS), dermatan
sulfate (DS), heparan sulfate (HS), heparin (HEP), and hyaluronan (HA). An additional
subtype, acharan sulfate, has been identified in the mollusk [22]. The corneal stroma is
one of the mammalian tissues with the highest KS content, and is the primary tissue that
contains lumican, keratocan and mimecan in the KSPG form [23–28]. The corneal stroma
also contains significant levels of CS/DSPGs, decorin, biglycan, and versican [23–28].
Numerous studies over the years have established the importance of PGs and GAGs
in maintaining corneal transparency, specifically, in regulating collagen fibril diameter,
interfibrillar spacing, and intrafibrillar spacing [18,26]. The Chakravarti group was able
to demonstrate that lumican null mice present corneal opacity as a result of increased
fibril diameter, altered fibril structures and increased interfibrillary spacing, all due to a
reduction in total KSPG levels [29,30]. A similar increase in collagen fibril diameter was
also observed in a different study using mimecan null mice [21]. Since these early findings
many other studies have further shown that KSPGs and CS/DSPGs play a key role in
establishing and maintaining corneal transparency by maintaining structural integrity of
collagen fibrils [18,31,32].

As with any tissue that is exposed to the external environment, the cornea is subject
to various insults, which can lead to injuries. Injuries from external sources can range
from abrasions and/or blunt traumas to chemical burns from alkali household cleaners
such as ammonia, sodium hydroxide, plaster, and cement. Chemical burns are the most
common form of corneal injuries observed in a clinical setting [33]. Unfortunately, many of
these injuries lead to permanent corneal opacification due to significant stromal scarring
and angiogenesis, and, as a consequence, this loss of transparency leads to impaired
vision. There are few available treatment options to prevent/limit corneal scarring, which
is caused by excessive ECM deposition and angiogenesis during the process of wound
healing. Severe corneal scarring and angiogenesis after injury can ultimately lead to a
loss of vision. Loss of corneal transparency is one of the leading causes of blindness
worldwide [34]. Thus, more research is needed to understand mechanisms of limiting
scarring after chemical wounds. For such, it is necessary to understand the process of ECM
deposition after injury, and how it affects corneal transparency. Depending on the severity,
size, and location of the corneal scar, corneal transplantation may be the only potential
method of treatment to restore vision. As with any organ transplant, this requires finding
and/or waiting for a donor (which are currently limited by the increased popularity of
LASIK surgery) and the use of long-term immune suppressors. Thus, there is a clear unmet
medical need for new treatments for preventing and/or treating corneal scarring.

Keratocytes are the most abundant cell type found in the corneal stroma, occupying 9
to 17 percent of its total volume [3,6,35]. Keratocytes are fibroblast-like cells that secrete and
maintain the stromal ECM both during homeostasis and after injury [3,36]. After corneal
injury, keratocytes are induced into the myofibroblast phenotype, which leads to increased
proliferation and ECM deposition [37]. This cellular trans-differentiation associated with
increased and altered ECM deposition forms a provisional matrix that supports the wound
healing process; however, this in turn alters the normal collagen organization, leading to
corneal scaring, which, when excessive, can compromise vision [36,38,39]. A key aspect
of the wound healing process, and a key point of interest for therapeutic industries, is to
limit ECM deposition after corneal injury and promote ECM remodeling, both during and
after wound healing, to restore the original collagen organization necessary for corneal
transparency [40]. GAGs and PGs are known to be present in the provisional matrix after
wounding, and are key in maintaining the collagen organization that is necessary for
restoring corneal transparency [41]. In order to better understand how the composition
of the corneal ECM changes after injury, and, throughout the wound healing process, we
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carried out a thorough investigation to characterize the expression and distribution of the
different GAGs and PGs in mouse corneas after a chemical injury using a standardized
mouse alkali-burn (AB) model.

2. Results
2.1. Alkali Burn Leads to Corneal Scarring

Corneas were imaged under a stereomicroscope before (uninjured), immediately after
(0 h), 5 days after (5 days), and 14 days after (14 days) AB. Significant corneal clouding was
evident in all corneas 5 and 14 days after AB (representative images shown in Figure 1A).
Corneal scarring was evaluated by in vivo confocal microscopy using a Heidelberg Reti-
nal Tomograph—HRTII with the Rostock Cornea Module. In vivo confocal microscopy
allows high magnification images to be obtained at a cellular level throughout the cornea
of live mice. With this form of analysis, quantitative measurements can be obtained for
corneal thickness, extracellular matrix backscatter, changes in corneal keratocyte den-
sity/morphology, and inflammatory cell infiltration. Representative images at the depth
of the anterior and posterior stroma of corneas 5 and 14 days after AB are displayed in
Figure 1B. Significant corneal scarring was evident throughout the corneal stroma at 5 and
14 days after AB (Figure 1B). Moreover, inflammatory cell infiltration was clearly evident
throughout the corneal stroma 5 days after AB (Figure 1B, top panel). Corneal backscatter
(which directly correlates with corneal haze) was quantified throughout the full corneal
thickness and plotted in a graph. There was a significant increase in corneal haze immedi-
ately, 5 days and 10 days after AB (Figure 1C). Thus, this data indicates that, as previously
shown, the mouse cornea is significantly inflamed at 5 days after AB, and corneal scarring
is evident at both 5 days and 14 days after AB [42]. Herein we analyzed and compared the
ECM composition of the mouse cornea during the process of wound healing following an
AB. Corneas 5 and 14 days after AB were compared to the contralateral uninjured eye.

2.2. Characterization of HS/HEP in Murine Corneas after Alkali Burn

GAGs were isolated from injured and uninjured mouse corneas 5 and 14 days after AB,
and HS disaccharides were generated by heparinase I and III digestion and analyzed by
strong anion chromatography (SAX) using high-pressure liquid chromatography (HPLC).
Overall, the analysis revealed that summed abundances of HS disaccharides were similar
in injured and uninjured corneas both 5 and 14 days after injury (Table 1). When analyzing
the structural composition of HS in the cornea, the most abundant disaccharide identified
was, D0A0 (∆UA-GlcNAc), followed by D0S0 (∆UA-GlcNS), D2S0 (∆UA2S-GlcNS), D0A6
(∆UA-GlcNAc6S), D2S6 (∆UA2S-GlcNS6S), and, finally, in significantly lower abundance,
D0S6 (∆UA-GlcNS6S), D2A6 (∆UA2S-GlcNAc6S), and D2A0 (∆UA2S-GlcNAc) (Figure 2
and Table 1). It is worthy of note that the abundance of N-acetylated disaccharides was
slightly higher than that of N-sulfated disaccharides. Thus, in general, HS has an overall
low sulfation pattern in the cornea with an average of one sulfate per disaccharide unit.
It is also worthy of note that 3-O-sulfated disaccharides were not identified in the cornea.
Overall, no significant changes in HS composition were noted at 5 or 14 days after AB
when compared to the uninjured contralateral eye (Figure 2). Therefore, no significant
changes in HS levels or composition were observed in the corneas after AB.
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Figure 1. Corneal morphology and haze after AB. Corneas were imaged under a stereomicroscope prior to and immedi-
ately, 5 days and 14 days after AB, and, a representative image shown (A). Corneas were analyzed by in vivo confocal 
microscopy at 0, 5, and 14 days after AB and a representative images of the anterior and posterior stroma shown (B). Scale 
bar 50 μm. Inflammatory cells are present at 5 days after AB, indicated with a white arrowhead. In order to evaluate 
corneal transparency, a z-stack of images was acquired through the entire corneal stroma at 2 μm increments and corneal 
haze quantified in each frame using Fiji (Image J-win64 by NIH) and plotted as a histogram. Representative histograms 
are presented (C). All mice included in this study were analyzed under a stereomicroscope at each indicated time point 
and five mice from each experimental group were analyzed by in vivo confocal microscopy at each indicated time point. 
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Figure 1. Corneal morphology and haze after AB. Corneas were imaged under a stereomicroscope prior to and immediately,
5 days and 14 days after AB, and, a representative image shown (A). Corneas were analyzed by in vivo confocal microscopy
at 0, 5, and 14 days after AB and a representative images of the anterior and posterior stroma shown (B). Scale bar
50 µm. Inflammatory cells are present at 5 days after AB, indicated with a white arrowhead. In order to evaluate corneal
transparency, a z-stack of images was acquired through the entire corneal stroma at 2 µm increments and corneal haze
quantified in each frame using Fiji (Image J-win64 by NIH) and plotted as a histogram. Representative histograms are
presented (C). All mice included in this study were analyzed under a stereomicroscope at each indicated time point and five
mice from each experimental group were analyzed by in vivo confocal microscopy at each indicated time point.

