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Abstract

Stem cell-derived retinal organoids offer the opportunity to cure retinal degeneration

of wide-ranging etiology either through the study of in vitro models or the generation

of tissue for transplantation. However, despite much work in animals and several

human pilot studies, satisfactory therapies have not been developed. Two major chal-

lenges for retinal regenerative medicine are (a) physical cell-cell interactions, which

are critical to graft function, are not formed and (b) the host environment does not

provide suitable queues for development. Several strategies offer to improve the

delivery, integration, maturation, and functionality of cell transplantation. These

include minimally invasive delivery, biocompatible material vehicles, retinal cell

sheets, and optogenetics. Optimizing several variables in animal models is practically

difficult, limited by anatomical and disease pathology which is often different to

humans, and faces regulatory and ethical challenges. High-throughput methods are

needed to experimentally optimize these variables. Retinal organoids will be impor-

tant to the success of these models. In their current state, they do not incorporate a

representative retinal pigment epithelium (RPE)-photoreceptor interface nor vascular

elements, which influence the neural retina phenotype directly and are known to be

dysfunctional in common retinal diseases such as age-related macular degeneration.

Advanced coculture techniques, which emulate the RPE-photoreceptor and RPE-

Bruch's-choriocapillaris interactions, can incorporate disease-specific, human retinal

organoids and overcome these drawbacks. Herein, we review retinal coculture

models of the neural retina, RPE, and choriocapillaris. We delineate the scientific

need for such systems in the study of retinal organogenesis, disease modeling, and

the optimization of regenerative cell therapies for retinal degeneration.
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1 | INTRODUCTION

1.1 | Retinogenesis

The finding that retinal homeobox (Rx)+ cells derived from ESCs and

induced pluripotent stem cells (iPSCs) can self-aggregate in low-

attachment culture to form retinal organoids with apical-basal polarity,

showed that neuroectodermal cells of the developing optic cup pos-

sess an inherent self-organizing capacity.1,2 This approach has created

a new source of transplantable photoreceptor precursors and retinal

sheets, which have been shown to integrate into degenerate retina

forming synapses with host bipolar cells, responding to light and

transmitting action potentials to the superior colliculus.3-7 The process

of generating retinal organoids, however, remains costly and produces

variable results.8 Furthermore, the transplantation of stem cell derived

retinal tissue faces several challenges, which we will discuss.

Retinogenesis is orchestrated by a cascade of genetic master-

switches whose activation progressively narrows the developmental

potential of precursors.1,2,6,9 The developing RPE and neural retina

are derived from a bi-layered invagination of the neuroectodermal

optic vesicle which is surrounded by tissues of mesenchymal, neural

crest, and surface ectodermal origin during development (Figure 1A).

The space between the two layers of neuroectoderm is obliterated in

humans between postconception days 37 and 42 and this event phys-

ically unites the precursors of the RPE and the photoreceptors.10 It is

after this event that the two layers differentiate into RPE and neural

retina with the photoreceptor outer segments forming at the apical

surface of the developing RPE and the RPE microvilli developing at

the apical surface of the photoreceptor precursors.10 Thus, functional

and physical maturation occurs in the context of physical cell-cell con-

tact. Outer segment formation occurs at approximately 112 days

postconception and the RPE eventually phagocytoses photoreceptor

outer segments to facilitate the recycling of visual pigments. Impor-

tantly, apposition of the developing RPE and neural retina precedes

their maturation into functional retina.10-12

1.2 | Synaptogenesis

Synaptogenesis in the developing human retina occurs sequentially

from the developing fovea to the periphery, beginning with cones.

The cone-rich fovea provides high-acuity color vision. Development

of cone-bipolar cell synapses begins in postconception weeks 8 to

10, before synaptic development of rods, and by week 13, all cones

across the fovea express synaptic markers. However, core compo-

nents of the synapse, the metabotropic glutamate receptor 6, and

voltage-dependent calcium channel α1.4 are not detected until fetal

week 22.13 Rods are the predominant photoreceptor type and contact

approximately 58 rod bipolar cells in the mature mouse retina. This

convergence of rod afferent signals ensures high sensitivity of scoto-

pic vision.14 Interestingly, mature mouse bipolar cells appears to retain

useful plasticity, with the ability to extend dendrites to new target

rods, while reducing the number of synapses containing multiple

ribbons, in order to prevent oversaturation with input signals.15 Given

the large number of cell types in the vertebrate retina, it is vital that

postsynaptic target cells are correctly specified during development

and remodeling. Specific pre- and postsynaptic membrane proteins

linked by specific extracellular proteins that determine target type and

are essential for correct synapse formation.16

1.3 | Retinal organoids

Retinal organoids recapitulate the main events in the development of

the mammalian retina both spatially and temporally and produce all

seven cell types in a typical laminated fashion.1 Naturally, they have

been used to study mammalian retinal development.17 Free-floating

embryoid bodies are generated from suspensions of, or free-floating

aggregates of, stem cells and then directed toward neural differentia-

tion which is followed by eye field specification and maturation into

retinal organoids. Recent research has focused on improving the effi-

ciency of differentiation, developing disease models using patient

iPSCs, testing gene therapies, staging the differentiation of retinal

organoids, and single cell transcriptomics.18 Transcriptomic studies

have characterized the molecular architecture of developing retinal

organoids and correlated it with developing and adult human retina,

creating large repositories of temporal expression data.19,20 Recent

work has studied the substantial variability between retinal organoid

lines.8 Although the RPE-photoreceptor relationship is indispensable

to photoreceptor signal transduction and therefore vision, this rela-

tionship is not reproduced in retinal organoids, which often but not

always, contain a pole of RPE oriented away from neural retina

(Figure 1B). It is important to recall that the invagination of the optic

vesicle during retinogenesis orientates the apical surfaces of the

developing RPE and neural retina toward each other, a process which

is incompletely recapitulated in retinal organoid development, possibly

due to the absence of paracrine or tractional forces from surrounding

Significance statement

The light-sensitive neural retina is nourished by the retinal

pigment epithelium (RPE), while the choriocapillaris, a dense

capillary network, supplies oxygen and metabolites.

