
����������
�������

Citation: Zhao, J.; Zhou, M.; Wang,

Z.; Wu, L.; Hu, Z.; Liang, D. Ectopic

Expression of FVIII in HPCs and

MSCs Derived from hiPSCs with

Site-Specific Integration of ITGA2B

Promoter-Driven BDDF8 Gene in

Hemophilia A. Int. J. Mol. Sci. 2022,

23, 623. https://doi.org/10.3390/

ijms23020623

Academic Editor:

Aleksandra Klimczak

Received: 5 December 2021

Accepted: 4 January 2022

Published: 6 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Ectopic Expression of FVIII in HPCs and MSCs Derived from
hiPSCs with Site-Specific Integration of ITGA2B
Promoter-Driven BDDF8 Gene in Hemophilia A
Junya Zhao , Miaojin Zhou , Zujia Wang, Lingqian Wu, Zhiqing Hu * and Desheng Liang *

Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China;
zhaojunya@sklmg.edu.cn (J.Z.); zhoumiaojin@sklmg.edu.cn (M.Z.); wangzujia@sklmg.edu.cn (Z.W.);
wulingqian@sklmg.edu.cn (L.W.)
* Correspondence: huzhiqing@sklmg.edu.cn (Z.H.); liangdesheng@sklmg.edu.cn (D.L.)

Abstract: Hemophilia A (HA) is caused by mutations in the coagulation factor VIII (FVIII) gene
(F8). Gene therapy is a hopeful cure for HA; however, FVIII inhibitors formation hinders its clinical
application. Given that platelets promote coagulation via locally releasing α-granule, FVIII ectopically
expressed in platelets has been attempted, with promising results for HA treatment. The B-domain-
deleted F8 (BDDF8), driven by a truncated ITGA2B promoter, was targeted at the ribosomal DNA
(rDNA) locus of HA patient-specific induced pluripotent stem cells (HA-iPSCs). The F8-modified,
human induced pluripotent stem cells (2bF8-iPSCs) were differentiated into induced hematopoietic
progenitor cells (iHPCs), induced megakaryocytes (iMKs), and mesenchymal stem cells (iMSCs),
and the FVIII expression was detected. The ITGA2B promoter-driven BDDF8 was site-specifically
integrated into the rDNA locus of HA-iPSCs. The 2bF8-iPSCs were efficiently differentiated into
2bF8-iHPCs, 2bF8-iMKs, and 2bF8-iMSCs. FVIII was 10.31 ng/106 cells in lysates of 2bF8-iHPCs,
compared to 1.56 ng/106 cells in HA-iHPCs, and FVIII was 3.64 ng/106 cells in 2bF8-iMSCs lysates,
while 1.31 ng/106 cells in iMSCs with CMV-driven BDDF8. Our results demonstrated a high ex-
pression of FVIII in iHPCs and iMSCs derived from hiPSCs with site-specific integration of ITGA2B
promoter-driven BDDF8, indicating potential clinical prospects of this platelet-targeted strategy for
HA gene therapy.

Keywords: hemophilia A; platelet-targeted strategy; nonviral vector; rDNA locus; hematopoietic
progenitor cell; mesenchymal stem cell

1. Introduction

Hemophilia A (HA) is an X-linked recessive genetic disorder that affects approximately
1 in 5000 newborn boys. The clinical symptoms of HA patients are mainly spontaneous
joint and muscle bleeding, or traumatic bleeding, leading to disability; it can even be life-
threatening due to intracranial hemorrhage [1]. At present, there is no cure, and the main
clinical treatment is replacement therapy with intravenous injections of plasma-derived or
recombinant coagulation factor VIII (FVIII) protein. However, as the half-life of FVIII in the
plasma is only 12 h [2], patients require repeated infusions, which makes this treatment very
costly and brings a heavy economic and psychological burden to them and their families.
Currently, the novel EHL-factors and the non-factor therapies are reducing the burden
of the life-long treatment without impacting the long-term therapeutic solution of gene
therapy in hemophilia [3]. A major complication is the formation of FVIII inhibitor, which
affects approximately 25% to 30% of HA patients, decreasing its coagulation efficacy [4,5].

Gene therapy provides a promising option for HA [6]. As a slight increase in the
coagulation activity of plasma FVIII can significantly alleviate the clinical bleeding symp-
toms, HA has been considered as a suitable disease for gene therapy [7]. Currently, gene
therapy for hemophilia based on adeno-associated virus (AAV) vectors has been advanced
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to clinical trials [8,9]. However, there are still some challenges for the AAV-based gene
therapy. About 30–60% of the population have antibodies against different serotypes of
AAV capsids, and different serotypes have cross-immunity, which greatly limits its wide
application [10]. Moreover, it is worth noting that there is a risk of insertion mutation in
the use of viral elements. Recently, in the long-term follow-up study of HA gene therapy
based on AAV, the integration of AAV vectors near the genes that control cell growth in
HA model dog hepatocytes was found, which has a potential risk of inducing tumors [11].

To circumvent some concerns, reduce the potential risks, and provide a choice for
the HA patients that have antibodies against AAV capsids, an ex vivo gene therapy strat-
egy has been actively studied [12,13]. This strategy can select cells without off-target
mutations via whole-genome sequencing analysis and provide a reliable cell source, pos-
sessing higher safety. Induced pluripotent stem cells (iPSCs) have become ideal targets
for ex vivo gene therapy due to their unlimited proliferation ability and multidirectional
differentiation potential.

Immune response has always been a key problem in HA gene therapy. 25–30% of HA
patients produce FVIII inhibitory antibodies, resulting in ineffective therapy. The ectopic
expression of FVIII in platelets is an effective strategy that reduces the immune response
against FVIII [14,15]. Once blood vessels are damaged, platelets will immediately gather
at the damaged site and secrete FVIII to coagulate the damaged vessels. The genetically
modified FVIII function acts directly from platelets to the bleeding site without entering the
circulatory system, thus reducing the risk of producing FVIII inhibitors. Some studies have
used bone marrow-derived hematopoietic stem cells (HSCs) modified using lentivirus to
achieve the restoration of the FVIII function [16]. However, the HSCs isolation procedure
is traumatic for patients and there is an insertional risk for lentivirus. In recent decades,
there have been reports of hematopoietic progenitor cells (HPCs) generated from human
embryonic stem cells and human iPSCs (hiPSCs), and harvested megakaryocytes (MKs) and
platelets by further differentiation in vitro [17,18]. Further, some studies have shown that
lipogenic mesenchymal stem cells can differentiate into MKs in vitro [19]. Differentiation
of hiPSCs into HPCs and mesenchymal stem cells (MSCs) may be an efficient method to
generate an infinite source of genetically modified targeted cells with uniform quantity
and quality.