Table 1. Heparin/heparan sulfate content in corneas of wild-type mice 5 and 14 days after AB.

Ctr 5 Days AB 5 Days Ctr 14 Days AB 14 Days

HS

D0A0 2.081633 23 1.755102 27 2.244898 32 2.285714 33
D0S0 1.734694 19 1.530612 24 1.387755 20 1 15
D2S0 1.755102 20 1.061224 16 1.061224 15 1.040816 15
D0A6 1.530612 17 0.816327 13 1 14 0.795918 12
D2S6 1 11 0.489796 8 0.632653 9 1.306122 19
D0S6 0.44898 5 0.408163 6 0.387755 6 0.142857 2
D2A6 0.22449 3 0.122449 2 ND 0 0.102041 1
D2A0 0.204286 2 0.282857 4 0.195714 3 0.205714 3

Total HS 8.979796 100 6.466531 100 6.91 100 6.879184 100

Values represent µg per cornea Percentage (w/w). ND = below the limits of detection.
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Figure 2. Disaccharide composition of HS in mouse corneas after AB. Total GAGs were extracted
from seven pooled corneal tissues and digested with Heparinase in order to generate HS disaccha-
rides. These were then separated by strong anion exchange chromatography using a high pressure
liquid chromatography system (SAX-HPLC). The eluent was subjected to fluorescent post-column
derivatization using 2-cyanoacetamide in the presence of NaOH. The disaccharide separation profiles
were compared to the separation of standard disaccharides for identification, and the abundance of
the different HS disaccharides in the injured and uninjured corneas represented (A). Representation
of the chemical structure of the HS disaccharides identified in the corneal samples before and after
AB (B).

2.3. Characterization of CS/DS in Murine Corneas after Alkali Burn

For the analysis of CS/DS disaccharide units in injured and uninjured mouse corneas
5 and 14 days after AB, GAGs were digested with Chondroitinase ABC and, thereafter,
analyzed by SAX-HPLC. Firstly, in contrast to HS, there was a significant increase in the
summed abundances of CS/DS disaccharides between the injured and uninjured corneas
both 5 and 14 days after injury (Table 2). Specifically, there was a ~25% increase in total
CS 5 days after AB and a ~40% increase in total CS 14 days after AB (Table 2). The most
abundant disaccharide identified was D2a4 (∆UA2S-GalNAc4S), and, interestingly, it
increased in abundance by almost 2-fold 14 days after alkali burn (Figure 3 and Table 2).
Thus, 2,4-sulfated CS is highly expressed in the murine cornea, and is up-regulated 14 days
after AB (Figure 3). Next, D0a4 (∆UA-GalNAc4S) and D0a0 (∆UA-GalNAc) are the most
abundant disaccharides in the uninjured tissue, with similar abundances (Figure 3). The
abundance of D0a4 does not change after AB, while the abundance of D0a0 significantly
decreases after AB (Figure 3). D0a6 (∆UA-GalNAc6S) is the next most abundant CS/DS
disaccharide in the uninjured cornea with its abundance significantly decreasing after AB
(Figure 3). Finally, the least abundant CS/DS disaccharide identified in the uninjured cornea
was D0A10 (∆UA-GalNAc4S6S), and, interestingly, this disaccharide was significantly
more abundant after AB; specifically, there was a ~5-fold increase 5 days after AB, and
at 14 days after AB, it went from being undetected in the contralateral uninjured cornea
to being abundantly present in the injured cornea (Figure 3). Thus, in general, there is a
decrease in the abundance of low sulfated CS/DS disaccharides after AB and an increase
in highly sulfated disaccharides. Thus, highly sulfated CS could potentially play a role in
the provisional matrix during wound healing, and, also, be part of the corneal scarring
process. It is worthy of note that the disaccharides D2a0 (∆UA2S-GalNAc), D2a6 (∆UA2S-
GalNAc6S), and D2a10 (∆UA2S-GalNAc4S6S), were not identified in the naïve or injured
murine corneas.

Table 2. Chondroitin/dermatan sulfate content in corneas of wild-type mice 5 and 14 days after AB.

Ctr 5 Days AB 5 Days Ctr 14 Days AB 14 Days

CS

D0a0 0.914285714 19 0.485714286 8 1 17 0.671428571 7
D0a6 0.414285714 9 0.271428571 4 0.814285714 14 0.142857143 2
D0a4 0.771428571 16 1.071428571 18 0.714285714 12 1.057142857 12
D0a10 0.271428571 5 1.214285714 20 ND 0.957142857 11
D2a4 2.428571429 51 3.042857143 50 3.214285714 56 6.257142857 69

Total CS 4.8 100 6.085714286 100 5.757142857 100 9.1 100

Values represent µg per cornea. Percentage (w/w). ND = below the limits of detection.
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the non-reducing terminal of native CS (3B3-epitope) and a disaccharide containing an 
unsaturated uronic acid adjacent to a 6-sulfated N-acetylgalactosamine at the non-reduc-
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Figure 3. Disaccharide composition of CS/DS in mouse corneas after AB. Total GAGs were extracted
from seven pooled corneal tissues and digested with Chondroitinase ABC in order to generate
CS and DS disaccharides. These were then separated by strong anion exchange chromatography
using a high pressure liquid chromatography system (SAX-HPLC). The eluent was subjected to
fluorescent post-column derivatization using 2-cyanoacetamide in the presence of NaOH. The
disaccharide separation profiles were compared to the separation of standard disaccharides for
identification and quantification, and, the abundance of the different CS/DS disaccharides in the
injured and uninjured corneas represented (A). Representation of the chemical structure of the CS/DS
disaccharides identified in the corneal samples before and after AB (B).