Coculture of these tissues is therefore required to under-

stand normal retinal development and disease. Transplanted

retinal precursors fail to fully integrate within host tissues

and form the normal RPE-photoreceptor and RPE-

choriocapillaris interactions which sustain vision. Coculture

techniques will enable in vitro optimization of regenerative

cell therapies for degenerative retinal diseases, forming a

step to successful in vivo transplant experiments. Further-

more, coculture of neural retina, RPE, and choriocapillaris

will facilitate the development of transplantable multitissue

sheets.
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F IGURE 1 Understanding retinogenesis is critical to developing in vitro models and transplantable tissue. A, A para-axial cross section is
shown of the development of the optic vesicle and its invagination to form the bi-layered, neuroectodermal optic cup which later develops into
the adult RPE and neural retina (postconception days shown). At approximately day 37, the two layers of the optic cup become apposed and the
optic ventricle is obliterated. Neural crest and mesoderm condense to form the choroid and choriocapillaris. Hyaloid vessels form the blood
supply to the inner retina and their vitreous branches regress in later life. B, A bright field photograph of human iPSC-derived retinal organoids at
day 90 of differentiation. There is phase-bright neural retina with photoreceptors orientated outward (not shown) and a single dark pole of RPE.
Scale shown. iPSC, induced pluripotent stem cell; RPE, retinal pigment epithelium
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tissues as occurs in vivo. Little work has been done on the coculture

of retinal organoids with RPE,21 although it has been reported that

the maturation of retinal organoid photoreceptors is faster in the

presence of primary RPE in contact coculture.22

1.4 | Choriocapillaris, Bruch's membrane, RPE, and
neural retina form a single functional unit in vivo

Photoreceptors are supported by growth factors from the RPE, which

also phagocytose their distal outer segments, which is critical in the

recycling of phototransduction pigments (Figure 2). Cone pigments

are additionally recycled by Müller glia.23 Oxygen and metabolites are

delivered directly to the inner neural retina by the retinal vasculature,

branches of the central retinal artery—these are directly visualized on

fundoscopy. However, it is the choriocapillaris, which meets the high

metabolic demand of the RPE and outer neural retina including the

outer nuclear layer (ONL).23 Distinct pathologies, which all have an

endpoint of blindness, may have mechanisms which start in the cho-

riocapillaris, RPE, or neural retina. At least 34 loci of genomic variants

have been associated with age-related macular degeneration (AMD),

with diverse functions including lipid metabolism, immune function,

and extracellular matrix (ECM) proteins.24 In one possible mechanism,

AMD is believed to be initiated by complement dysregulation in the

choriocapillaris, thereby leading to RPE loss and then photoreceptor

degeneration.25-29 Although the exact sequence of events is a matter

of active research, it is clear that all elements of the retina are eventu-

ally affected and areas of RPE and choriocapillaris degeneration col-

ocalize.25,30 Similarly, in inherited chorioretinal dystrophies of the

choroid and RPE, photoreceptors are sequentially lost. This occurs in

choroideremia, an X-linked chorioretinal dystrophy caused by muta-

tions in the gene Choroideremia (CHM), in which the earliest findings

are loss of RPE seen on spectral domain-optical coherence tomogra-

phy. This is followed by photoreceptor degeneration around areas of

RPE loss and loss of choriocapillaris density.31

Sandwiched between the RPE is a unique connective tissue sheet

(Figure 2). Bruch's membrane is a five-layered composite of RPE base-

ment membrane, three elastin-rich layers, and the choriocapillaris

basement membrane.32 In adult life, it forms a barrier between the

choriocapillaris and the RPE. The dense vessel network of the cho-

riocapillaris is embedded within Bruch's membrane and unlike the

larger choroidal vessels, develops in situ through a process called

hemo-vasculogenesis.33 One of the first pathological events in AMD

is the formation of drusen and lipid deposition within Bruch's mem-

brane, which holds prognostic significance for vision loss in

AMD.25,32,34

F IGURE 2 Illustration of the physical relationship between the neural retina, RPE, Bruch's membrane, and choroid, which form a single
functional unit. The RPE cells phagocytose photoreceptor outer segments. The dense capillary network of the choriocapillaris is the blood supply
to the highly metabolically active RPE and photoreceptors. RPE, retinal pigment epithelium

