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Phonon properties of graphene 
derived from molecular dynamics 
simulations
Emmanuel N. Koukaras1, George Kalosakas1,2,3, Costas Galiotis1,4 & 
Konstantinos Papagelis1,2

A method that utilises atomic trajectories and velocities from molecular dynamics simulations has 
been suitably adapted and employed for the implicit calculation of the phonon dispersion curves 
of graphene. Classical potentials widely used in the literature were employed. Their performance 
was assessed for each individual phonon branch and the overall phonon dispersion, using available 
inelastic x-ray scattering data. The method is promising for systems with large scale periodicity, 
accounts for anharmonic effects and non-bonding interactions with a general environment, and it is 
applicable under finite temperatures. The temperature dependence of the phonon dispersion curves 
has been examined with emphasis on the doubly degenerate Raman active Γ-E2g phonon at the zone 
centre, where experimental results are available. The potentials used show diverse behaviour. The 
Tersoff-2010 potential exhibits the most systematic and physically sound behaviour in this regard, 
and gives a first-order temperature coefficient of χ = −0.05 cm−1/K for the Γ-E2g shift in agreement 
with reported experimental values.

In crystalline materials the characteristics of phonons are of fundamental importance. Many properties 
of the materials are directly or indirectly determined from the phonon spectrum and phonon density 
of states, such as the thermal conductivity, the specific heat, and the thermal expansion1. Several com-
putational methods are available for extracting phonon properties of systems of varying dimensionality 
and complexity, under the general terms of linear response and direct force constant methods1–9. A very 
effective method for deriving phonon dispersion curves and phonon density of states, valid for finite 
temperatures as opposed to absolute zero, is through molecular dynamics simulations of the modelled 
material10–14. This method has certain advantages; anharmonic interactions between atoms are implicitly 
taken into account, since it is based on processing of the atomic trajectories. Furthermore, this method 
is promising for systems with large scale periodicity and/or periodically induced defects as it is adaptable 
for usage with supercells. Moreover, it is straightforward to adopt the method on systems interacting with 
a substrate or with a more general environment.

For graphitic materials phonons play an important role; analysis of Raman active modes is used to 
identify characteristics such as the disorder (crystallinity) of the sample, the tension and compression 
state, the number of graphitic layers, interlayer coupling, oxidation, and more (see Ref.  15 and refer-
ences therein). As a means to compare the vibrational response of graphene as derived by widely used 
classical potentials with respect to experiment, we have developed a methodology and implemented an 
in-house computer code to compute phonon dispersion curves from molecular dynamics simulations. 
We have suitably adapted the approach presented in Refs  10–13 to efficiently handle two dimensional 
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materials such as graphene. Previous efforts using this method are on simple systems with only up to 
three dispersion curves10,13,16–20. In this work we successfully apply the above method to investigate the 
full dispersion curves of graphene. This is not trivial as the spectral resolution required to obtain the 
six dispersion curves of graphene demands careful treatment in modelling and of various numerical 
aspects. In this respect we have calculated all the optical and acoustic branches for the high symmetry 
directions in k-space and examine their temperature dependence. Special attention is given to the doubly 
degenerate Γ -E2g mode of the TO and LO branches at the Γ  point of the Brillouin zone (BZ) in order to 
compare its temperature dependence with existing experimental data. We note that although there are 
several experimental studies on the temperature dependence, corresponding theoretical investigations in 
this direction are lacking.

The paper is organised as follows. In the following section we describe in detail the implemented 
method along with aspects that are taken into consideration specifically applied to graphene. In the next 
section we report results for the obtained phonon dispersion curves of graphene by employing widely 
used classical potentials and assess their performance. In the final section we specifically examine the 
temperature dependence of the Γ -E2g vibrational mode using each of the considered potentials. Then, for 
the potential that better describes this dependence we present the phonon dispersion curves at different 
temperatures. Pertinent conclusions of this work are given at the end.