2.4. Distribution of CS Sulphated Epitopes in Murine Corneas after Alkali Burn

The distribution of CS was also analyzed in corneas 14 days after AB using specific
anti-CS antibodies. For this analysis, anti-CS antibodies, clones 1B5, 3B3, and 2B6, were
used following Chondroitinase ABC treatment of the tissues. Clone 3B3 recognizes a
disaccharide containing a glucuronic acid adjacent to an N-acetylgalactosamine-6-sulfate
at the non-reducing terminal of native CS (3B3-epitope) and a disaccharide containing an
unsaturated uronic acid adjacent to a 6-sulfated N-acetylgalactosamine at the non-reducing
terminal of Chondroitinase ABC digested CS stubs (3B3+ epitope) [43]. Clone 1B5 recog-
nizes a non-sulfated disaccharide containing an unsaturated uronic acid adjacent to an
N-acetylgalactosamine and, clone 2B6 recognizes a disaccharide containing an unsaturated
uronic acid adjacent to a 4-sulfated N-acetylgalactosamine, both at the non-reducing ter-
minal of Chondroitinase ABC digested CS stubs. Our data show that uninjured corneas
present strong 1B5 staining in the anterior stroma, limited staining in both the posterior
stroma and endothelium and no staining in the corneal epithelium (Figure 4A). Fourteen
days after alkali burn, strong 1B5 staining is present throughout the stroma and endothe-
lium, but no staining is present in the corneal epithelium (Figure 4A). When observing the
limbal region of uninjured corneas, a decrease in 1B5 staining can be noted throughout the
stroma in the outer peripheral cornea when compared to the central cornea. In contrast,
1B5 staining is present throughout all layers of the limbal stroma and endothelium, with
stronger staining in the anterior stroma (Figure 4C). Fourteen days after AB, there is an
increase in 1B5 staining in the endothelium, anterior stroma, and epithelium in the outer
peripheral cornea, and an increase in 1B5 staining in the anterior stroma and epithelium in
the limbal region (Figure 4C). When analyzing the 3B3 staining pattern of Chondroitinase
ABC digested tissues, limited 3B3+ staining was observed in uninjured corneas which
was limited to the anterior stroma (Figure 4A). Fourteen days after AB, an increase in
3B3+ staining was noted throughout all layers of the cornea, epithelium and endothelium
(Figure 4A). In the limbal region of uninjured corneas, 3B3+ staining was observed in
the endothelium and in patches of the anterior stroma (Figure 4C). An increase in 3B3+
staining was noted in the endothelium, anterior stroma and epithelium of the peripheral
cornea and limbus 14 after AB (Figure 4C). 2B6 staining was found exclusively in the
stroma of uninjured corneas, primarily in the anterior stroma (Figure 4B). 14 days after
AB, an increase in 2B6 staining was observed throughout all layers of the corneal stroma
and endothelium, and punctate staining could be observed in superficial layers of the
epithelium (Figure 4B). In the limbus, 2B6 staining was observed throughout the stroma,
endothelium and basal layer of the epithelium of uninjured corneas and was increased
14 days after AB (Figure 4D).
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Figure 4. Expression and localization of different CS epitopes and versican in the central cornea and
limbal region of mice before and after AB. Mouse corneas were subjected to AB and corneas analyzed
after 14 days, with uninjured contralateral corneas used as controls. The central cornea (A,B) and
the limbal region (C,D) were imaged under a confocal microscope. The expression and localization
of CS epitopes were analyzed using 1B5 and 3B3 antibodies by immunocytochemistry (A,C). The
expression and localization of the CS epitope 2B6 and versican were analyzed by immunocytochem-
istry (B,D). Nuclei were stained with DAPI (blue). Scale bar 20 µm. Seven corneas were analyzed per
experimental group and a representative image displayed.
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2.5. Changes in CSPG Expression 5 and 14 Days after Alkali Burn in Murine Corneas

Given the significant changes in CS expression in the corneas after AB, we also
analyzed the expression profile of various CS/DSPGs. There was a significant increase in
biglycan expression both 5 and 14 days after AB, while there was a decrease in decorin
expression 5 days (p ≤ 0.05) and 14 days (did not reach significance) after AB (Figure 5D,E).
Biglycan expression and localization was also analyzed in uninjured corneas and corneas
14 days after AB by immunofluorescence. In uninjured corneas, biglycan is present in the
basement membrane, in the inter- and intrafibrillar space and surrounding the endothelial
cells, with an increase in these locations 14 days after AB (Figure 6B). In the limbal region,
biglycan had a similar distribution pattern as noted in the central cornea; it was present in
the basement membrane, in the inter- and intrafibrillar space and surrounding endothelial
cells (Figure 6D). There was a significant increase in biglycan within the limbal region
14 days after AB, primarily in the anterior stroma, basement membrane, and epithelium
(Figure 6D).
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another HA binding domain, enabling further interactions with HA [44,45]).
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Figure 6. Expression and localization of versican, aggrecan and biglycan in the central corneal
and limbal region of mice before and after AB. Mouse corneas were subjected to AB and corneas
analyzed after 14 days, with contralateral corneas used as controls. The central cornea (A,B) and the
limbal region (C,D) were imaged under a confocal microscope. The expression and localization of
versican and aggrecan (A,C), and, biglycan and versican (B,D) were analyzed using immunocyto-
chemistry. Nuclei were stained with DAPI (blue). Scale bar 20 µm. Seven corneas were analyzed per
experimental group and a representative image displayed.
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The expression profile of the CSPG versican was also analyzed before and after
AB. There was a significant increase in versican expression after AB, specifically a 6-fold
increase in expression 5 days after AB and 1.5-fold increase in expression 14 days after
AB (Figure 5F). Thereafter, we investigated the expression profile of the different versican
isoforms after AB (Figure 5G–K). Curiously, the V0, V1, and V3 isoforms followed similar
expression patterns, with increased expression 5 and 14 days after AB, although with a
significantly higher increase in expression 5 days after AB, which was ~7 fold for each
isoform, compared to a ~2-fold increase at 14 days after AB. For the V2 isoform, there was
an increase in expression 5 days after AB, but this did not reach significance, and there
were no differences in expression levels 14 days after AB. Based on the qPCR data analyzed
via the 2−∆Ct method, V1 was identified as the most highly expressed isoform in the cornea,
followed by V0, V3, and finally V2. The expression of V1 was 5-fold higher than V0, the
expression V0 was 14-fold higher than V3, and V3 was 2-fold higher than V2 in naïve
corneas. Versican distribution was also analyzed in uninjured corneas and corneas 14 days
after AB by immunofluorescence of tissues digested or not digested with Chondroitinase
ABC. In tissues digested with Chondroitinase ABC, limited versican (stained with anti-
versican AF3054) expression was noted throughout uninjured corneas (Figure 4B). An
increase in versican staining was observed 14 days after AB which was present primarily in
the basement membrane (Figure 4B). In the peripheral cornea and limbal region, versican
staining was observed solely around isolated keratocytes (Figure 4D). A slight increase in
versican staining was noted 14 days after AB as punctate staining primarily in the posterior
stroma (Figure 4D). In tissues not digested with Chondroitinase ABC, limited versican was
identified throughout the central cornea with clone AF3054, while versican was identified
throughout the cornea with clone ab177480 (Figure 6A,B, respectively). Fourteen days after
AB, there was an increase in versican expression throughout all layers of the cornea with
clone AF3054 (Figure 6A). In contrast, there was solely an increase in versican expression in
the corneal epithelium and surrounding a few cells within the stroma with clone ab177480
(Figure 6B). In the limbal region, versican was identified throughout all layers of the cornea
of uninjured corneas, with an increase in these same regions 14 days after AB, with clone
AF3054 (Figure 6C). High levels of versican were detected throughout all corneal layers in
the limbal region of uninjured corneas with clone ab177480, which was mostly limited to the
epithelium and to stromal cells 14 days after AB (Figure 6D). Finally, aggrecan expression
was also analyzed by immunohistochemistry (Figure 6A,C). No aggrecan staining was
identified in the central cornea and limbal region of uninjured corneas, whereas aggrecan
was identified in the epithelium, surrounding stromal cells and in the endothelium of
corneas 14 days after AB (Figure 6A,C).