1534 GHAREEB ET AL.



In this review, we will first discuss the major challenges facing cell

transplant for retinal regeneration, with a focus on transplant of neu-

ral retina, although this discussion and the use of coculture models is

also relevant to those interested in RPE transplant. We then will dis-

cuss techniques used in the coculture of neural retina, RPE, and cho-

riocapillaris and how these can be used to build better in vitro models

of the retina. Finally, we will discuss the current state-of-the-art

in vitro models of the retina. Transplant of RPE patches has been

investigated in phase I clinical trials and a phase I study using autolo-

gous iPSC-derived RPE to treat geographic atrophy associated with

AMD is now in the recruitment phase, although the technique is far

from being optimized in preclinical models.35,36 Although coculture is

important to the optimization of RPE transplant, in this review we will

use photoreceptor/neural retina transplant as a starting point for the

discussion of retinal coculture. For reviews of RPE transplant, see

Zarbin et al37 and Chichagova et al.38

2 | STEM CELL REGENERATION OF THE
RETINA: A CELL-CELL INTERACTION
PROBLEM

2.1 | Transplant of dissociated photoreceptor
precursors

The eye is an attractive target for regenerative cell therapies because

of its relative immune privilege, accessibility, and the availability of

advanced imaging technologies to noninvasively obtain high-

resolution images in vivo.39,40

Initial studies using dissociated suspensions of photoreceptor

precursors derived from early postnatal mice appeared to demon-

strate maturation and functional integration in animal models of reti-

nal degeneration.41,42 However, it has become apparent that

transfer of cytoplasmic material is the main mechanism of recovery

of host retinal function (when no donor cells are present), regardless

of whether primary cells or stem cell-derived precursors are

transplanted.43-46 Given that the majority of cells in the host ONL

(the layer containing photoreceptor nuclei) expressing donor cell

markers are a result of cytoplasmic exchange, proving that dissoci-

ated photoreceptor precursors mature and integrate into the host

retina by forming synapses with bipolar cells has been diffi-

cult.43,45,46 Others have reviewed this problem in detail.47,48 Studies

have shown some, albeit limited synaptic connection of photorecep-

tor precursors with host bipolar cells in rd1 mice where the ONL is

absent and therefore cytoplasmic fusion not possible. These studies

have however either not yet demonstrated visual improvement6,46

or only modest visual improvement with survival of only a small frac-

tion of the transplanted cells.7 Singh et al found that only a third of

eyes had surviving donor precursors at week 12 and that an average

of 7.9% of donor cells survived.7 In all cases, donor cells only par-

tially matured without typical outer segment formation and no

demonstrable interaction with the host RPE, which is critical to long-

term function.6,7,46

Recently, Garita-Hernandez et al have circumvented the problem

posed by the poor outer segment development and interaction with

RPE in transplanted dissociated cells by transfecting primary mouse

photoreceptor precursors and human iPSC-derived photoreceptor

precursors with bacterial opsins.49 However, much work needs to be

done in selecting opsins with sensitivity over a useful range of the

human visual spectrum and the material exchange paradigm will con-

tinue to be problematic for human-human transplants.49

2.2 | Transplant of retinal sheets

While long-term survival and functional integration of dissociated

photoreceptor precursors in the host ONL is unproven, studies using

retinal sheets are able to point to long-term graft survival in animals

and humans, immunohistochemistry showing grafts maturing in the

subretinal space and forming synapses with host bipolar cells many

months after transplantation, and even visual recovery.3-5,50-58 Foetal

retinal sheet transplant in the fast-degenerating Rho-S334ter line-3A

rat shows detailed cortical responses to visual stimuli projected onto

the graft area, providing a theoretical basis for retinal sheet trans-

plant.50 Furthermore, transplanted foetal retinal sheet survived for

3 years in the subretinal space of a 94-year-old man with wet AMD,

while microaggregates could no longer be detected in the same ret-

ina.57 Transplanted neonatal mouse microaggregates also show more

maturation of outer segments than dissociated cells in the rd1

mouse.55 Several experiments carried out in the 1990s provide data

on the in vivo, long-term survival of foetal retinal sheets in

humans.51-54 The long-term survival of human iPSC retinal sheets in

rat and primate models of retinal degeneration has been demon-

strated (5 months and 2 years, respectively).56 The limited integration

of interneurons from transplanted planar organoids has also been

demonstrated.59 The available evidence therefore points to survival

and likely functional engraftment of transplanted foetal/neonatal,

ESC, and iPSC-derived retinal sheets, while the available data do not

currently demonstrate long-term survival nor the exact functional abil-

ities of integrated dissociated cells.