In this study, the truncated ITGA2B promoter-driven B-domain-deleted F8 (BDDF8)
named 2bF8 was targeted at the ribosomal DNA (rDNA) locus of HA patient-specific iPSCs
(HA-iPSCs), which were subsequently differentiated into HPCs and MSCs. The ectopically
expressed FVIII was validated in HPCs and MSCs. This strategy may provide an innovative
approach for platelet-targeted gene therapy for HA.

2. Results
2.1. Construction of Nonviral Targeting Vector minipHrn-2bF8

In this study, the donor plasmid minipHrn-2bF8 was constructed based on the plasmid
minipHrneo described previously. Between the 5′ long homologous arm (935 bp) and the
3′ short homologous arm (591 bp), the 889 bp megakaryocyte-specific promoter of ITGA2B
gene driving the BDDF8 and a promoterless neomycin resistance (Neo) cassette flanked
by locus of X (cross)-overinP1 (LoxP) sites were contained (Figure 1A). The Neo cassette
contained an encephalomyocarditis virus internal ribosomal entry site (EMCV-IRES), which
enabled Neo gene expression under the control of the endogenous RNA polymerase I
(Pol I) promoter after homologous recombination, so that the gene-targeted hiPSCs could
be enriched by this promoter trapping. The donor plasmid was identified via restriction
endonuclease digestion (Figure 1B) and Sanger sequencing (Figure 1C).
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Figure 1. Construction of nonviral targeting vector minipHrn-2bF8. (A) The structure of the
minipHrn-2bF8. (B) The plasmid minipHrn-2bF8 was identified by restriction endonuclease (BamH1
and Ahd1) digestion. Agarose gel electrophoresis showed expected bands of 7228 bp, 3039 bp, and
1957 bp (M, 1 KB DNA ladder). (C) Sequencing analysis of truncated ITGA2B promoter (green) and
BDDF8 (red), loxP (dark blue) and bGH poly(A) signal (gray), and short homologous arm (light blue).

2.2. Gene Targeting of F8 into the rDNA Locus of HA-iPSCs Using TALENickases

The donor vectors minipHrn-2bF8 and TALENickases were nucleofected into the
rDNA locus of HA-iPSCs (Figure 2A). After selection by G418 for 7 days, 18 clones were
picked up and expanded. PCR screening with primers F2/R2 and F3/R3 showed that
12 out of 18 clones (66.67%) were positive for the expected band of 1652 bp and 1279 bp
(Figure 2B). The PCR products were then verified by Sanger sequencing, which indicated
the junction between the exogenous 2bF8 cassette and the endogenous rDNA sequence
(Figure 2C). In addition, eight targeted clones were confirmed by Southern blotting using
a probe homologous to the Neo gene, showing the gene-targeting fragments of 4920 bp
(Figure 2D). We randomly selected one stable F8-modified hiPSCs (2bF8-iPSCs) for further
research. These results indicated the site-specific integration of 2bF8 cassette into the rDNA
locus. To analyze the off-target activity of TALENickases, gDNA of the HA-iPSCs and
2bF8-iPSCs were isolated and the top three potential off-target sites of TALENickases
(https://tale-nt.cac.cornell.edu/) (accessed on 1 June 2021) were amplified, followed by
Sanger sequencing, and no indels were observed compared to the HA-iPSCs (Figure S1).

Immunofluorescence showed that the 2bF8-iPSCs expressed the pluripotent markers
NANOG, OCT4, and SSEA4, but did not express SSEA1 (Figure 2E). The 2bF8-iPSCs was
karyotypically normal (Figure 2F).

https://tale-nt.cac.cornell.edu/
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Figure 2. Gene targeting and screen. (A) The schematic diagram of gene targeting into the human
rDNA locus. (B) Eighteen candidate targeted clones were picked and expanded, followed by genomic
DNA extraction and PCR. The site-specific integrated clones obtained a 1652 bp band and a 1279 bp
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band with primers F2/R2 and F3/R3 (M, DL2000 DNA ladder). (C) The PCR products of F2/R2
were sequenced. (The peaks in each color represent specific bases, G: black, A: green, C: blue, T: red.)
(D) Eight candidate integrated clones were randomly selected for Southern blot, and seven clones
showed a specific target band of 4.9 K (M, DIG-labeled Molecular WeightII). (E) Immunofluorescence
staining of 2bF8-iPSCs with NANOG, OCT4, SSEA1, and SSEA4, and 4′,6′-diamidino-2-phenylindole
(DAPI) was used for staining the nuclei. Scale bar: 200 µm. (F) Karyotype of 2bF8-iPSCs.

2.3. Verification of F8 Expression in F8-Modified hiPSCs

We designed specific primers based on the sequence crossing the exon 19-exon 23
of F8 to detect the transcription of exogenous F8 using RT-PCR. The results showed the
transcripts crossing the exon 19-exon 23 of F8 could be detected in 2bF8-iPSCs, but not in
HA-iPSCs, suggesting that the transcript of F8 exon 19-exon 23 in HA-iPSCs was nonex-
istent (Figure 3A). The qRT-PCR showed that the expression of integrated exogenous F8
in the 2bF8-iPSCs was 172 times higher than that of endogenous F8 in normal hiPSCs,
indicating that F8 mRNA could be effectively transcribed in 2bF8-iPSCs (Figure 3B). FVIII
antigen was detected by ELISA in the cell lysates of HA-iPSCs (1.82 ng/106 cells), 2bF8-
iPSCs (2.42 ng/106 cells), and hiPSCs (3.35 ng/106 cells), while not detectable in the cell
supernatant (Figure 3C).