2.6. Expression of KS and KSPS after Alkali Burn in Murine Corneas

Given the lack of enzymes for complete digestion of KS that would allow compo-
sitional analysis, we analyzed the distribution of KS throughout the corneas using im-
munohistochemistry with two anti-KS antibodies, clone 5D4, which recognizes a highly
sulfated KS, and 1B4, which recognizes a lesser sulfated KS. In the cornea, KS was de-
tected throughout the stromal and endothelial layers, but no KS was detected within the
corneal epithelium (Figure 7A,B). Similar expression profiles were observed for both highly
and lesser sulfated KS, specifically, higher expression of KS was observed in the anterior
stroma when compared to the posterior stroma (Figure 7A,B). Fourteen days after AB,
an increase in KS was observed throughout the cornea, including within the epithelium.
Similar expression profiles were also observed for the 5D4 and 1B4 epitopes 14 days after
AB (Figure 7A,B). When comparing the distribution of KS in the limbal region to the central
cornea, a decrease in the highly sulfated form of KS (5D4 epitope) was observed in the
anterior stroma (Figure 7C,D). In contrast, an increase in the expression of a lesser sulfated
form of KS (the 1B4 epitope) was observed in the anterior stroma of the limbal region
when compared to the central cornea (Figure 7C,D). Similar to what was observed with
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the central cornea, there was a significant increase in KS expression throughout all corneal
layers in the limbal region 14 days after AB.
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Figure 7. Expression and localization of different KS epitopes, HA and lumican in the central corneal
and limbal region of mice before and after AB. Mouse corneas were subjected to AB and corneas
analyzed after 14 days, with contralateral corneas used as controls. The central cornea (A,B) and the
limbal region (C,D) were imaged under a confocal microscope. The expression and localization of
highly sulfated KS (5D4) and HA were analyzed using immunocytochemistry (A,C). The expression
and localization of lesser sulfated KS (1B4) and lumican were analyzed using immunocytochemistry
(B,D). Nuclei were stained with DAPI (blue). Scale bar 20 µm. Seven corneas were analyzed per
experimental point and a representative image displayed.
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In order further understand the expression pattern of KS in the murine cornea, we
analyzed the expression levels of different KS biosynthetic enzymes in uninjured wild-type
corneas by analyzing RNA-seq data that was generated comparing the central cornea to the
limbal region of naïve wild-type mice. Interestingly, 11 genes involved in KS biosynthesis
were found to be differently expressed between the central and limbal region (Table 3). The
genes identified encode enzymes associated with the biosynthesis of both the N-glycan
(KS-I) and O-glycan (KS-II). This includes five of the seven beta-1,4-galactosyltransferases
(B4galt) and two genes that catalyze the transfer of sulfate groups to KS, carbohydrate
6-sulfotransferases (Chst) 1 and 2. B4GALT family of enzymes are involved in the poly-
merization of the KS chain, while CHSTs catalyze the transfer of sulfate to the position
6 of either galactose or acetylglucosamine of KS [46–48]. We then further analyzed the
expression profile of Chst1, Chst2, B4galt1, and B4galt4, in corneas 5 and 14 days after AB,
compared to the uninjured contralateral control eye by real-time PCR (Figure 8). A decrease
in the expression of Chst2 and B4galt 1 and 4 was observed at 5 days after AB (Figure 8B,C).
Both B4galt 1 and 4 are involved in the transfer of a galactose residue to the polymerizing
KS chain, indicating there is an initial decrease in the biosynthesis of KS 5 days after AB.
The expression of B4galt 1 and 4 appears to rebound at 14 days, indicating that between 5
and 14 days after AB there is an increase in KS expression (Figure 8C,D). The expression of
Chst1 significantly increased at both 5 and 14 days post injury, moreover, the expression of
Chst2 is significantly increased at 14 days after AB, when compared to the contralateral
uninjured eye (Figure 8A,B). Thus, our data indicates that, both 5 and 14 days after AB
burn there is an overall increase in the sulfation of KS. Taken together, expression levels of
the KS biosynthetic enzymes support our immunohistochemistry data, which shows an
increase in KS at 14 days after AB. Curiously, the expression of CHST2 was higher in the
contralateral control eye at five days after AB when compared to the contralateral control
at 14 days after AB (Figure 8B). Previous studies have shown that in certain instances a
corneal injury can trigger an immune response in the contralateral uninjured cornea [49–55].
Thus, the corneal injury could lead to changes in CHST2 expression in the contralateral eye
over time. Importantly, we did not observe any other differences between the contralateral
eye 5 and 14 days after AB in this study.

Table 3. Identification of KS biosynthetic enzymes by RNAseq analysis.

Gene Name Mean Count Log 2 Fold
Change

Log Fold
Change p-Value

Fut8 glycoprotein 6-alpha-L-fucosyltransferase 303.5 −0.374 0.610 0.540

B3gnt2 N-acetyllactosaminide
beta-1,3-N-acetylglucosaminyltransferase 592.6 0.133 0.555 0.811

St3gal1 beta-galactoside alpha-2,3-sialyltransferase 734.4 −1.302 0.686 0.0578

St3gal3 neolactotetraosylceramide
alpha-2,3-sialyltransferase 143.1 −0.890 0.699 0.203

Chst1 keratan sulfate 6-sulfotransferase 1 26.8 −0.818 0.608 0.178

St3gal2 beta-galactoside alpha-2,3-sialyltransferase 792.2 0.0791 0.541 0.884

Chst2 carbohydrate 6-sulfotransferase 2 71.4 −0.299 0.706 0.672

B4galt1 beta-1,4-galactosyltransferase 1 2806.6 −0.0580 0.509 0.909

B4galt2 beta-1,4-galactosyltransferase 2 110.6 −0.836 0.707 0.237

B4galt3 beta-1,4-galactosyltransferase 3 866.6 −0.796 0.616 0.196

B4galt4 beta-1,4-galactosyltransferase 4 59.6 −0.536 0.716 0.455

B4galt7 beta-1,3-N-acetylglucosaminyltransferase 7 205.2 −0.244 0.629 0.698

B3gnt7
solute carrier family 35

(UDP-N-acetylglucosamine (UDP-GlcNAc)
transporter)