However, there are several challenges with retinal sheet trans-

plant. In all animal models tested, and for both stem cell-derived and

primary cell grafts, anatomically correct integration of transplanted

photoreceptors into the host ONL is currently hampered by rosette

formation in the host (Figure 3A-C).3-5,50,61 Rosette formation has

two observable consequences: first, the transplanted inner nuclear

layer (INL) obstructs the formation of synapses with the host bipolar

cells (Figure 3A) (although bipolar cells have been observed to migrate

or extend dendrites through the donor INL to make connections with

donor photoreceptors).4 Second, the transplanted INL also prevents

proper interaction of the host RPE with the donor photoreceptor

outer segments, thereby precluding the phagocytosis of donor outer

segment and the recycling of photopigments (Figure 3B).3-5,50,56,61

The graft may also lose its laminar structure and graft photoreceptors

may migrate individually toward the host INL (Figure 3C).5 Another

obstacle (which is at least partially a consequence of the above) is that

RETINAL COCULTURE TECHNIQUES 1535



F IGURE 3 Rosette formation is common following transplant of stem cell- or foetal-derived retinal sheets into the subretinal space. A, Graft
INL prevents the direct contact of graft ONL and host INL, although some rare graft photoreceptors migrate toward the host INL and contact
host bipolar cells. B, The graft ONL commonly integrated into the host INL; however, graft INL may lie between graft photoreceptors and host
RPE, preventing their physical interaction. B0 , Sometimes, incomplete rosettes allowed the graft ONL to integrate into the host INL with the graft
ONL correctly oriented toward the host RPE. C, The graft laminar structure is sometimes lost following transplant and the graft photoreceptors
migrate individually to the host INL. Reprinted from Assawachananont et al5 with permission from Elsevier. D, Illustration of a possible
experimental setup allowing the in vitro optimization of stem-cell derived retinal sheet transplant into a degenerate host retina. From the bottom,
RPE could be cultured to maturity on a suitable membrane. Retinal organoids could be hemi-sectioned to produce a flat sheet and placed
photoreceptor-side down onto the RPE. Degenerate retina from the Pde6Brd1 mouse, which lacks an ONL could be placed onto a suitable carrier
membrane and placed on top of the hemi-sectioned retinal organoid, thus recreating an in vitro subretinal space. For synapses to form between
the Pde6Brd1 retina and the “transplanted” organoid, dendrites need to extend through the organoid inner retina (shown in gray scale). Ideally,
the retinal organoid inner retinal layers, which may be redundant, could be ablated or dissected away before transplant. This experimental setup is
inspired by Yanai et al.60 INL, inner nuclear layer; ONL, outer nuclear layer; RPE, retinal pigment epithelium
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the formation of mature photoreceptors with complete outer seg-

ments has been highly variable in transplanted retinal sheets. The

result of these three obstacles is that graft light-sensitivity has not

been robust and can sometimes only be measured after a period of

dark-adaptation.3,4,56 In their study of iPSC-derived retinal sheets,

Mandai et al supplied the grafted mice with intraperitoneal 9-cis reti-

nol in the belief that the grafts would not be able to isomerize all-

trans-retinol due to the lack of contact with the host RPE.4

Optimizing the above factors is challenging owing to the difficulty

in transplanting retinal sheets into live animals, the ethical and legal

obstacles associated with animal research and the variability between

animal hosts. Further work is needed to understand how the deve-

lopmental potential of transplanted photoreceptor precursors is

influenced by the environment of the degenerate adult retina. It is

clear further queues are required to direct precursors toward generat-

ing mature cone and rod photoreceptors which form functional inter-

actions with host RPE and INL neurons. Furthermore, if strategies

such as optogenetics49 and ex vivo gene therapy and transplanta-

tion62 are used, in vitro optimization will be vital.

In vitro models of retinal degeneration which recapitulate the

neural retina-RPE interaction in disease states are needed. As we will

now discuss, these models can be used to facilitate the faster optimi-

zation of regenerative cell therapies. To model the RPE more accu-

rately in disease states, these models also require that other elements

of the outer retina be present, namely Bruch's membrane and choroi-

dal vasculature.

3 | COCULTURE OF NEURAL RETINA
AND RPE

Over the last 30 years, several efforts have been made to coculture

RPE with neural retina to study retinal development, in vitro differen-

tiation of stem cells and to develop regenerative cell therapies.

3.1 | Models of differentiation and development

A key finding from experiments in which activation of a diphtheria

toxin-expressing gene selectively ablated the RPE of developing chick

embryos was that the embryonic RPE is required for the development

of other ocular tissues: transgenic chicks expressing the toxin showed

anophthalmia, with the presence of only the extra-ocular muscles and

conjunctiva.63 Other studies have since shown that RPE-derived tro-

phic factors regulate mammalian neural retina development and that

early RPE dysfunction during development alters the course of neural

retina development, leading to neurodegeneration.64 The transcription

factor icrophthalmia-associated transcription factor (MITF) is highly

expressed in RPE and other neural crest-derived tissues, and mutations

in this protein cause a variety of phenotypes in mice, most notably

microphthalmia and retinal degeneration.65

Coculture models were created to study early retinal organogene-

sis, particularly the question of how apical-basal polarity is attained.

Embryonic chicken retinal cells can generate organotypic neural retina

in vitro containing all cell layers. When cultured in isolation, embry-

onic retinal progenitors formed a back-to-front polarity of retinal lami-

nation which was corrected when the cells were cocultured with

pigmented cells from the ciliary region.66,67 Sheedlo et al studied the

effect of noncontact culture of primary rat RPE cells encased in semi-

permeable fibers with postnatal dissociated rat retina to understand

the effects of RPE-secreted trophic factors on retinal differentiation.68

They found an increase in opsin positive cells in the RPE coculture as

compared to controls. Work from our own lab has found that culture

of human induced pluripotent stem cells (hiPSC)- and hESC-retinal

organoids with RPE-derived factors improves the generation of retinal

organoids. Retinal organoids were cultured with a soluble solution of

ECM peptides that was prepared by decellularizing freshly isolated

bovine RPE (in practice this will also contain Bruch's membrane and

choroid) and partially digesting the remaining matrix. A greater pro-

portion of these retinal organoids express both RPE and neural retina

(as opposed to RPE only or neural retina only). Furthermore, the

expression of synaptic markers and light-driven spiking activity

recorded from retinal ganglion cells were improved. Media condi-

tioned by hiPSC- and human embryonic stem cells (hESC)-derived

RPE enhanced the expression of rod-specific markers and synaptic

markers within retinal organoids.69

Other studies have used organotypic explant cultures to study

mitogens secreted by the developing RPE70,71 and to assess the dif-

ferentiation potential of stem cells in vitro.22,72 In an organotypic

explant culture, the tissue architecture is preserved ex vivo. Fetal RPE

secretes a different profile of trophic factors form adult RPE: higher

concentrations of vascular endothelial growth factor-A (VEGF-A),

brain-derived neurotrophic factor, and pigment epithelium-derived

factor and significantly lower concentrations of leukemia inhibitory

factor, basic fibroblast growth factor (bFGF), and nerve growth factor.