Method of Computation
The objective is to obtain the oscillation frequencies ω that correspond to a given wavevector k. We 
consider the velocity distribution in reciprocal space (k-space) that is obtained by the spatial Fourier 
transform
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where j sums over unit cells (once for each particular atom of the crystal basis, as discussed further 
below; Rj(t) are the position vectors of the corresponding atoms) and p is a component (x, y, or z) in a 
Cartesian coordinate system (i.e. ( )v tj

p  is the p-component of the velocity of the atom j at position Rj(t)). 
Taking the velocity as a wide-sense stationary random process and employing the Wiener-Khintchine 
theorem the power spectral density (PSD) is given by the spectral decomposition of the k-space velocity 
autocorrelation function (kVACF) ( )Z tk

p  [Ref. 21]
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where averages denote time averages (if this is to be considered as an ergodic process). Once the PSD is 
calculated via the temporal Fourier transform of the kVACF, the phonon frequencies corresponding to 
the wavevector k are obtained through the position of the peaks in the PSD.

In practice the quantities involved result from molecular dynamics simulations which are carried out 
with finite time steps. As such, the variables are discrete and the velocity autocorrelation function needs 
to be calculated as such. The problem is thus reduced to calculating the reciprocal space velocity auto-
correlation sequence (kVACS). We denote r m[ ]v vk

p
k
p  as the numerator of the kVACS, where m is an integer 

index denoting time differences from a reference point (instead of the continuous function of time 
kVACF). With r m[ ]v vk
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is not infinite but instead truncated to the total number of steps, N, available from the MD simulation. 
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need to be employed21, where 2M +  1 is the total size of the discreet sequence. The most straightforward 
line of action is to adjust the previous equation to the available data range of N data samples and consider 
only positive time indices 0 ≤  m ≤  N −  1, which leads to
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The sequence r̂ m[ ]v vk
p

k
p  is an unbiased estimator as it leads to unbiased estimates of the true (infinite/

non-truncated) sequence. Another autocorrelation estimator, denoted as the biased estimator, for posi-
tive time indices is given by = ∑ +=
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Both estimators have zero variance for large values of N, so they are statistically consistent (properties 
of these estimators can be found in Ref. 21). Here we use the unbiased estimator, eqn (4). The PSD can 
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be calculated by fast Fourier transformation (FFT) with respect to time of either the biased or unbiased 
autocorrelation sequence estimators. To avoid large variance for large time indices when using the unbi-
ased estimator, Blackman and Tukey suggest22 that the number of indices to be estimated should be about 
10% of the available data samples, i.e. Lmax ≈  N/10, which however was not needed in our case.

The described method for producing dispersion curves accounts for anharmonic effects as the cor-
responding information is embedded in the trajectories and velocities of the atoms. While at least one 
other method14 manages to account for anharmonic effects by utilizing molecular dynamics simulations, 
the kVACS method has the advantage that it produces stable results throughout the Brillouin zone, 
including the region near and at the Γ  point.

Since ergodicity is not ensured and the kVACS is truncated we considered an ensemble for the kVACS, 
as described below. In our implementation we perform the FFTs of this ensemble averaged kVACS using 
the portable and open source FFTW3 library23. The molecular dynamics simulations were performed 
using the LAMMPS24 software package.

To obtain a resolution suitable to clearly acquire the six dispersion curves of graphene several tech-
nical considerations should be taken into account. (i) A triclinic computation cell should be used as it 
has the same number of unit cells on each of the rows (or columns); in other words the symmetry of the 
unit cell is transcribed to the computational cell. This permits for the proper quantization of the Brillouin 
zone (BZ) and should also be taken into consideration when defining the k-vector path. With orthogonal 
computation cells the number of permitted k-vectors is ill defined. (ii) Several realisations of each simula-
tion should be taken, from which an averaged kVACS should be produced and then Fourier transformed. 
As expected, the standard deviation of the autocorrelation function is reduced as the number of simula-
tions performed increases. (iii) Double precision variables should be used throughout. This includes the 
trajectories and velocities taken from the molecular dynamics simulation package. It is also important 
to use double precision when defining the k-path vectors. (iv) Finally, as described above, in order to 
obtain all branches of the phonon dispersion in the general case the whole procedure, starting from the 
summation in eqn (1), needs to be performed once for each atom of the crystal basis. Especially for 
graphene which has two trigonal sublattices A and B with the same atom type (see Fig. 1), the autocorre-
lation sequence calculated using only one sublattice (A or B) can produce all of the dispersion branches.