291.7 −0.224 0.601 0.657

Slc35a3 glycoprotein 6-alpha-L-fucosyltransferase 1062.6 0.743 0.603 0.218
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Figure 8. Relative expression profile of KS biosynthetic enzymes in mouse corneas after AB. Mouse corneas were subjected
to AB and analyzed after 5 and 14 days, compared to the contralateral uninjured eye. Real-time PCR analysis (qPCR) was
done to verify the expression levels of CHST1 (A), CHST2 (B), B4GALT1 (C), and B4GALT4 (D). The relative expression
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experimental group. Schematic representation of the activity of each enzyme analyzed, CHST1 and 2 catalyze the transfer of
a sulfate to the position 6 of galactose, while B4GALT1 and 4 catalyze the transfer of a galatose residue to the polymerizing
KS chain (E).
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Finally, we analyzed the expression profile of different KSPGs. Curiously, we did not
find any changes in the expression levels of lumican 5 days after AB, but there was a ~1.4-
fold increase in lumican expression 14 days after AB that did reach significance (Figure 5A).
The distribution of lumican was also analyzed by immunohistochemistry. Lumican was
identified throughout all corneal layers in both uninjured and injured corneas, but at
increased levels in the latter (Figure 7B). Interestingly, the increase in lumican expression
after AB was not at the same magnitude as that observed for KS, thus other KSPGs would
have to also be upregulated following AB or there could be an overall increase in the
number of putative KS chains per lumican molecule 14 days after AB. A striking decrease
in keratocan expression was observed, both 5 and 14 days after AB, specifically a 10-fold
and 5-fold decrease, respectively. A subtle, however significant, increase in mimecan
expression was noted both 5 and 14 days after AB when compared to the uninjured
contralateral control.

3. Discussion

In this study, we used the well-established AB mouse model to assess the change in
GAG composition during corneal wound healing 5 and 14 days after a chemical injury.
This model leads to inflammatory cell infiltration and corneal scarring, and the loss of
transparency is evident at both 5 and 14 days after AB [56–60]. Disaccharide analysis
revealed there was a significant increase in CS expression after AB, and, thus, CSPGs are
important constituents of the provisional matrix in the cornea. Importantly, the CS chains
that are expressed following AB are more highly sulfated than those expressed in the
uninjured cornea. Thus, highly sulfated CS could potentially play a role in the provisional
matrix during wound healing and also be part of the corneal scarring process. Interestingly,
CS/DS sulfatases are a family of enzymes that catalyze the hydrolysis of the sulfate groups
on CS/DS and have been identified in many mammalian and bacterial species [61]. Further
studies would have to establish whether targeting sulfated CS with extracellular sulfatases
could be used as a pharmaceutical target for limiting corneal scarring after injury.

Our initial observation of CS/DS as a key factor in the provisional matrix during
wound healing by the quantification and characterization of GAGs before and after AB
was supported by evidence of elevated levels of certain CSPGs. Although existing research
documents the expression of CSPG versican in embryonic chick and rat corneas, as well as
during postnatal corneal development, its expression after a corneal injury is not as well
documented [62,63]. At present, at least four splice variants of versican, VO, V1, V2, and
V3 have been identified [63–67]. These variants are generated as a result of alternative
RNA splicing in the two exons encoding the GAG attachment sites, exon 7 which encodes
α-GAG and exon 8 which encodes β-GAG [63,65,66,68]. VO, the longest variant, has both
exons, while V1 has βGAG, V2 has αGAG, and V3 has neither (Figure 5K) [63,66,68]. Koga
et al. demonstrated the expression pattern of VO-V3 in rat corneas, where they illustrated
a rapid decrease of all four isoforms at the mRNA and protein levels during postnatal
development [63]. Thus, all four versican variants were highly expressed in the cornea at
birth but became undetectable in adults except in the limbus [63,69]. Our data corroborate
these findings; in the uninjured mouse cornea versican is expressed primarily in the limbal
region, with very low versican in the central and peripheral cornea. Interestingly, we found
a significant increase in versican expression throughout the cornea and limbus after AB.
Functionally, versican has been shown to be an important component during inflammatory
responses, such as in infections, certain deceases, and after injuries [70–73]. Its importance
appears to be in its ability to interact with inflammatory cells and other inflammatory
components and regulate their availability and activity [74]. We observed all four versican
isoforms in adult mouse corneas. Our findings demonstrate an increase in the levels of
VO, VI, and V3, and not V2 during corneal wound healing. Although the presence of
versican variants has been reported in the mouse retina, vitreous humor and trabecular
meshwork [75,76], to our knowledge, this is the first documentation of versican in the adult
mouse cornea pre and post injury.
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Biglycan, a CS/DSPG known to play an important role during inflammatory responses,
was also elevated in the provisional matrix after corneal AB [77,78]. Upon injury or during
inflammatory processes, biglycan serves as a ligand for the innate immunity receptors,
Toll-like receptors 2 and 4 (TLR2 and TLR4) that are found on macrophages [77,78]. This,
in turn, triggers the activation of signaling pathways via p38, p42/44 and NF-κB, with sub-
sequent generation of TNF-α and macrophage inflammatory protein-2 (MIP-2) [78]. Thus,
the increase in biglycan expression 5 and 14 days after AB indicates it could play a role in
the corneal inflammatory response to chemical injuries. A hallmark of microbial-induced
cornea inflammation is activation of TLRs, which then triggers neutrophil infiltration in an
attempt to clear invading organisms and prevent dissemination [79–82]. Thus, these recep-
tors are necessary for ocular surface immune response to infectious agents. We hypothesize
TLRs could also be triggered by biglycan to mount an immune response in the context of
a corneal chemical injury, such as an AB. In contrast, decorin expression was decreased
5 and 14 days after AB. Decorin and biglycan have both been shown to have a similar
spatial distribution in the cornea; however, with distinct temporal expression patterns [83].
Decorin and biglycan both play important roles in regulating collagen fibrillogenesis, with
reportedly overlapping functions [83]. Specifically, compound decorin/biglycan-null mice
present more severe disruption in fibril structure and organization when compared to
single null mice [83]. At low concentrations, decorin has been shown to be a more efficient
regulator of collagen fibrillogenesis when compared to biglycan [83]. Previous studies
have suggested that corneal scarring and certain chronic pathologic conditions lead to an
up-regulation of both decorin and biglycan bearing highly sulfated DS [84]. To the best
of our knowledge this is the first study to look at the expression of decorin and biglycan
following corneal chemical injury.

An increase in aggrecan expression was also noted after AB, primarily in the corneal
epithelium, basement membrane, surrounding stromal cells, and in the corneal endothe-
lium. Previous studies have identified aggrecan as an important constituent in the scarring
process of the fibrotic heart, liver, brain, spinal cord, and skin [85–87]. Curiously, aggre-
can has previously been shown to associate with lumican in the aging human sclera [88].
Though aggrecan is present in normal human and murine skin, it has been observed to
accumulate in scar tissues [89–91]. This aggrecan accumulation appears to hinder cell mi-
gration, and, thus, prevents proper wound healing, which results in increased scarring [90].
Thus, proper aggrecan turnover is required for effective post wound tissue restoration. To
this end, aggrecan has been considered a potential target for reducing scar formation after
skin injuries, and, based on our data, this could also be considered for corneal injuries.