This profile correlates with the ability of fetal RPE-conditioned media

to maintain porcine retinal explants in culture, with lower markers of

cytotoxicity and apoptosis than in retinal explants cultured with adult

RPE-conditioned media. Furthermore, coculture of porcine retina with

fetal RPE showed improved retinal survival over culture with fetal

RPE-conditioned media and higher levels of bFGF, heparin binding -

epidermal growth factor (HB-EGF), and hepatocyte growth factor

(HGF) were found in the culture media. The authors concluded that a

synergistic interaction between the retinal explants and fetal RPE may

account for the difference.70 Interestingly, another organotypic

explant culture which used rat retina in direct apposition to RPE found

that only hESC-RPE could maintain the retinal explants for 2 weeks in

culture with few TUNEL-positive nuclei (an indicator of apoptotic

DNA fragmentation), while ARPEJ and RPE19 failed to maintain reti-

nal lamination and showed high numbers of TUNEL-positive nuclei.60

On the other hand, the chick embryonic neural retina secretes

factors which promote the maturation of the RPE.73 These factors

increase the transepithelial resistance of RPE by directing the expres-

sion and localization of claudins.74 Interestingly, chick RPE (and

human RPE)75 can attain a high level of differentiation in isolated

in vitro cultures, expressing many RPE-specific genes and showing a

RETINAL COCULTURE TECHNIQUES 1537



pigmented, cobblestone phenotype. However, full development of

the RPE can only be attained with exposure to factors derived from

the developing neural retina.73

Taken together, these models point to a mutualistic relationship

between developing RPE and neural retina based on promoting tissue

growth through paracrine signaling which is possibly complemented

by signals generated through physical interaction.

3.2 | Models for regenerative cell therapies

In vivo transplantation experiments must meet legal and ethical

requirements and are expensive and time-consuming. Furthermore,

hypothesis testing is limited by interanimal variability unless large

numbers of replicates can be made. Sheet transplants are especially

difficult to test in animals owing to the need for bespoke delivery

devices.3-5,50,61 In vitro models offer higher reproducibility at a lower

cost which enables the optimization of cell therapies.60,76-78 Addition-

ally, human tissues can be derived from stem cells or fresh cadaveric

tissue. Retinal organoids have proven utility in testing gene therapies

and the CRISPR-Cas9 system79; however, their utility in modeling the

environment of the subretinal space is uncertain as the organoid pho-

toreceptors and RPE are not correctly oriented. To adequately model

the environment of the diseased subretinal space, retinal organoids

may need to be combined with RPE and/or choriocapillaris. Ideally,

these systems would allow access to the subretinal space and intravi-

tal monitoring of delivered stem cells without having to disturb the

native subretinal environment. Figure 3D shows one possible concep-

tion of an in vitro system for optimizing transplant of retinal sheets

into the degenerate Pde6Brd1 mouse retina.80

Much previous work has used isolated neural retinal explants or

RPE explants for studying organogenesis, differentiation of stem

cells,72 or neuroprotective cell therapies.78,81-83 These models have

been reviewed elsewhere.84 Cocultured neural retina and RPE

explants, arranged in an organotypic fashion allow functional interac-

tion of the neural retina and RPE while allowing easy access to an arti-

ficial subretinal space for delivery of cell therapies,60,76-78 gene

therapies85 and potentially novel drugs.

An early characterization of a neural retina-RPE explant coculture

system designed for experimental testing of growth factors was by

Caffé et al who explanted 210 neonatal mouse retinas, including

70 with neural retina only, 40 with neural retina and intact RPE, and

100 with neural retina, RPE and adjacent developing choroidal mesen-

chyme. After 21 days, electron microscopy showed those explants

with adjacent RPE showed developed outer segment structure with

regular disk stacks which were phagocytozed by adjacent RPE,

although the outer segments were irregularly oriented. Mesenchyme

developed into vascular structures ex vivo and appeared to improve

the lamination of retina.86

Delivering cell therapies to in vitro models of the subretinal space

may involve detaching the native retina from RPE. Kaempf et al char-

acterized a coculture system whereby porcine neural retina and

RPE/choroid were dissected apart and then immediately recombined.