Figure 3. Verification of F8 expression in F8-modified hiPSCs. (A) The mRNA of F8 genes from HA-
iPSCs, hiPSCs, and 2bF8-iPSCs were detected by RT-PCR. (B) Relative expression of F8 in HA-iPSCs,
hiPSCs, and 2bF8-iPSCs was detected by qRT-PCR. GAPDH was used as the internal reference. ND,
not detected. * p < 0.05. Bars represent the mean ± SEM (n = 3, each group). (C) ELISA detection
of the FVIII antigen in the supernatant and cell lysate of HA-iPSCs, hiPSCs, and 2bF8-iPSCs. Data
represent the mean ± SEM (n = 3, independent cultures).
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2.4. Generation and Characterization of Induced HPCs (iHPCs) and Induced MKs (iMKs)

We differentiated HA-iPSCs, 2bF8-iPSCs, and hiPSCs into HA-iHPCs, 2bF8-iHPCs,
and hiHPCs, respectively, during which the cells converted from adherent to suspension
(Figure 4A). After cell sorting with anti-CD34 beads, more than 90% of the iHPCs were
double-positive for CD34 and CD43 and 90% were CD34 positive and CD38 negative, while
only 47% of the unsorted iHPCs were double-positive for CD34 and CD43 and 45.5% were
CD34 positive and CD38 negative. These results revealed that purer iHPCs were obtained
via sorting. In addition, 1.1% of the sorted iHPCs showed as double-positive for CD34 and
CD41a, indicating that sorted iHPCs have the potential to differentiate into iMKs.

Sorted iHPCs continued to differentiate into iMKs. After 5 days’ culture, the percentage
of CD34 decreased and CD43 was negative, while the positive rate of CD41a increased to
2.1%, indicating that iMKs were obtained (Figure 4B).

2.5. Verification of F8 Expression in F8-Modified iHPCs

The qRT-PCR results showed that exogenous F8 could be effectively expressed in the
2bF8-iHPCs (Figure 4C), and the F8 expression of 2bF8-iHPCs was 218 times higher than
that in hiHPCs (Figure 4D). Similar to that of hiPSCs, FVIII antigen was detected by ELISA
in cell lysates, but not detected in the supernatants of iHPCs (Figure 4E). Therefore, it is
indicated that the 2bF8-iHPCs produced abundant FVIII protein (10.31 ng/106 cells) in cell
lysates at the iHPCs stage, being prepared for the enrichment of FVIII in platelets.

2.6. Generation and Characterization of Induced MSCs (iMSCs)

Considering the difficulty in proliferation of iHPCs in vitro, MSCs were used as an
alternative cell type to obtain sufficient cell sources. We differentiated 2bF8-iPSCs into
2bF8-iMSCs. HA-iMSCs, hiMSCs, and T-7-iMSCs (iMSCs derived from hiPSCs with Cy-
tomegalovirus promoter (CMV)-driven BDDF8) were obtained in our previous studies [20].
iMSCs derived from hiPSCs showed typical fibroblast-like morphology (Figure 5A). Multi-
lineage potential tests showed that HA-iMSCs, 2bF8-iMSCs, and hiMSCs have osteogenic,
chondrogenic, and adipocytic differentiation abilities (Figure 5B). All iMSC lines were posi-
tive for CD44, CD73, CD90, and CD105, and were negative for CD34, CD45, and HLA-DR
(Figure 5C), which was consistent with a previous report [21]. These results indicated that
the hiPSCs were efficiently differentiated into iMSCs.

2.7. Verification of FVIII Expression in F8-Modified iMSCs

The exogenous F8 expression was detected in the 2bF8-iMSCs via RT-PCR (Figure 5D).
The F8 mRNA of 2bF8-iMSCs was 13 times higher than that of hiMSCs, while the F8 mRNA
of T-7-iMSCs was 17 times higher than that of hiMSCs (Figure 5E), indicating that the
universal promoter (CMV) was stronger than the megakaryocyte-specific promoter at the
iMSCs stage. We evaluated the FVIII antigen in T-7-iMSCs and 2bF8-iMSCs by ELISA
(Figure 5F) and found that FVIII in the supernatant of T-7-iMSCs was 0.23 ng/106 cells
and 0.05 ng/106 cells in 2bF8-iMSCs, while it was opposite in the cell lysates of T-7-iMSCs
(1.31 ng/106 cells) and 2bF8-iMSCs (3.64 ng/106 cells), providing the potential of FVIII
stored in platelets derived from 2bF8-iMSCs.
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Figure 4. Generation and characterization of iHPCs and iMKs derived from hiPSCs and verification
of F8 expression in F8-modified iHPCs and iMKs. (A) Flow chart of the protocol for differentiation of
hiPSCs into iHPCs and dynamic change in cellular morphology during the differentiation (day 0, 3,
12). (B) Flow cytometry analysis of iHPCs and iMKs derived from hiPSCs. (C) F8 expression in HA-
iHPCs, hiHPCs, and 2bF8-iHPCs according to RT-PCR. (D) Relative expression of F8 in HA-iHPCs,
hiHPCs,
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and 2bF8-iHPCs was detected by qRT-PCR. GAPDH was used as the internal reference. ND, not
detected. ** p < 0.01. Bars represent the mean ± SEM (n = 3, each group). (E) FVIII antigen in the
supernatant and cell lysate of HA-iHPCs, hiHPCs, and 2bF8-iHPCs was examined by ELISA. Data
represent the mean ± SEM (n = 3, independent cultures).
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expression in F8-modified iMSCs. (A) Morphology of 2bF8-iMSCs differentiated from 2bF8-iPSCs.
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(B) Identification of osteogenic, chondrogenic, and adipogenic differential potential of 2bF8-iMSCs.
(C) Flow cytometry analysis of iMSCs. (D) F8 expression of HA-iMSCs, normal hiMSCs, and 2bF8-
iMSCs was detected by RT-PCR. (E) Relative expression of F8 in HA-iMSCs, hiMSCs, and 2bF8-iMSCs
was detected by qRT-PCR. GAPDH was used as the internal reference. ND, not detected; ** p < 0.01;
*** p < 0.001; ns, not significant. Bars represent the mean ± SEM (n = 3, each group). (F) The human
FVIII antigen in the supernatant and cell lysate of HA-iHPCs, hiHPCs, and 2bF8-iHPCs was examined
by ELISA. Data represent the mean ± SEM (n = 3, independent cultures).