Dispersion Curves.  Applying the method outlined above, we have calculated the dispersion curves 
of graphene using the Tersoff25,26, Tersoff-2010 (a reparameterisation of the original Tersoff potential by 
Lindsay and Broido27, optimised to better represent lattice dynamical properties of graphene), LCBOP28 
and AIREBO29 potentials. The molecular dynamics simulations were performed using a triclinic com-
putational cell of 20 ×  20 unit cells (overall 800 carbon atoms) and periodic boundary conditions. The 
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Figure 1.  First Brillouin zone of graphene. The orientation of the direct lattice is also shown (not under 
scale). The yellow and blue circles denote the carbon atoms A and B of the trigonal sublattices, respectively. 
The reciprocal lattice vectors, b1 and b2, are partitioned as shown by the green dots (for clarity only 10 of 
the 20 partitioning segments are shown, considering a computational cell of 20 × 20 unit cells). The allowed 
k-vectors along the high symmetry path Γ KMΓ  are shown by the small green dots (in this case all allowed 
k-vectors are shown, obtained from the full partitioning). The shaded blue area represents the irreducible 
Brillouin zone.
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computational cell was initially relaxed for each potential. Randomised velocities (for all three dimen-
sions) were attributed to the atoms, within a Gaussian distribution, corresponding to the desired temper-
ature and an initial equilibration at constant energy (NVE ensemble) was performed. The corresponding 
lattice parameter was computed by performing a subsequent equilibration within the isothermal–isobaric 
ensemble (NPT) at zero pressure and the desired temperature each time. The obtained lattice parameter 
was used in defining the BZ edges in each case. The trajectories and velocities needed for the compu-
tation of the dispersion curves were produced from the final round of simulations within the microca-
nonical ensemble (NVE) using the lattice parameters obtained from the previous rounds. A very fine 
time step of 0.05fs was used and the trajectory and velocities were saved every 10 time steps. The final 
NVE simulations lasted for 655360 time steps each of which corresponds to about 32.8 ps. To produce 
more reliable statistics, multiple NVE realizations (in a total of 10 for each case) were performed, and the 
average k-space velocity autocorrelation sequence was Fourier transformed. Between these realizations a 
velocity rescaling was applied corresponding to the given temperature followed by an NPT equilibration.

For a n ×  n triclinic computational cell the allowed k-vectors are obtained through a grid derived by 
partitioning each of the reciprocal lattice vectors, b1 and b2, into n segments. For k-points other than 
those mentioned above the PSD exhibits factitious peaks. With a lattice orientation such that one direct 
lattice vector (say a1) is along the x-axis, as shown in Fig. 1, the general form of the allowed k-vectors is
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where i, j count sampling sections along the b1- and b2-directions respectively, and a is the lattice 
constant. It is straightforward to show that the allowed k-vectors along the directions connecting the 
high-symmetry points, Γ , K and M are obtained as follows: i) along ΓK the allowed k-vectors have i =  2j 

Figure 2.  Phonon dispersion curves of graphene calculated using (a) the LCBOP, (b) the AIREBO, (c) the 
original Tersoff (1989), and (d) the reparameterised Tersoff-2010 potential, at T =  300 K. The reported MSE, 
MAE and RMSD values in Table 1 were obtained using these dispersion curves. Solid circles and squares 
correspond to numerical results of optical and acoustic branches, respectively. Open symbols correspond to 
experimental data taken from Refs 30,31.
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and i ≤  2n/3 (imax =  13 for n =  20), ii) along ΓM they have i =  j and i ≤  n/2 (imax =  10 for n =  20), and 
iii) along MK they have i =  − j +  n with n/2 ≤  i ≤  2n/3 (for n =  20 this becomes imin =  10 and imax =  13).