Compared to neural retina only, they found a large reduction in the

level of apoptosis in the cocultured explants after 3 days ex vivo.87

A system designed for testing novel cell therapies came from the

lab of Fernandez-Bueno and Srivastava: porcine neural retina explants

were cultured on the membrane of a tissue culture well insert, while

primary porcine RPE were cultured on the bottom of the well.77 This

allowed neural retina to be cultured at the medium-air interface where

there is a short diffusion distance for atmospheric oxygen, while at

the same time allowing diffusion of RPE-secreted mitogens from the

bottom of the well. However, this was a noncontact culture with no

physical interaction between the neural retina and RPE. The authors

have further characterized their model and showed a marked reduc-

tion in glial fibrillary acidic protein (GFAP) expression in neural retina-

RPE cocultures vs neural retina alone, with preservation of photore-

ceptor inner segments and retinal architecture, while neural retina cul-

tures alone showed rosette formation and profound reactive gliosis at

day 9 ex vivo.76

Yanai et al developed an explant configuration specifically

designed to experimentally optimize the integration of stem cell-

derived photoreceptor precursors which showed minimal cell death

and good preservation of tissue architecture after 14 days of cul-

ture.60 Their experimental setup included the direct physical interac-

tion of retinal explants and RPE just beneath the medium-air

interface, potentially facilitating a subretinal space environment more

like the in vivo state (similar to Figure 3D). Retinal explants were

derived from the fast-degenerating S334ter rats and cadaveric human

retinas. The authors compared the efficacy of hESC-RPE, ARPE19,

and RPE-J to maintain rat and human retinal explants in culture. As

noted earlier, they found that only hESC-RPE was able to maintain

neural retina in culture, while retinas cultured with AREPE19 and

RPE-J lost architecture and displayed many TUNEL positive nuclei by

day 4 ex vivo. Similarly, neural retina explants cultured without RPE

failed by day 4 ex vivo. Using this setup with hESC-RPE, the authors

were able to identify focal expression of synaptic markers BASSOON

and RIBEYE in around 20% of transplanted photoreceptor precur-

sors.60 It is not certain whether the increased survival of this model

over that of Fernandez-Bueno and Srivastava is due to the proximity

of the RPE and neural retina explant, the use of hESC-RPE, the inclu-

sion of 2% B-27 and 1% N-2 in the explant culture or a variety of

other possible factors. This and other studies69,70 suggest that the

milieu of growth factors secreted by RPE, and therefore its ability to

maintain neural retina in culture, is differentiation-stage dependent.

Cocultured explant models represent a promising model for

in vitro optimization of regenerative cell therapies. However, there

are several model parameters which can be optimized. Authors have

pointed out that the time from death to enucleation is critical in deter-

mining the hypoxic damage to the neural retina.81 Fortunately, the

retina is relatively resistant to hypoxia as compared to the brain and

gives approximately a 20-minute window before permanent damage

(as measured by inability to restore a normal electroretinogram

[ERG]).88 Liberation of the neural retina from the hypoxic globe during

this window is therefore important.81 Anecdotally, avoiding killing test

animals with CO2 and ideally aiming to enucleate under deep
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anesthesia could improve neural retina survival ex vivo. There is also

evidence that replenishing glucose immediately postenucleation could

help to minimize ischemic damage.88 Ideally, perfusion could be

restored in ex vivo culture using microfluidic systems, allowing the

constant replenishment of oxygen and nutrients.89

To date, ex vivo retina strategies have used surrogate markers of

retinal function such as ONL thickness90 and immunohistochemical

markers such as opsins and synaptic proteins76,91 (quantified in terms

of number of cells, area, or average intensity) or the presence of outer

segment integrity.76,86 More accurate data on functional enhance-

ment of degenerate retinal explants could come from ERG assess-

ments of retinal function which provide an assessment of the retinas

ability to respond to light stimulation.4

4 | COCULTURE OF RPE AND
CHORIOCAPILLARIS

4.1 | Models of differentiation and development

Work by Sakamoto et al demonstrated that primary bovine choroidal

endothelial cells could form choriocapillaris-like tubes in 3D-culture

comprised of type 1 collagen-rich gel.92 The coculture of RPE overly-

ing the 3D culture modulated the formation of capillary-like structures

by the endothelial cells more so than fibroblast and pericyte controls.

Interestingly, overlying RPE promoted angiogenesis when coculture

was from day 0 of culture but inhibited the growth of pre-existing

endothelial tubes when added at day 14. This underlies two important

points: (a) RPE is apparently a hub, modulating multiple surrounding

tissues and (b) tissue-tissue interactions are complex with emergent

properties only becoming apparent on accurate modeling of the inter-

action. The authors subsequently found that blocking bFGF and

VEGF, but not transforming growth factor beta, inhibited RPE control

over endothelial-tube formation.92

In vitro models have shown that the RPE regulates angiogenesis

in the choroid.92-94 This is in line with histopathological observations

in rabbits with selective destruction of the RPE and with primary dis-

eases of RPE, such as choroideremia which show that loss of cho-

riocapillaris follows RPE loss.31,95 Hamilton et al found that human

umbilical vein endothelial cells (HUVECs) could be induced to a fenes-

trated choriocapillaris endothelial cell phenotype with expression of

VE-cadherin and ZO-1 when cocultured with ARPE-19 on opposite

sides of amniotic membrane.94

Coculture experiments have also shown that there is a bidirectional

relationship between RPE and choriocapillaris.94,96 Hamilton et al also

showed that the transfer of a 4kD dextran fluorescein tracer was

almost totally inhibited by a HUVEC-amnion-RPE trilayer but not a

HUVEC-amnion-corneal epithelial cell trilayer, and the amnion-RPE

bilayer alone was ineffective at inhibiting tracer transfer.94 Interestingly,

experiments looking at the trans-epithelial resistance in hESC-RPE

monocultures found that they are less than monocultures of human

foetal RPE isolated from 16-week-gestation foetuses, even after the

transepithelial electrical resistance (TER) is allowed to stabilize in a

medium, which encourages fetal and hESC-RPE maturation. Trans-

criptomic data showed that the expression of tight-junction and mem-

brane transport genes was reduced in hESC-RPE.97 This suggests that

RPE monoculture does not fully provide the queues for generation of a

physiological outer blood-retina-barrier (oBRB), and this is common to

both ARPE-19 and hESC derived RPE.