3. Discussion

Immune response which results in the development of anti-FVIII or IX inhibitors with
ineffectiveness of the substitutive therapy is still a key problem in hemophilia therapy.
Heterotopic storage of FVIII in platelets is an ingenious method for HA gene therapy. This
strategy can not only avoid the inhibitory antibodies to FVIII in circulation, but also increase
the concentration of FVIII in the bleeding sites through platelet aggregation and achieve the
goal of maximizing the therapeutic effect with low-level FVIII. Du et al. used a lentiviral
vector encoding the ITGA2B gene promoter-driven BDDF8 to transfect the isolated HSCs,
then the cells were transplanted into a dog model and the platelet-specific human FVIII
was detected, stored, and released from activated platelets [22]. In the present study, the
truncated megakaryocyte-specific promoter was used to drive the expression of BDDF8 that
was targeted at the rDNA locus of HA-iPSCs. We detected the specificity of the promoter
and found that the endogenous ITGA2B gene could be generally transcribed in hiPSCs and
iHPCs, decreasingly transcribed in iMSCs, and not transcribed in T-lymphocyte (Figure S2),
which was consistent with the results of the expression of BDDF8 driven by this truncated
promoter in corresponding cells and in the previous report.

The hiPSCs have been widely used as the target cells of gene editing due to their
unlimited proliferation and multi-differentiation potential ability [23,24]. Gene editing
in hiPSCs has been proven to be easily and effectively operated [25]. The hematopoietic
capabilities of HPCs derived from gene-edited hiPSCs provides new opportunities for cell
sources of hematopoietic transplantation, which is one of the most common cell transplan-
tation approaches [26,27]. In this study, we differentiated 2bF8 gene-modified hiPSCs into
iHPCs in vitro and detected FVIII expression. However, the number of iHPCs obtained
by in vitro differentiation is limited, and it is still difficult to conduct in vivo experiments.
Further studies need to be performed to improve the efficiency of differentiation of hiPSCs
to HPCs and overcome the obstacles to clinical application.

In addition to aiming at obtaining platelets through HPCs differentiation, we tried to
explore some alternative approaches [28,29]. Megakaryocytogenesis and platelet formation
are the result of the interaction between HPCs, humoral factors, and bone marrow MSCs
in a physiological environment. Human adipose-derived mesenchymal stromal/stem
cells (ASCs) can differentiate into megakaryocyte lineages without gene modification and,
besides that, ASCs secrete endogenous thrombopoietin to promote platelet production [19].
Since ASCs are composed of heterogenous cells, studies have established ASCs lines
that extend to obtain a more homogenous population [30]. For HA patients, isolation of
autologous ASCs is invasive. In the present study, we generated and gene-modified hiPSCs
from the urine cells that were collected from HA patients non-invasively as the source for
iMSCs expressing FVIII. These iMSCs could be continuously produced due to the infinite
proliferation capacity of hiPSCs. For avoiding cell heterogeneity, iMSCs derived from
hiPSCs are consistent in quantity and quality. A comparative study on the proliferation and
differentiation abilities between iMSCs and autologous tissue-derived MSCs showed that
iMSCs have better potential in adipogenic differentiation experiments in vitro [31]. Given
the above, it is feasible to generate megakaryocytes from hiPSCs-derived iMSCs.

In summary, a megakaryocyte-specific promoter-driven BDDF8 was efficiently tar-
geted into the multi-copy rDNA locus of HA-iPSCs using a non-viral vector and TALENick-
ases without potential off-target effects. The exogenous FVIII was stably expressed in iHPCs
and iMSCs derived from F8-modified hiPSCs. These results provide a proof of concept for
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an efficient approach for the site-specific gene addition in hiPSCs for platelet-targeted HA
gene therapy.

4. Materials and Methods
4.1. Cell Culture

The normal hiPSCs (DYR0100) were purchased from ATCC. HA-iPSCs [32] and T-7-
iPSCs [33] were generated previously. Briefly, HA-iPSCs were reprogrammed by urine
cells from a severe HA patient with F8 intron 22 inversion. T-7-iPSCs were obtained by
site-specific integration of CMV-driven BDDF8 at the rDNA locus in HA-iPSCs. All hiPSCs
were routinely cultured (37 ◦C, 5% CO2) on Matrigel- (BD Biosciences, Franklin Lakes,
NJ, USA) coated 12-well plates (Corning, New York, NY, USA) in mTesR Plus medium
(StemCell Technologies, Vancouver, BC, Canada).

The iMSCs were routinely cultured (37 ◦C, 5% CO2) on 0.1% gelatin (StemCell Tech-
nologies, Vancouver, BC, Canada) coated 10-cm dishes (Corning, New York, NY, USA) in
αMEM basal medium (Thermo Fisher Scientific, Waltham, MA, USA) containing 10% FBS
(Gibco, New York, NY, USA), 2 mM GlutaMAXTM (Gibco, New York, NY, USA), and 0.1%
bFGF (Gibco, New York, NY, USA).

4.2. Plasmids and Gene Targeting

In our previous study, we constructed the non-viral human rDNA targeting vector,
minipHrneo [34,35]. In this study, we used two Phanta Max Master Mixes (Vazyme, Nan-
jing, China) and amplified the 889 bp promoter region upstream of ITGA2B gene from hu-
man genomic DNA (gDNA) with the following pairs of primers: F1: 5′-GGATCCGTGCTCA-
ATGCTGTGCCTACGTG-3′/R1: 5′-GCTAGCTAGACATATGGGGCCAGCTCCTCCTCCTT-
3′. We then inserted them into the targeting vector minipHrneo after digestion by NheI
endonuclease (New England BioLabs, Hitchin, England) and BamH1 endonuclease (New
England BioLabs, Hitchin, England). Then the BDDF8 open reading frame was amplified
from pHrnF8 vector [36] and inserted into the NheI restriction site of the targeting vector
containing the 889 bp ITGA2B promoter by ClonExpress II One Step Cloning Kit (Vazyme,
Nanjing, China) to generate the donor vector minipHrn-2bF8.