In Fig.  2(a–d) we show the results of our calculations obtained for each of the potentials under 
consideration (Tersoff, Tersoff-2010, LCBOP, and AIREBO). The dispersion curves were calculated at a 
temperature of T =  300 K to facilitate the comparison with the experimental values which were measured 
at room temperature30,31. In the Supplementary Information we compare the results derived through the 
presented method at low temperatures (T = 60 K) with the corresponding ones obtained by a direct 
diagonalization of the dynamical matrix for the Tersoff and Tersoff-2010 potentials. Excellent agreement 
is obtained, demonstrating the accuracy of the proposed method. In Fig. 2 the calculated results are given 
in solid circles for the optical modes and solid squares for the acoustic modes. Hollow symbols represent 
experimental data from Maultzsch et al.30 and Mohr et al.31, which we have included for comparison. 
As can be seen, each of the potentials succeeds on producing a good description of some branches, but 
none manages to do so for all branches. The best overall description is seemingly provided by LCBOP. 
In Table 1 we list for each potential the mean signed error (MSE), mean absolute error (MAE) and the 
root mean square deviation (RMSD) for each branch separately and also for the overall phonon dis-
persions, compared to the corresponding experimental values (the formulas used are provided in the 
Supplementary Information). The calculated frequencies used were taken at the k value of each experi-
mental data point by interpolation between two sampling points in the specific k-region. Along with the 
original Tersoff potential, that properly describes the ZO branch, LCBOP also provides an acceptable 
description of the ZO branch. However, the Tersoff potential fails dramatically on the other two optical 
modes, while LCBOP provides rather accurate TO and LO branches, arguably the most accurate around 
the Γ  point. A significant improvement in the description of the TO and LO branches is obtained by 
the reparameterisation of the Tersoff potential by Lindsay and Broido27. However, this is at the cost of a 
much worse description of the ZO branch (as compared to the original Tersoff potential). The AIREBO 
and Tersoff-2010 compete in accuracy depending on the specific branch. The AIREBO potential overes-
timates the TO and LO branches (especially around Γ ) somewhat more than the Tersoff-2010 potential. 
Also, while AIREBO underestimates the ZO branch, Tersoff-2010 overestimates it. The description of 
the acoustic branches is more or less on equal footing, with the AIREBO providing a more accurate 
TA branch and Tersoff-2010 providing the most accurate ZA branch (of all the given potentials). What 
is very apparent in the dispersion curves from all of the potentials used here is their general failure in 
describing the highest optical mode around the K point.

A feature that is lacking in all of the calculated dispersion curves is the presence of discontinuities of 
the derivative at the K and Γ  points. The discontinuities in the highest optical branches at K and Γ  that 
are apparent in the corresponding experimental data shown in Fig.  2 signify the occurrence of Kohn 
anomalies30–35. These appear at high symmetry points when the screening of atomic vibrations from 
conduction electrons changes rapidly32,34,35. The cusps cannot be described by the classical potentials 
employed here for which the highest optical branches near K and Γ  have a flat slope34,35. However, since 
the Kohn anomaly shape is expected to be temperature independent36, the potentials can in principle 
capture the correct (within the accuracy of any given potential) temperature dependence at the high 
symmetry points. We explicitly denote the branches in Fig. 2(a,c) in black for the assignments by means 
of experiment and ab initio calculations30,31 and in magenta for our calculations. We note that the highest 
optical branch produced by the LCBOP, AIREBO, and Tersoff-2010 potentials is TO since they are inca-
pable of capturing the expected softening near the K point as a result of the Kohn anomaly. An exception 
is the original Tersoff potential for which the highest optical branch is LO, but as we mentioned fails 
dramatically on the highest optical branches regardless.