Later, Spencer et al showed that ARPE-19 phenotype is modu-

lated by transwell coculture with HUVECs, with enhanced basement

membrane deposition, phagocytic activity, ZO-1 expression, and

expression of visual cycle genes including RPE-65.96 In the same year,

Benedicto et al compared the choroidal endothelial transcriptional

profiles of early postnatal mice, when the retina is undergoing termi-

nal differentiation with adult mice with mature retinas. They isolated

developing and mature choroidal endothelial cells, respectively, and

found that the transcriptional programme of the developing choroid is

focused on development and proliferation while adult choroidal endo-

thelium is focused on extracellular matrix deposition and cellular

adhesion.98 Using a transwell coculture system, they found that a vari-

ety of choroidal and nonchoroidal endothelial cell lines markedly

enhance the transepithelial resistance of primary foetal RPE cultures,

and that this effect is partially mediated by lysyl oxidases, a family of

enzymes which catalyze elastin and collagen crosslinking. The forma-

tion of RPE tight junctions appeared to be dependent on the presence

of stiff collagen anchor points in the basement membrane, the deposi-

tion of which is regulated by choroidal endothelium through yet uni-

dentified paracrine factors. The presence of stiff collagen anchor

points seems to be detected by β1-integrin which modulates Rac1

and RhoA/ROCK pathways thereby regulating the RPE tight junc-

tions.98 Together, these results suggest that the specific physical

properties of Bruch's membrane direct immature RPE toward RPE

maturation. These findings are important for the development of

in vitro models as they suggest that an engineered biomaterial with

the correct physical properties may be able to maintain a mature RPE

phenotype at least partly without the need for cocultured choroidal

endothelium.

4.2 | Disease models—AMD

The oBRB is formed by the tight junctions between RPE cells

(Figure 1). These cells are attached to their basement membrane

which forms the innermost layer of Bruch's membrane, and whose

outermost membrane is formed by the basement membrane of the

choroidal endothelium.32 The degree to which these three layers are

interdependent is critical to accurate modeling of disease and regener-

ative strategies. Models have investigated this question using cells

from a variety of sources, either in contact coculture or separated by

a Bruch's-like substitute which may be synthetic or natural.

An important motivation for the development of such models is

understanding the pathogenesis of AMD, one aspect of which is the

formation of choroidal neovascular membranes and the dysregulation

of complement pathways in the choriocapillaris where the pathology

is thought to begin. Other motivations are ophthalmic drug discovery,

RETINAL COCULTURE TECHNIQUES 1539



studying pharmacodynamics and studying the physiological relation-

ship between RPE, Bruch's membrane, and choroid and their develop-

ment. Important questions for regenerative medicine are: Is the

inclusion of the choroid in in vitro models a prerequisite for accurate

modeling of the RPE in health and disease, and do regenerative therapies

need to also target the choroid in diseases such as AMD? Other recent

reviews have looked broadly at the current state of oBRB model-

ling.38,80,99,100 Here, we will aim to answer the above questions, which

are of relevance to the development of in vitro systems for testing

regenerative therapies.

Most noncontact coculture models of the oBRB used a transwell

insert culture system to separate the RPE from the endothelial cells.96

Models of pathogenesis have also used contact coculture (effectively

a model of choroidal neovascularization—when choroidal endothelium

invades through Bruch's membrane to the RPE), hypoxia or high doses

of VEGF to model the disease phenotype, with mature primary endo-

thelial cells and mature primary RPE.96,101-103 The transwell model

allows independent measurement of apical and basal secretion of

growth factors, trans-epithelial resistance, permeability to small mole-

cules, and basement membrane deposition.94,96,98,101-103 Some of

these models can recapitulate complex disease processes. For exam-

ple, Liu et al were able to assess reduced endothelial cell tube forma-

tion and invasion toward the RPE layer in a transwell coculture

model.101 ARPE-19 cells were cultured on polyethylene terephthalate

transwell membranes with 8 μm pores, which allowed invasion of

adjacent RF/6A endothelial cells cultured in Matrigel. Invading RF/6A

endothelial cells on the RPE-side of the membrane were fixed and

counted. Using this assay, they studied the effect of RACK-1 knock-

down on an in vitro model of choroidal neovascularization.

Future work could use patient-derived iPSCs to model the effect

of high- and low-risk AMD genotypes on cocultures of RPE and cho-

riocapillaris.26,27,29 Such work may help to elucidate the early events

which lead to AMD pathogenesis and help us to understand the

mechanisms which lead to diverse clinical presentations in the AMD

patient population.

5 | BIOCOMPATIBLE MATERIALS FOR
COCULTURE

The development of engineered biomaterials designed to mimic the

interphotoreceptor matrix (IPM), Bruch's membrane, and cho-

riocapillaris basement membrane will allow the development of

improved coculture models and regenerative treatments, with

improved differentiation efficiency, reduced phenotypic drift,

improved survival in long-term cultures, and improved lamination of

in vitro or transplanted retina (reduced rosette formation). The use of

biomaterials in in vitro models and retinal regeneration has been

reviewed thoroughly.89,104 Here, we will focus on their importance to

coculture models of the retina.