The importance of small leucine-rich proteoglycans (SLRPs) in maintaining corneal
transparency has been accepted for decades with a vast number of publications on this
topic since early 1970s [92–96]. As previously mentioned, normal corneal ECM is composed
primarily of KSPGs, and worthy of note are three prominent SLRP members; Lumican,
keratocan, and mimecan [16,97]. Studies have revealed that in the healthy cornea, KSPGs
are expressed primarily by stromal keratocytes [95,98–100]. Given that keratocytes are
the main cell type responsible for KSPG synthesis, the trans-differentiation of keratocytes
post injury could explain the observed decrease in KSPG expression during the wound
healing process. Studies have revealed that the KS content within the corneal stroma
is at least one order of magnitude more abundant than in any other tissue [92,100,101].
Conversely the other GAG subtypes, CS/DS and HS, appear to be less abundant [93]. The
composition of GAGs and PGs within the corneal stromal ECM is essential for maintaining
cornea transparency [100]. KS has been shown to be highly expressed in the murine cornea
and limbal region, although it is more prevalent in the former [102]. This study also
demonstrated a differential distribution of highly and lesser sulfated KS in the different
corneal compartments, with primarily highly sulfated KS being expressed in the epithelium
and basement membrane, while both the highly and lesser sulfated forms were expressed
in the Bowman’s layer, stroma and Descemet’s membrane [102]. Our study corroborates
these findings, demonstrating that both the highly and lesser sulfated forms of KS are
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expressed primarily in the central cornea when compared to the limbal region. In the central
cornea, both forms are highly expressed in the stroma and Descemet’s membrane. Upon
corneal injury, keratocytes are rapidly activated, leading to their trans-differentiation into
fibroblasts and myoblasts-like cells, which is central to the wound healing process [35,36,97].
Research has previously demonstrated a decrease in KS, and, an overall change in GAG
composition after corneal injury [93,94,103]. Cintron et al. analyzed the chemical properties
of PGs expressed in rabbit corneal scars from a central 2-mm-diameter full-thickness button
excision. They observed the appearance of an unusually large DSPG, an overall decrease in
sulfated PGs, and a change in matrix from collagen fibrils to one that is fibrin in nature [60].
In contrast, we found that overall, KS is upregulated in all corneal compartments after
AB, although solely the highly sulfated form is upregulated in the corneal epithelium.
Moreover, our study revealed a significant increase in sulfated CS and a decrease in lesser-
sulfated CS after AB in mice. Another study analyzed the expression of GAGs in rabbit
corneas after corneal button excisions over time and found that scars as old as 1 year
present elevated levels of CS, and the higher levels of CS are correlated with corneal
opacification and loss of transparency [93]. However, corneal opacification subsided
when the KS level was restored [93]. Interestingly, macular corneal dystrophy (MCD), a
noninflammatory clouding of the cornea, has been linked to mutations in the carbohydrate
sulfotransferase 6 gene (CHST6) involved in the biosynthesis of sulfated KS [28,104–106].
The loss of this gene results in reduced levels of sulfated KS within the cornea and this
loss of sulfated KS, leads to poorly structured collagen fibrils and, consequently, corneal
opacification [28,98,107–111]. Thus, the decrease in KS after corneal wounding can be
associated with the loss of corneal transparency.

Curiously, in our study no changes in the structural composition of HS chains fol-
lowing AB were noted. We therefore did not investigate the expression profile of HSPGs
further. However, our study did find that in the cornea HS is generally expressed in a
lesser sulfated form, with an average of one sulfate per disaccharide unit. In the cornea, HS
serves to maintain tight junctions of the corneal epithelium, which is crucial to maintaining
its structural integrity [112]. Studies using both mice and other model organisms have
documented the importance of post-synthesis modification of HS chains by extracellular en-
dosulfatases, SULF1, and SULF2 in epithelial cell migration during wound repair [113–115].
The SULFs remove sulfate from the C-6 internal glucosamine residues of intact HSPGs,
which liberates HS-associated ligands such as cytokines and growth factors and allows
for them to participate in wound repair [114–116]. A prior study by our group utilizing
a corneal epithelium specific conditional knockout mouse revealed the importance of
HS in both corneal homeostasis and wound healing [112]. The same study observed no
significant corneal defects when HS in the stroma was targeted. Other studies, such as
those performed by the Stepp and Inomata groups, targeting specific HSPGs, syndecan and
perlecan, respectively, also show HSPGs expressed in the corneal epithelium are essential
for corneal homeostasis and wound healing [117–120].

Taken together, our study reveals significant changes in the composition of the ECM
following a corneal chemical injury. Significant changes in the expression of CSPGs/DSPGs
and KSPGs were observed after AB, whereas no significant changes in HS were noted.
Importantly, the composition of the provisional matrix changes throughout the 2-week
period following AB, therefore, scar tissue is actively being deposition and remodeled
during this same time-frame. Thus, understanding the dynamics of the scarring process is
vital for planning interventions for preventing corneal scarring.

4. Materials and Methods
4.1. Animals

Forty 7-week-old C57BL/6J male mice were purchased from Jackson Laboratory
(Stock number 000664). Upon arrival, mice were housed in a temperature-controlled
facility with an automatic 12-h light–dark cycle at the Animal Facility of the University of
Houston. The mice were allowed a week to acclimate to their new environment. All animal
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related experimental procedures, handling and surgeries were previously approved by
the Institutional Animal Care and Use Committee (IACUC) at the University of Houston
under protocol 16-044. Animal care and use conformed to the ARVO Statement for the Use
of Animals in Ophthalmic and Vision Research.

4.2. Alkali Burn Model

Alkali burn (AB) injuries were performed on mice as previously described [121,122].
Briefly, mice were anesthetized with a combination of ketamine (80 mg/kg; Vedco INC,
Catalog# 07-890-8598) and xylazine (10 mg/kg; Akorn INC, Catalog# 07-808-1947). Circular
3MM chromatography paper (Whatman, 1-mm diameter; Sigma-Aldrich Corp., St. Louis,
MO, USA) was immersed in freshly prepared 0.1 M sodium hydroxide solution (NaOH)
and placed on the central cornea of the right eye of an anesthetized mouse for 1 min and
20 s, after which the eye was exhaustively washed with sterile PBS in a dropwise manner
for 1 min. Thereafter, excess PBS was dried and a drop of antibiotic ointment Terramycin
(Zoetis, NADA # 8-763) was placed onto the injured eye and mice placed on a heating pad
for monitoring until they regained consciousness. Mice were culled either 5 or 14 days after
injury and corneas collected and either stored at −80 ◦C for mRNA or GAG extraction or
fixed in 4% paraformaldehyde for histological analysis. The left uninjured eye was used as
a control for each time point.