The HA-iPSCs were nucleofected with the Human Stem Cell Nucleofector® Kit 2
(LONZA, Walkersville, MD, USA) according to the manufacturer’s instructions. Briefly,
the hiPSCs were dissociated into single cells with TrypLE™ Express (Thermo Fisher Sci-
entific, Waltham, MA, USA) and counted. For 1 × 106 cells, 3 µg of each TALENickases
plasmid [21] and 5 µg of donor vector minipHrn-2bF8 were used, and then the transfected
cells were seeded on Matrigel-coated six-well plates in mTesR Plus medium with 10 µM of
Y27632. Two days later, G418 (Sigma-Aldrich, St. Louis, MO, USA) was used for selection
at the final concentration of 50 µg/mL. Then the cells were detached with TrypLE™ Ex-
press and 1000 cells were seeded on Matrigel-coated 6-cm dishes, and cultured in mTesR
Plus medium with ClonR (STEMCELL Technologies, Vancouver, BC, Canada). After 9
to 11 days, clones were picked, expanded, and screened by PCR with the screen primers:
F2: 5′-CCTGAGAAACGGCTACCACA-3′/R2: 5′-GAACTGCTTCCTTCACGACAT-3′ and
F3: 5′-GGCAAGGAGATTGGGGATAA-3′/R3: 5′-CCAGACGAGACAGCAAACGG-3′. To
analyze the off-target activity of TALENickases, targeted clones were detected via PCR, fol-
lowed by Sanger sequencing. (OTS1F: 5′-GGGGCTGATGGGTTCCTAAAG-3′/OTS1R: 5′-
CAGAAGAGTGCAAATGGTGAAGAAACACG-3′, OTS2F: 5′-CCCGGCCTTCCCCTAAT-
TTC-3′/OTS2R: 5′-ATGTGGGTGGAGACGGAGCA-3′, and OTS3F: 5′-GAAGGGAGTCAC-
TTCCATCTCTCA-3′/OTS3R: 5′-GTGGCTCTGAAATGCAGTGGC-3′).

4.3. RT-PCR and qRT-PCR

Total RNA was extracted using TRIzol reagent (Sigma-Aldrich, St. Louis, MO, USA)
and RNA was treated with gDNA wiper mix (Vazyme, Nanjing, China) to eliminate
genomic DNA. Then, RNA samples were reverse transcribed using Hiscrip R II Q RT
Supermix (Vazyme, Nanjing, China). Primers based on exon 19 and exon 23 (F4: 5′-
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TCAACTCCATGCGAAGAGTG-3′/R4: 5′-GCTGGGATGAGCACACTTTT-3′) were used
to detect the transcript of the F8 gene. The glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) gene was used as an endogenous control.

4.4. Southern Blotting

The gDNA was extracted and digested with XhoI endonuclease (New England Biolabs,
Hitchin, England) at 37 ◦C overnight and 10 µg of each digested sample was loaded on
1% agarose gel, followed by electrophoresis at 150 V for 2 h. The samples were then
transferred to nylon membranes and the DIG-labeled Molecular WeightII (Roche, Basel,
Switzerland) was used as a DNA marker. Then the membranes were hybridized with
DIG Easy Hyb Granules (Roche, Basel, Switzerland) at 42 ◦C overnight, washed, and
detected with CDP-Star. The probes were labeled by DIG Probe Synthesis Kit with F5:
5′-GCCGAGAAAGTATCCATCA-3′/R5: 5′-CAGAGTCCCGCTCAGAAG-3′. All reagents
and materials were purchased from Roche.

4.5. Karyotyping

The hiPSCs were treated with 0.08 µg/mL colcemid (Sigma-Aldrich, St. Louis, MO,
USA) for 2.5 h. Then the cells were trypsinized to single cells and incubated in 0.075 M
KCl for 30 min at 37 ◦C. After fixing with Carnoy’s fixative (methanol: acetic acid = 3:1,
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), metaphase chromosome spreads
were prepared using air drying.

4.6. Immunofluorescence Staining

Cells plated on chamber slides were rinsed by DPBS (Thermo Fisher Scientific, Waltham,
MA, USA), then fixed with 4% paraformaldehyde for 15 min, followed by permeabilization
with PBST (DPBS containing 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA)) for
15 min. After washing with DPBS, cells were blocked in 5% BSA (R&D Systems, MN, USA)
for 30 min, then incubated with the diluted primary antibodies (BD Biosciences, Franklin
Lakes, NJ, USA) in 5% BSA at 4 ◦C overnight. After a thorough washing, the cells were
blocked with 5% BSA for 30 min again and then incubated with the secondary antibodies
for 1 h at room temperature in the dark. Nuclei were stained with DAPI (Sigma-Aldrich, St.
Louis, MO, USA) for 5 min. Confocal (Leica, Wetzlar, Germany) photography was used to
analyze the stained cells.

4.7. Differentiation of hiPSCs into iHPCs and iMKs

The hiPSCs, HA-iPSCs, and 2bF8-iPSCs were differentiated into hiHPCs, HA-iHPCs,
and 2bF8-iHPCs using a STEMdiffTM hematopoietic kit (STEMCELL Technologies, Van-
couver, BC, Canada) according to the manufacturer’s instructions. Briefly, cells were
dissociated to aggregates by 0.5 mM EDTA (Thermo Fisher Scientific, Waltham, MA, USA)
and plated 40–80 aggregates/well on Matrigel-coated six-well plates in mTesR Plus. The
cells were cultured in differentiation A medium on the second day, then the medium was
half-refreshed. On day 3, the cells were cultured with differentiation B medium and then
the medium was half-refreshed every other day, and cells were gradually suspended. The
iHPCs were harvested after being cultured in differentiation B medium for 7 days.

The differentiated cells were sorted using the Direct CD34 Progenitor Cell Isolation Kit
(Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s instructions.

The sorted CD34 positive iHPCs were cultured in StemSpan™ Serum-Free Expansion
Medium (STEMCELL Technologies, Vancouver, BC, Canada) contained with StemSpan™
Megakaryocyte Expansion Supplement (STEMCELL Technologies, Vancouver, BC, Canada)
to differentiate into megakaryocyte on low-attachment surface plates (Corning).

4.8. Characterization of iHPCs and iMKs

The iHPCs were dissociated into single cells with TrypLE™ Express and counted, and
5 × 104 cells were suspended in 100 µL DPBS with 5% BSA. Then the cells were incubated
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with BV421-conjugated anti-human CD34, FITC-conjugated CD38, BV510-conjugated CD43,
and APC-conjugated CD41a (BD Biosciences, Franklin Lakes, NJ, USA) at 4 ◦C for 30 min
in the dark. The stained cells were washed twice using DPBS and characterized by flow
cytometry. The iMKs were incubated with BV421-conjugated anti-human CD34, BV510-
conjugated CD43, and APC-conjugated CD41a (BD Biosciences, Franklin Lakes, NJ, USA)
at 4 ◦C for 30 min in the dark and analyzed by flow cytometry.