Phonon 
Branch

Tersoff Tersoff-2010 LCBOP AIREBO

MSE MAE RMSD MSE MAE RMSD MSE MAE RMSD MSE MAE RMSD

LO 772.2 772.2 773.1 23.9 29.0 36.1 − 20.3 28.5 32.8 114.3 114.3 123.4

TO 441.8 441.8 479.7 278.7 278.7 294.7 245.0 245.0 264.3 406.4 406.4 415.6

ZO − 14.1 32.7 37.5 222.8 222.8 238.8 − 96.0 96.0 97.8 − 174.2 174.2 185.4

LA 95.8 97.0 137.6 5.2 15.1 21.3 − 25.2 26.2 32.4 33.1 37.0 47.1

TA 230.5 230.8 325.5 54.6 57.9 80.2 3.0 19.6 26.0 22.0 32.5 44.0

ZA − 55.1 55.1 71.5 7.7 26.1 38.8 − 78.5 78.5 99.9 − 70.8 70.8 92.3

Overall 329.7 347.7 472.2 88.8 94.4 149.8 9.2 74.8 118.1 76.5 136.9 193.7

Table 1.   Mean signed errors (MSE), mean absolute errors (MAE) and root-mean-square deviations 
(RMSD) of calculated points along dispersion curves with respect to experimental values, at T = 300 K. 
Values are in cm−1
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Temperature Dependence.  In all sp2 hybridized carbon based materials the Raman spectrum exhib-
its the G peak that corresponds to an in-plane phonon with E2g symmetry (i.e. doubly degenerate). 
Very few experimental results are available on the temperature dependence of the G peak frequency for 
carbon nanotubes and even fewer for graphene, which however provide the scale of the dependence. 
A linear softening, ω =  ω0 +  χT (ω0 is the extrapolated G peak frequency at zero temperature), of 
the Γ -E2g mode is noted, which is characterized by the first-order temperature coefficient, χ. Calizo  
et al.37 measured the temperature dependence of the G peak of monolayer graphene for a wide temper-
ature range from 83 to 373 K and estimated the first-order temperature coefficient χ =  − 0.0162 cm−1/K. 
A similar softening of the Γ -E2g frequency was observed38 for graphene covering 20 nm depressions for 
changes in temperature from 4.2 K to 77 K and 300 K. More recent results39 for graphene over SiO2 sub-
strate measured in a temperature range of 298 K to 560 K give a convergent value (over heating cycles) 
of χ =  − 0.03 cm−1/K, and an estimated intrinsic value of χ =  − 0.02 cm−1/K. Moreover, there are several 
experimental works on the temperature dependence of the G peak of carbon nanotubes keeping in mind 
the peculiarities of carbon nanotubes compared to graphene such as curvature and electron confinement 
effects36,40. Measurements performed on electrically heated single-walled suspended carbon nanotubes by 
Deshpande et al.41 revealed a softening of the G+ and G− peaks (curvature splits the graphene G mode 
into two components, one parallel, G+, and one perpendicular, G–, to the tube axis) which was related 
linearly to temperature, with almost the same first-order temperature coefficient for both peaks around 
χ =  − 0.03 cm−1/K. Similar results were found by Zhang et al.42 for single-walled carbon nanotubes with 
a wide range of diameters. They reported that the diameter of the nanotubes had no obvious influence on 
the temperature dependence of the G mode and calculated an average value of χ =  − 0.026 cm−1/K (over 
nanotubes of different diameters). Fine measurements on single-walled carbon nanotubes43 within the 
temperature range of 240–600 K reveal a subtle quadratic temperature dependence of G+ and G− band 
redshifts rather than a linear one. Nevertheless, the average first-order temperature coefficients for the 
G+ and G− peaks are about χ =  –0.026 cm−1/K.

We opted to examine the temperature dependence of the Γ -E2g mode of graphene using the AIREBO, 
Tersoff-2010 and LCBOP potentials. The original Tersoff was not included since it grossly overshoots 
the frequency of the mode, as shown in Fig.  2c. The Γ -E2g is a bond stretching vibrational mode that 
induces in-plane angle bending as well. As such, the dominant responsibility for the proper description 
of the temperature dependence lies with the anharmonicity of radial and in-plane angular terms of the 
potentials that is triggered as the atomic displacements increase with temperature. A wide temperature 
range was chosen, specifically T =  60 K, 160 K, 300 K, 500 K, 700 K, 1000 K, and 1500 K. At any given 
temperature and for each potential the lattice constant was pre-determined by performing multiple NPT 
simulations. These simulations were performed until the average pressure on either side of the cell was 
less than 10−4 of the maximum pressure fluctuations, at which point an average lattice constant was 
calculated. A 20 ×  20 triclinic cell was constructed using the average lattice constant which was retained 
unaltered throughout all stages of the data acquisition simulations, i.e. velocity randomisation, tem-
perature equilibration (NVT), and NVE simulations. This procedure wards off the possibility of the 
computational cell having unfavourable dimensions immediately before the primary simulation due to 
random pressure variation. Details on the values of the lattice constants obtained by the Tersoff-2010, 
AIREBO, and LCBOP potentials both by static relaxation as well as at finite temperature are given in 
the Supplementary Information. For each temperature 10 realisations were produced from which an 