4.3. In Vivo Confocal Microscopy

Corneal haze, scarring and the presence of inflammatory cells within the cornea were
analyzed by in vivo confocal microscopy, as described previously, using a Heidelberg
Retinal Tomograph-HRTII Rostock Cornea Module (HRT-II, Heidelberg Engineering Inc.,
Heidelberg, Germany) [42,123]. For such, mice were anesthetized with a combination
of ketamine and xylazine, as described above, and placed in a mouse holder that was
designed by us at the college of Optometry, University of Houston. GenTeal gel (Novartis
Pharmaceuticals Corp.) was applied to both the eyeball and the tip of the HRT-II objective
as an immersion fluid. Subsequently, a series of 40 images were collected starting at
the outer epithelial layer through the whole stromal thickness and ending at the corneal
endothelium as a continuous z axis scan at 2-µm increments. Corneas of mice 5 and 14 days
after AB had an increase in corneal thickness as a consequence of edema, and, therefore,
required the collection of two sequential series through the cornea in order to encompass
the entire thickness. The lens of the HRT-II has a working distance of 77 µm. Images
were exported as a sequence of tiff files and analyzed using ImageJ (Fiji Is Just Image
J, an open-source platform for biological-image analysis). Five mice were analyzed per
experimental point and a representative profile presented in the figure.

4.4. RNA Extraction and Real-Time PCR Analysis

Injured corneas (AB) or uninjured corneas (Ctr) corneas were isolated from five
mice per time point, pooled and snap frozen on dry ice and stored in a −80 ◦C freezer.
Total RNA was isolated from these tissue samples using Trizol® Reagent (Invitrogen,
Carlsbad, CA, USA) followed by chloroform extraction (Sigma-Aldrich, Catalog#650498).
RNA concentration and purity were determined using a spectrophotometer at 260 and
280 nm. First strand cDNA was reverse transcribed using 1.5 to 2 µg of total RNA with the
high capacity cDNA Reverse Transcription kit (Applied Biosystems, catalog# 4368814, lot
00593854, Foster City, CA, USA) according to the manufacturer’s instructions. Quantitative
real-time PCR (qPCR) amplification was performed on 1 µL or 50 ng of cDNA (1:5) using
the PowerUp SYBR Green Master Mix kit (Applied Biosystems, Catalog# A25918) using
a CXF Connect Real-time System from BIO-RAD, with an activation cycle of 95 ◦C for
10 min, 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. A complete list of primers used in
this study is shown in Table 4. The specificity of amplified products was analyzed through
dissociation curves generated by the equipment yielding single peaks. Gene expression
levels were normalized against both Actb and Gapdh using both 2−∆Ct and 2−∆∆Ct methods.
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The expression profile of AB-injured corneas was analyzed against the expression profile
of uninjured control corneas for each time point.

Table 4. Primers used for real time PCR analysis.

Gene (Mus Musculus) Accession
Number Forward (5→3′) Reverse (5′→3′) Product

Length

Mimecan NM_008760.5 TTTGCAGACATGCCAAACCT AGCTTTGGAGGAAGAACTGGA 152

Keratocan NM_008438.3 TAGCTAACCTAACACCAGCCA GGTTGCCATTACAGCACCTTG 70

Lumican NM_008524.2 CCCACCCTGACAGAGTTCAC CAGCAAGTCCTCTGTGACCTTA 112

Byglican NM_007542.5 TGTCCCTCCCCAGGAACATT GTCCCAGAAACCCTTCTGCT 102

Decorin NM_001190451. AACTGTGCTATGGAGTAGAAGCA ATCTCATGTATTTTCACGACCTTTT 192

Versican NM_001081249.1 ACCTACCTTACCACCCAATTAC GTAGTGAAACACAACACCATCCA 316

Vcan-Transcript variant 1 NM_001081249.1 CCAAGTTCCACCCTGACATAAA CACTGCAAGGTTCCTCTTCTT 129

Vcan-Transcript variant 2 NM_019389.2 TGAGAACCAGACATGCTTCC TGAATCTATTGGATGACCACTTACA 103

Vcan-Transcript variant 3 NM_001134474.1 GGTGAGAACCCTGTATCGTTT GGTGGTTGCCTCTGATATATTCT 109

Vcan-Transcript variant 4 NM_001134475.1 CAGATTTGATGCCTACTGCTTTAAAC GATAACAGGTGCCTCCGTTGA 77

carbohydrate sulfotransferase 1 NM_018763.2 CCCCTAGCAGAAGAGAACCG GCTCCGAGAAGGACCTGGAG 116

carbohydrate sulfotransferase 2 NM_001356552.1 CCTCCCTTCAGGAGCTTCAAA CACACAGCAGTTACCTTCCC 126

4-galactosyltransferase,
polypeptide 4 NM_001285793.1 GGGCTGTGAGCCGGTGAT CGGGGATCTGATGGCAACTC 80

4-galactosyltransferase,
polypeptide 1 NM_022305.6 GGTGGCCATCATCATCCCAT GGTGTCTCCAGCCTGATTGA 130

Actb NM_007393.5 CACTGTCGAGTCGCGTCC TCATCCATGGCGAACTGGTG 89

Gapdh NM_001289726.1 AACAGCAACTCCCACTCTTC CCTGTTGCTGTAGCCGTATT 111

4.5. Glycosaminoglycan Extraction from Corneas

AB or Ctr corneas were obtained from seven mice per time point, pooled, snap frozen
on dry ice and stored in the−80 ◦C freezer. For GAG extraction, corneas were homogenized
using a repeated combination of low-intensity sonication and pronase/benzonase digestion.
After the corneas were completely homogenized, lipids were removed with acetone. The
samples were then suspended in 2 mL 0.1 M Tris-HCl, pH 8.0, containing 2 mM CaCl2 and
1% Triton X-100 and briefly sonicated (Branson). Thereafter, pronase was added to a final
concentration of 0.8 mg/mL, and samples incubated at 50 ◦C in a shaker for 24 h. Samples
were sonicated again, an additional 1.6 mg of pronase added and digestion continued for
a further 24 h. Finally, the enzyme was inactivated at 100 ◦C for 15 min. The buffer was
adjusted to 2 mM MgCl2, and benzonase (100 mU) was added for 2 h at 37 ◦C. The enzyme
was inactivated at 100 ◦C for 15 min and undigested material removed by centrifugation for
1 h at 4000× g. The supernatant was applied to a DEAE-Sepharose-micro column, washed
with ~10 column volumes of loading buffer (~pH 8 Tris Buffer, 0.1 M NaCl) and a GAG
fraction eluted in 2 M ammonium acetate. The acetate salt was removed via lyophilization
and GAGs reconstituted in DI water for analysis.

4.6. Characterization of GAGs by Analysis of Disaccharide Composition

The structural composition of CS/DS and HS/HEP was done via disaccharide charac-
terization with strong anion chromatography (SAX) using high-pressure liquid chromatog-
raphy (HPLC) at the Complex Carbohydrate Research Center (CCRC) at the University of
Georgia (Supplementary Figures S1 and S2). Given the limited amount of material obtained
from the mouse corneas, samples were subjected to a single instrumental run, as previ-
ously shown [124,125]. Briefly, SAX-HPLC analysis was carried out using a 4.6 × 250 mm
analytical column (Waters Spherisorb) with 5 µm particle size at 25 ◦C using an Agilent
system. Disaccharides were eluted with a gradient from 97% of 2.5 mM sodium phosphate,
pH 3.5 and 3% of 2.5 mM sodium phosphate, 1.2 M NaCl, pH 3.5 to 100% of 2.5 mM
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sodium phosphate, 1.2 M NaCl, pH 3.5 over a 55-min period at 1 mL/min. Disaccharides
were detected by post-column derivatization by combining the eluent at a 1:1 ratio with
0.25 M NaOH and 1% 2-cyanoacetamide pumped at a flow rate of 0.5 mL/min from a
binary HPLC pump. The mixture was heated to 120 ◦C in a 10-m reaction coil, cooled in
a 50-cm cooling coil and directed into a Shimadzu fluorescence detector (λex = 346 nm,
λem = 410). Elution profiles were compared to that of commercial standard disaccharides
(Dextra Laboratories).