4.9. Differentiation of hiPSCs into iMSCs

A STEMdiffTM mesenchymal progenitor kit (STEMCELL Technologies, Vancouver,
BC, Canada) was used to differentiate hiPSCs into iMSCs. According to the manufacturer’s
protocol, hiPSCs were seeded on a Matrigel-coated 12-well plate at 5 × 104 cells/cm2

in mTesR Plus containing 10 µM Y27632. After 2 days, the medium was refreshed with
STEMdiffTM-ACF mesenchymal induction medium (STEMCELL Technologies, Vancouver,
BC, Canada) for 4 days. Then the cells were cultured in STEMdiffTM-ACF medium for
an additional 2 days and passaged on a six-well plate precoated with STEMdiffTM-ACF
attachment substrate (STEMCELL Technologies, Vancouver, BC, Canada). The cells were
passaged every 3 days. After three passages, the cells were seeded onto a 0.1% gelatin-
coated 10-cm dish in αMEM basal medium containing 10% FBS, 2 mM GlutaMAXTM, and
0.1% bFGF. The medium was changed every day.

4.10. Characterization and Identification of Differentiation Potential of iMSCs

The iMSCs were dissociated into single cells with TrypLE™ Express and counted, and
5 × 104 cells were suspended in 100 µL DPBS with 5% BSA. Then cells were incubated with
BB515-conjugated CD44, Precp-Cy5.5-conjugated CD73, PE-Cy7-conjugated anti-human
CD90, APC-conjugated CD105, BV421-conjugated anti-human CD34, CD45, and HLA-DR
(BD Biosciences, Franklin Lakes, NJ, USA) at 4 ◦C for 30 min in the dark. The stained cells
were washed twice in DPBS and characterized by flow cytometry (BD Biosciences, Franklin
Lakes, NJ, USA).

The differentiation potential of iMSCs was identified via osteogenesis (Gibco, New
York, NY, USA), adipogenesis (STEMCELL Technologies, Vancouver, BC, Canada), and
chondrogenesis (STEMCELL Technologies, Vancouver, BC, Canada) differentiation kits,
according to the manufacturer’s instructions. After being cultured with differentiation
medium for 2 to 3 weeks, cells were stained with alizarin red, oil red O, or alcian blue dye
(Cyagen Biosciences Inc., Guangzhou, China)) for 30 min separately, then the stained cells
were analyzed using a light microscope.

4.11. FVIII Assay

The hiPSCs and iMSCs culture supernatants were harvested 24 h after the medium
was changed. The cells were isolated by TrypLETM Express, counted, and re-suspended in
a 600 µL sample dilution (Cedarlane, Burlington, ON, Canada). The iHPCs culture super-
natants and cells were harvested by centrifugation 24 h after the medium was changed. The
cells were counted and re-suspended in a 600 µL sample dilution (Cedarlane, Burlington,
ON, Canada). The cells were lysed by three freeze–thaw cycles and the supernatant was
collected by centrifugation. ELISA was performed using paired antibodies for ELISA-factor
VIII:C (Cedarlane, Burlington, ON, Canada) according to the manufacturer’s instructions.

4.12. Statistical Analysis

GraphPad Prism 5.0 was used for data analysis. Data were analyzed using ANOVA
for more than two groups. All values are presented as the mean ± SEM.

5. Conclusions

The BDDF8 gene driven by a megakaryocyte-specific promoter was efficiently targeted
into the rDNA locus of HA-iPSCs and stable expression of exogenous FVIII in F8-modified
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iHPCs and iMSCs was verified. This innovative strategy based on platelets derived from
gene-modified hiPSCs can provide a promising alternative for HA gene therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23020623/s1.

Author Contributions: Conceptualization, D.L., L.W., and Z.H.; methodology, M.Z. and J.Z.; valida-
tion, J.Z.; resources, J.Z.; data curation, J.Z.; writing—original draft preparation, J.Z.; writing—review
and editing, D.L. and Z.H.; visualization, J.Z. and Z.W.; funding acquisition, D.L., L.W., and Z.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (81770200,
82101957), the China Postdoctoral Science Foundation (2020TQ0362), the National Key Research and
Development Program of China (2016YFC0905102), and the Natural Science Foundation of Hunan
Province (grant number 2021JJ40806).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of School of Life Sciences,
Central South University, Changsha, China (No. 2019-1-15, Date: 11 March 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data supporting the reported result in this study can be found in
the Supplementary Materials.

Acknowledgments: We would like to thank the people who participated in this study.

Conflicts of Interest: The authors declare no conflict of interest. The sponsors had no role in the
design, execution, interpretation, or writing of the study.

References
1. Fomin, M.E.; Togarrati, P.P.; Muench, M.O. Progress and challenges in the development of a cell-based therapy for hemophilia A.

J. Thromb. Haemost. 2014, 12, 1954–1965. [CrossRef] [PubMed]
2. Gouw, S.C.; van der Bom, J.G.; Ljung, R.; Escuriola, C.; Cid, A.R.; Claeyssens-Donadel, S.; van Geet, C.; Kenet, G.; Makipernaa, A.;

Molinari, A.C.; et al. Factor VIII products and inhibitor development in severe hemophilia A. N. Engl. J. Med. 2013, 368, 231–239.
[CrossRef]

3. Peyvandi, F.; Kenet, G.; Pekrul, I.; Pruthi, R.K.; Ramge, P.; Spannagl, M. Laboratory testing in hemophilia: Impact of factor and
non-factor replacement therapy on coagulation assays. J. Thromb. Haemost. 2020, 18, 1242–1255. [CrossRef] [PubMed]

4. White, G.C., 2nd; Kempton, C.L.; Grimsley, A.; Nielsen, B.; Roberts, H.R. Cellular immune responses in hemophilia: Why do
inhibitors develop in some, but not all hemophiliacs? J. Thromb. Haemost. 2005, 3, 1676–1681. [CrossRef]

5. Perrin, G.Q.; Herzog, R.W.; Markusic, D.M. Update on clinical gene therapy for hemophilia. Blood 2019, 133, 407–414. [CrossRef]
[PubMed]

6. Croteau, S.E.; Wang, M.; Wheeler, A.P. 2021 clinical trials update: Innovations in hemophilia therapy. Am. J. Hematol. 2021, 96,
128–144. [CrossRef] [PubMed]

7. Gan, S.U.; Calne, R.Y. Gene therapy for hemophilia A. Discov. Med. 2006, 6, 198–202.
8. Chuah, M.K.; Evens, H.; VandenDriessche, T. Gene therapy for hemophilia. J. Thromb. Haemost. 2013, 11, 99–110. [CrossRef]
9. Leebeek, F.W.G.; Miesbach, W. Gene therapy for hemophilia: A review on clinical benefit, limitations, and remaining issues. Blood

2021, 138, 923–931. [CrossRef]
10. Verdera, H.C.; Kuranda, K.; Mingozzi, F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer.