Figure 3.  Temperature dependence of the Γ-E2g phonon frequency in graphene for the AIREBO (red 
circles), Tersoff-2010 (black squares), and LCBOP (blue triangles) potentials. The solid line is a linear 
fit of the data for the Tersoff-2010. Dashed lines are guides to the eye for the AIREBO and LCBOP data. 
Dotted lines are linear fits to data points at T >  500 K for AIREBO and T >  700 K for LCBOP.
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average velocity autocorrelation sequence was computed. In Fig. 3 we have plotted the results obtained 
for all three potentials. It is immediately apparent that only the Tersoff-2010 potential properly produces 
a linear softening of the Γ -E2g mode frequency. LCBOP gives variations in a large frequency range. The 
AIREBO and LCBOP potentials produce a non-linear non-monotonic behaviour for the Γ -E2g temper-
ature dependence. The Γ -E2g frequency increases for temperatures up to around T =  500 K for AIREBO 
and T =  700 K–1000 K for LCBOP. This behaviour is not in qualitative accordance to available experi-
mental results. At higher temperatures a quasi-linear behaviour is noted for both potentials with slopes 
of χ =  –0.03 cm−1/K and χ =  –0.06 cm−1/K for AIREBO and LCBOP, respectively. The first-order tem-
perature coefficient obtained from the Tersoff-2010 potential is χ =  –0.0517(9) cm−1/K, which is higher 
than the average experimental value by a factor of 2–3.

To further examine the effects of temperature on the vibrational response of graphene we calculated 
the dispersion curves using the Tersoff-2010 potential for temperatures T =  60 K, 500 K, and 1500 K, 
which we show in Fig. 4. We note that the melting point of graphene employing this potential is around 
2100 K. A stronger temperature dependence is observed on the optical branches. In Fig. 4b we focus on 
the optical branches, where it can be seen that upon increase of temperature the frequencies soften by 
as much as 75 cm−1 in this temperature range. The acoustic branches in the vicinity of Γ  remain unaf-
fected by changes in temperature. In the vicinity of the high symmetry points K and M a decrease in the 
frequencies of the acoustic branches is noted at most by 40 cm−1 in the considered temperature range.

Conclusions
We have calculated the phonon dispersion curves of graphene by implementing and employing a method 
to compute phonon dispersion relations that makes use of atomic trajectories and velocities extracted 
from molecular dynamics simulations. We have suitably adapted the procedure to ensure the required 
spectral resolution to clearly obtain the six dispersion curves of graphene. From the potentials under 
study, the best overall description of the phonon dispersion curves, compared to experiment, were 

Figure 4.  Temperature dependence of graphene’s phonon dispersion curves for the Tersoff-2010 
potential. Data points for temperatures T =  60 K, T =  500 K and T =  1500 K are denoted by solid symbols, 
crosses and × -marks, respectively. Plot (b) focuses on the optical branches, for which the temperature 
dependence is most notable. Open symbols in (a) correspond to experimental values taken from Refs 30,31.
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calculated using LCBOP, which also gives the most accurate TA, LO and TO branches. Tersoff-2010 pro-
duces the most accurate LA, and ZA, with the TO branch near to the accuracy of LCBOP. The original 
Tersoff potential surprisingly provides the most accurate ZO branch but fails dramatically on the highest 
optical branches. The reparameterised (by Lindsay and Broido) Tersoff-2010 potential produces disper-
sion curves of good accuracy compared to experiment, except for the ZO branch, and it is also the only 
potential that reproduces the correct linear temperature dependence of the Γ -E2g vibrational mode, with 
a first-order temperature coefficient of χ =  –0.05 cm−1/K. The temperature dependence of the dispersion 
curves was also calculated for the Tersoff-2010 potential, for a temperature range of T =  60 K–1500 K.

Although there are many theoretical works discussing phonon properties of graphene, there are only 
very few dealing with temperature effects44. Here we have presented numerical estimates of the temper-
ature dependence of the G-peak in graphene. Although this has been experimentally explored in several 
studies, corresponding theoretical works are lacking. The method that we have used is generic in terms 
of applicability at different levels of theory, as long as the trajectories and velocities become available for 
a suitable simulation time.

In this work we have investigated the temperature dependence by employing well known empirical 
potentials widely used in the literature. We note that the Tersoff-201027 correctly describes the linear 
T-dependence of the G-peak, with only a small quantitative discrepancy of the slope as compared to 
the experimentally available values. This does not stand for the LCBOP and AIREBO potentials, which 
are not in qualitative accordance to experiment, even though they sufficiently describe other properties 
of graphene. It is expected that force fields specifically designed for graphene45,46 may better succeed in 
reproducing the experimental data.
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