4.7. Immunohistochemistry

Eyeballs were enucleated, fixed via immersion in 4% buffered paraformaldehyde, and
processed for paraffin embedding (3 corneas) or cryosectioning (3 corneas), as previously
described [126,127]. Four-micrometer sections were obtained using a Leica RM 2235
microtome (Leica, Buffalo Grove, IL, USA) or 10 µm sections were obtained using a
Leica CM 1950 (Leica, Buffalo Grove, IL, USA) cryostat and mounted on superfrost slides
(VWR, Catalog#48311-703). Upon use, the paraffin processed slides were heated at 65 ◦C
for 30 min, and, subsequently, sections were washed with citrisolv (Dicon Labs Inc.,
Cat# 1601, Gainesville, FL, USA) and rehydrated with subsequent washes of decreasing
concentrations of ethanol. Alternatively, sections were incubated for 30 min at 60 ◦C, and
excess tissue embedding medium removed with PBS. All sections were then treated with
0.1% glycine (Fisher Chemical, Catalog#G46-500) for one minute, and nonspecific protein
binding sites blocked with 5% FBS (Seradigm, Catalog#3100-500) prepared in PBS. Sections
were incubated with anti-CS (clones 1-B-5, 3B3 and 2-B-6), anti-versican (AF3054 that
recognizes the V0 isoform from R&D systems), anti-versican (ab177480, raised against a
synthetic peptide in the G3 domain, from Abcam), anti-aggrecan (AB1031 from Millipore
Sigma), anti-biglycan (clone BigN PR8A4), anti-KS (clones 5-D-4 and 1-B-4), anti-lumican
(clone 1F12B10), and hyaluronan binding protein (HABP-385911, Millipore). Sections were
washed in PBS and incubated with appropriate secondary antibodies conjugated with
Alexa Fluor® 488 (Life Technologies) or Alexa Fluor® 555 (Life Technologies, Carlsbad, CA,
USA), or NeutrAvidin®Alexa 555 (Life Technologies) in the case of HA, for 2 h at room
temperature. The tissues were then washed, permeabilized with 0.1M saponin in PBS and
f-actin stained with phalloidin conjugated with Alexa Fluor® 647 (A22284—ThermoFisher
Scientific, Waltham, MA, USA) and nuclei stained with 4′,6-diamidino-2-phenylindole
(DAPI, Sigma-Aldrich, St. Louis, MO, USA). Sections were mounted in Prolong®Gold
(Molecular Probes, Eugene, OR, USA) and imaged using a ZEISS LSM 800 Confocal
microscope with Airyscan. Images were analyzed using Zen Software (Zeiss). Secondary
controls were carried out with a goat IgG isotype control (ab37388; Abcam) in lieu of the
primary antibody and did not yield any significant staining (results not shown).

4.8. Statistical Analysis

All experiments were carried out with at least five mice per experimental point
and values are presented as means ± standard error of the mean. Image analysis and
quantification were performed masked to avoid bias. Differences were assessed by t-test
or ANOVA, followed by post hoc test for multiple comparisons considering p ≤ 0.05
as statistically significant. Statistical analysis was performed with the GraphPad Prism
version 5 software package (GraphPad Software, San Diego, CA, USA).
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.3390/ijms22115708/s1.

Author Contributions: Conceptualization, V.J.C.-T.; methodology, V.J.C.-T. and T.F.G.; formal analy-
sis, K.N.M., T.F.G. and V.J.C.-T.; investigation, K.N.M., M.S., G.E., I.Y.M., T.F.G. and V.J.C.-T.; resources,
C.H.; data curation, M.S., K.N.M. and V.J.C.-T.; manuscript preparation, V.J.C.-T. and K.N.M.; visual-
ization T.F.G. and V.J.C.-T.; supervision, V.J.C.-T.; project administration, V.J.C.-T.; funding acquisition,
V.J.C.-T. All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/ijms22115708/s1
https://www.mdpi.com/article/10.3390/ijms22115708/s1


Int. J. Mol. Sci. 2021, 22, 5708 20 of 25

Funding: Research reported in this publication was supported by the National Eye Institute of the
National Institutes of Health under Award Number R01EY029289 to V.J.C.-T. and the Core Grant
P30 EY07551, a grant from the Lions Foundation for Sight, a grant from The Mizutani Foundation
to V.J.C.-T., a SeFAC awarded to V.J.C.-T. and start-up funds from the University of Houston. The
content is solely the responsibility of the authors and does not necessarily represent the official views
of the National Institutes of Health, Lions Foundation for Sight or The Mizutani Foundation.

Institutional Review Board Statement: The study was previously approved by the IACUC of the
University of Houston under protocol 16-044.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary material.

Acknowledgments: The authors acknowledge the use of the Opuntia Cluster and the advanced
support from the Center of Advanced Computing and Data Science at the University of Houston.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AB Alkali burn
ECM Extracellular matrix
GAGs Glycosaminoglycans
PGs Proteoglycans
KS Keratan sulfate
CS Chondroitin sulfate
HS Heparan sulfate
KSPGs Keratan sulfate proteoglycans
CS/DSPGs Chondroitin sulfate and dermatan sulfate proteoglycans
HSPGs Heparan Sulphate proteglycans
HA Hyaluronan
HEP Heparin
TLR Toll-like receptor
SULF Sulfatase
D0A0 ∆UA-GlcNAc
D0S0 ∆UA-GlcNS
D2S0 ∆UA2S-GlcNS
D0A6 ∆UA-GlcNAc6S
D2S6 ∆UA2S-GlcNS6S
D0S6 ∆UA-GlcNS6S
D2A6 ∆UA2S-GlcNAc6S
D2A0 ∆UA2S-GlcNAc
D2a4 ∆UA2S-GalNAc4S
D0a4 ∆UA-GalNAc4S
D0a0 ∆UA-GalNAc
D0a6 ∆UA-GalNAc6S
D0A10 ∆UA-GalNAc4S6S
SAX Strong anion chromatography
HPLC High-pressure liquid chromatography
MIP-2 Macrophage inflammatory protein 2
NF-Kβ nuclear factor kappa B
TNF-α tumor necrosis factor a
Actb Beta-actin
Gapdh Glyceraldehyde-3-phosphate Dehydrogenase
Chst1 Carbohydrate sulfotransferase 1
Chst2 Carbohydrate sulfotransferase 2
B4galt1 Beta-1,4-galactosyltransferase 1
B4galt4 Beta-1,4-galactosyltransferase 4
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