Mol. Ther. 2020, 28, 723–746. [CrossRef]
11. Nguyen, G.N.; Everett, J.K.; Kafle, S.; Roche, A.M.; Raymond, H.E.; Leiby, J.; Wood, C.; Assenmacher, C.A.; Merricks, E.P.; Long,

C.T.; et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver
cells. Nat. Biotechnol. 2021, 39, 47–55. [CrossRef] [PubMed]

12. Cicalese, M.P.; Ferrua, F.; Castagnaro, L.; Pajno, R.; Barzaghi, F.; Giannelli, S.; Dionisio, F.; Brigida, I.; Bonopane, M.;
Casiraghi, M.; et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine
deaminase deficiency. Blood 2016, 128, 45–54. [CrossRef] [PubMed]

13. Gao, K.; Kumar, P.; Cortez-Toledo, E.; Hao, D.; Reynaga, L.; Rose, M.; Wang, C.; Farmer, D.; Nolta, J.; Zhou, J.; et al. Potential
long-term treatment of hemophilia A by neonatal co-transplantation of cord blood-derived endothelial colony-forming cells and
placental mesenchymal stromal cells. Stem. Cell Res. Ther. 2019, 10, 34. [CrossRef]

14. Wilcox, D.A.; Shi, Q.; Nurden, P.; Haberichter, S.L.; Rosenberg, J.B.; Johnson, B.D.; Nurden, A.T.; White, G.C., 2nd; Montgomery,
R.R. Induction of megakaryocytes to synthesize and store a releasable pool of human factor VIII. J. Thromb. Haemost. 2003, 1,
2477–2489. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms23020623/s1
https://www.mdpi.com/article/10.3390/ijms23020623/s1
http://doi.org/10.1111/jth.12750
http://www.ncbi.nlm.nih.gov/pubmed/25297648
http://doi.org/10.1056/NEJMoa1208024
http://doi.org/10.1111/jth.14784
http://www.ncbi.nlm.nih.gov/pubmed/32115865
http://doi.org/10.1111/j.1538-7836.2005.01375.x
http://doi.org/10.1182/blood-2018-07-820720
http://www.ncbi.nlm.nih.gov/pubmed/30559260
http://doi.org/10.1002/ajh.26018
http://www.ncbi.nlm.nih.gov/pubmed/33064330
http://doi.org/10.1111/jth.12215
http://doi.org/10.1182/blood.2019003777
http://doi.org/10.1016/j.ymthe.2019.12.010
http://doi.org/10.1038/s41587-020-0741-7
http://www.ncbi.nlm.nih.gov/pubmed/33199875
http://doi.org/10.1182/blood-2016-01-688226
http://www.ncbi.nlm.nih.gov/pubmed/27129325
http://doi.org/10.1186/s13287-019-1138-8
http://doi.org/10.1111/j.1538-7836.2003.00534.x
http://www.ncbi.nlm.nih.gov/pubmed/14675082


Int. J. Mol. Sci. 2022, 23, 623 14 of 14

15. Yarovoi, H.V.; Kufrin, D.; Eslin, D.E.; Thornton, M.A.; Haberichter, S.L.; Shi, Q.; Zhu, H.; Camire, R.; Fakharzadeh, S.S.; Kowalska,
M.A.; et al. Factor VIII ectopically expressed in platelets: Efficacy in hemophilia A treatment. Blood 2003, 102, 4006–4013.
[CrossRef]

16. Shi, Q.; Wilcox, D.A.; Fahs, S.A.; Fang, J.; Johnson, B.D.; Du, L.M.; Desai, D.; Montgomery, R.R. Lentivirus-mediated platelet-
derived factor VIII gene therapy in murine haemophilia A. J. Thromb. Haemost. 2007, 5, 352–361. [CrossRef]

17. Takayama, N.; Nishikii, H.; Usui, J.; Tsukui, H.; Sawaguchi, A.; Hiroyama, T.; Eto, K.; Nakauchi, H. Generation of functional
platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic
progenitors. Blood 2008, 111, 5298–5306. [CrossRef]

18. Takayama, N.; Eto, K. In vitro generation of megakaryocytes and platelets from human embryonic stem cells and induced
pluripotent stem cells. Methods Mol. Biol. 2012, 788, 205–217. [CrossRef]

19. Ono-Uruga, Y.; Tozawa, K.; Horiuchi, T.; Murata, M.; Okamoto, S.; Ikeda, Y.; Suda, T.; Matsubara, Y. Human adipose tissue-
derived stromal cells can differentiate into megakaryocytes and platelets by secreting endogenous thrombopoietin. J. Thromb.
Haemost. 2016, 14, 1285–1297. [CrossRef]

20. Qiu, L.; Xie, M.; Zhou, M.; Liu, X.; Hu, Z.; Wu, L. Restoration of FVIII Function and Phenotypic Rescue in Hemophilia A Mice by
Transplantation of MSCs Derived From F8-Modified iPSCs. Front. Cell Dev. Biol. 2021, 9, 630353. [CrossRef] [PubMed]

21. Xu, M.; Shaw, G.; Murphy, M.; Barry, F. Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and
Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells. Stem. Cells 2019, 37, 754–765. [CrossRef]

22. Du, L.M.; Nurden, P.; Nurden, A.T.; Nichols, T.C.; Bellinger, D.A.; Jensen, E.S.; Haberichter, S.L.; Merricks, E.; Raymer, R.A.; Fang,
J.; et al. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nat. Commun.
2013, 4, 2773. [CrossRef]

23. Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from
adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [CrossRef]

24. Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart,
R.; et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318, 1917–1920. [CrossRef]

25. Shi, Y.; Inoue, H.; Wu, J.C.; Yamanaka, S. Induced pluripotent stem cell technology: A decade of progress. Nat. Rev. Drug Discov.
2017, 16, 115–130. [CrossRef] [PubMed]

26. Simpson, E.; Dazzi, F. Bone Marrow Transplantation 1957-2019. Front. Immunol. 2019, 10, 1246. [CrossRef] [PubMed]
27. Chen, T.; Wang, F.; Wu, M.; Wang, Z.Z. Development of hematopoietic stem and progenitor cells from human pluripotent stem

cells. J. Cell Biochem. 2015, 116, 1179–1189. [CrossRef] [PubMed]
28. Yang, J.; Luan, J.; Shen, Y.; Chen, B. Developments in the production of platelets from stem cells (Review). Mol. Med. Rep. 2021, 23,

1. [CrossRef]
29. Liu, H.; Liu, J.; Wang, L.; Zhu, F. In vitro Generation of Megakaryocytes and Platelets. Front. Cell Dev. Biol. 2021, 9, 713434.

[CrossRef] [PubMed]
30. Ono-Uruga, Y.; Ikeda, Y.; Matsubara, Y. Platelet production using adipose-derived mesenchymal stem cells: Mechanistic studies

and clinical application. J. Thromb. Haemost. 2021, 19, 342–350. [CrossRef]
31. Hollmann, J.; Brecht, J.; Goetzke, R.; Franzen, J.; Selich, A.; Schmidt, M.; Eipel, M.; Ostrowska, A.; Hapala, J.; Fernandez-Rebollo,

E.; et al. Genetic barcoding reveals clonal dominance in iPSC-derived mesenchymal stromal cells. Stem. Cell Res. Ther. 2020, 11,
105. [CrossRef]

32. Wu, Y.; Hu, Z.; Li, Z.; Pang, J.; Feng, M.; Hu, X.; Wang, X.; Lin-Peng, S.; Liu, B.; Chen, F.; et al. In situ genetic correction of F8
intron 22 inversion in hemophilia A patient-specific iPSCs. Sci. Rep. 2016, 6, 18865. [CrossRef]

33. Pang, J.; Wu, Y.; Li, Z.; Hu, Z.; Wang, X.; Hu, X.; Wang, X.; Liu, X.; Zhou, M.; Liu, B.; et al. Targeting of the human F8 at the
multicopy rDNA locus in Hemophilia A patient-derived iPSCs using TALENickases. Biochem. Biophys. Res. Commun. 2016, 472,
144–149. [CrossRef] [PubMed]

34. Liu, B.; Chen, F.; Wu, Y.; Wang, X.; Feng, M.; Li, Z.; Zhou, M.; Wang, Y.; Wu, L.; Liu, X.; et al. Enhanced tumor growth inhibition
by mesenchymal stem cells derived from iPSCs with targeted integration of interleukin24 into rDNA loci. Oncotarget 2017, 8,
40791–40803. [CrossRef] [PubMed]

35. Wu, Y.; Gao, T.; Wang, X.; Hu, Y.; Hu, X.; Hu, Z.; Pang, J.; Li, Z.; Xue, J.; Feng, M.; et al. TALE nickase mediates high efficient
targeted transgene integration at the human multi-copy ribosomal DNA locus. Biochem. Biophys. Res. Commun. 2014, 446, 261–266.
[CrossRef] [PubMed]

36. Liu, X.; Liu, M.; Xue, Z.; Pan, Q.; Wu, L.; Long, Z.; Xia, K.; Liang, D.; Xia, J. Non-viral ex vivo transduction of human hepatocyte
cells to express factor VIII using a human ribosomal DNA-targeting vector. J. Thromb. Haemost. 2007, 5, 347–351. [CrossRef]
[PubMed]

http://doi.org/10.1182/blood-2003-05-1519
http://doi.org/10.1111/j.1538-7836.2007.02346.x
http://doi.org/10.1182/blood-2007-10-117622
http://doi.org/10.1007/978-1-61779-307-3_15
http://doi.org/10.1111/jth.13313
http://doi.org/10.3389/fcell.2021.630353
http://www.ncbi.nlm.nih.gov/pubmed/33644070
http://doi.org/10.1002/stem.2993
http://doi.org/10.1038/ncomms3773
http://doi.org/10.1016/j.cell.2007.11.019
http://doi.org/10.1126/science.1151526
http://doi.org/10.1038/nrd.2016.245
http://www.ncbi.nlm.nih.gov/pubmed/27980341
http://doi.org/10.3389/fimmu.2019.01246
http://www.ncbi.nlm.nih.gov/pubmed/31231381
http://doi.org/10.1002/jcb.25097
http://www.ncbi.nlm.nih.gov/pubmed/25740540
http://doi.org/10.3892/mmr.2020.11645
http://doi.org/10.3389/fcell.2021.713434
http://www.ncbi.nlm.nih.gov/pubmed/34458269
http://doi.org/10.1111/jth.15181
http://doi.org/10.1186/s13287-020-01619-5
http://doi.org/10.1038/srep18865
http://doi.org/10.1016/j.bbrc.2016.02.083
http://www.ncbi.nlm.nih.gov/pubmed/26921444
http://doi.org/10.18632/oncotarget.16584
http://www.ncbi.nlm.nih.gov/pubmed/28388559
http://doi.org/10.1016/j.bbrc.2014.02.099
http://www.ncbi.nlm.nih.gov/pubmed/24589733
http://doi.org/10.1111/j.1538-7836.2007.02355.x
http://www.ncbi.nlm.nih.gov/pubmed/17155951

	Introduction 
	Results 
	Construction of Nonviral Targeting Vector minipHrn-2bF8 
	Gene Targeting of F8 into the rDNA Locus of HA-iPSCs Using TALENickases 
	Verification of F8 Expression in F8-Modified hiPSCs 
	Generation and Characterization of Induced HPCs (iHPCs) and Induced MKs (iMKs) 
	Verification of F8 Expression in F8-Modified iHPCs 
	Generation and Characterization of Induced MSCs (iMSCs) 
	Verification of FVIII Expression in F8-Modified iMSCs 

	Discussion 
	Materials and Methods 
	Cell Culture 
	Plasmids and Gene Targeting 
	RT-PCR and qRT-PCR 
	Southern Blotting 
	Karyotyping 
	Immunofluorescence Staining 
	Differentiation of hiPSCs into iHPCs and iMKs 
	Characterization of iHPCs and iMKs 
	Differentiation of hiPSCs into iMSCs 
	Characterization and Identification of Differentiation Potential of iMSCs 
	FVIII Assay 
	Statistical Analysis 

	Conclusions 
	References