It is now clear that specific physical properties of the extra-cellular

environment are critical signals which direct embryonic and tissue stem

cell differentiation. These include both cell-cell and cell-ECM

contacts.105-111 Physical queues alone can direct tissue-specific differ-

entiation and can replace some of the factors required to maintain

pluripotency in vitro. Substrate stiffness has been identified as a critical

environmental queue in maintenance of pluripotency and lineage speci-

fication.107,110,112,113 The presence of specific ECM proteins facilitates

tethering to biological or synthetic substrates and thereby facilitates

efficient mechano-transduction of substrate stiffness to intracellular sig-

nals.109,111,112,114 Oligodendrocyte precursor cells are multipotent cells

responsible for regeneration in the central nervous system. It has

recently been shown that age-dependent loss of function in oligoden-

drocyte precursor cells can be recapitulated by culture on stiff hydrogels

which mimic the aged connective tissue and this loss of function can be

restored on soft hydrogels which mimic young brains.110 Similarly,

investigators have already shown that cultured RPE has reduced adhe-

sion and survival on damaged or aged RPE.115,116 Bruch's membrane is

known to stiffen with age and cultured RPE show reduced phagocytic

capacity on stiff vs soft scaffolds.117,118 Resurfacing of aged Bruch's

with ECM components can improve RPE survival in vitro,119 which may

point to loss of anchoring points and/or changes in stiffness as impor-

tant pathological mechanisms. Our group has shown that various

laminins are expressed throughout the developing human retina includ-

ing Bruch's, and that the distribution and expression of these laminins

changes in concert with remodeling and lamination of the developing

retina around weeks 10 to 12 postconception. Furthermore, these

expression patterns were conserved in retinal organoids.120 Changing

physical queues in the developing retinal environment is possibly a

mechanism by which retinogenesis is coordinated.

Most attempts at transplant of outer retinal tissues have focused

on the transplant of dissociated photoreceptor precursors.47 Further-

more, most published organoid culture involves free-floating culture

of the optic vesicles with no surrounding supportive ECM which is

known to be critical for proper RPE maturation.18,98 It is possible that

this partially underlies the current deficiencies in retinal organoid

architecture, and indeed it has been shown that both hydrogel and

complex ECMs can improve organoid development.69,121 Singh et al

generated transplantable planar organoids by culturing them on a bio-

mimetic and biodegradable scaffold.59 Both in vitro models of the ret-

ina and regenerative cell therapies could benefit from the application

of rationally designed biomaterials.

5.1 | Biosynthetic Bruch's membrane

As RPE and choroid endothelium are known to interact

synergistically,92-94,96,98 development of choroid-RPE cocultures is an

attractive option both for in vitro modeling and for transplantation.122

The ideal rationally designed Bruch's membrane would have a

permeability sufficient to allow metabolite diffusion between cell

layers while maintaining structural integrity to physically separate cho-

roidal endothelium and RPE.123 It would allow cell tethering to its sur-

face while having a stiffness which could be physically tuned to the

optimum for RPE on one side and choriocapillaris on the other. It

would biodegrade over a sufficient period to allow RPE and

1540 GHAREEB ET AL.



choriocapillaris to lay down basement membrane.124 The specific

complement of ECM proteins may also be important and can be reca-

pitulated using decellularized ex vivo Bruch's125 or decellularized cho-

roidal ECM which can be revascularized with endothelial cells.126

Ex vivo Bruch's membrane from individuals with outer retinal disease

may serve in coculture models of these diseases.127

Other physical properties which have been investigated are

porosity, wettability, and ion diffusion capacity in a variety of syn-

thetic and natural explants (reviewed in detail here)128 and using a

variety of surface coating to facilitate cell adhesion122,123,129,130; how-

ever, these studies have not investigated stiffness or tethering proper-

ties. Unsurprisingly, several polymers and several surface coatings

containing ECM proteins such as collagens and laminins were found

to be suitable for culture of hESC-derived RPE, although the identifi-

cation of specific conditions which optimize RPE function have been

equivocal.104,128,129 Other studies have focused on the protein com-

position of the RPE-secreted matrix but not on its physical proper-

ties.125,131 Few studies have specifically examined the effect of

scaffold stiffness on RPE culture and more work is required to identify

the optimal tethering and stiffness properties which will facilitate

cocultures models of the outer retina.117,131-133

Poly lactic-co-glycolic acid is a popular biomaterial for drug deliv-

ery and tissue engineering, and is currently being investigated as a

vehicle for the subretinal delivery of iPSC-derived RPE to treat

AMD.36,124 Its advantages include the availability of fabrication

methods, biocompatibility, biodegradability, and tunable mechanical

properties.134

For the transplant of retinal sheets, or perhaps sheets containing

neural retina in addition to RPE and/or choroid, scaffolds which main-

tain cellular packing density and cellular orientation are desirable. The

use of two-photon polymerization has been used to generate scaf-

folds with submicron features. Retinal progenitors nested within

25 μm pores oriented themselves perpendicular to the scaffold.135

5.2 | Biosynthetic IPM

While photoreceptor soma are supported physically and physiologi-

cally by Müller cells, their outer segments are embedded in a highly

specialized extra-cellular matrix, the IPM (Figure 1). The IPM is a

highly complex hyaluronan matrix consisting of regularly repeating

units of peanut agglutinin and wheat germ agglutinin which respec-

tively sheath cone and rod outer segments.136 Photoreceptor outer

segments are also closely associated with hyalectans (Versican and

Brevican) and Interphotoreceptor Matrix Proteoglycans (IMPG1 and

IMPG2), which interact with the hyaluronan scaffold.137 Photorecep-

tor outer segments and RPE do not form intercellular connections and

therefore the IPM may provide an adhesive interface.138 The IPM

additionally facilitates transport of signaling molecules and metabo-

lites between the RPE and photoreceptors. Its components undergo

light-dependent conformational changes, underlying its importance in

maintaining efficient phototransduction.139 Major structural compo-

nents, such as hyaluronan, are secreted by the RPE while other

protein components such as interphotoreceptor retinoid binding pro-

tein are secreted by the photoreceptors.138 Our work has shown that

retinal organoids express several components of the IPM and that the

expression of IPM components IMPG1 and CD44 in retinal organoids

is required for proper development of outer segments and structuring

of the IPM.137

Biosynthetic IPM may be useful in encouraging host RPE interac-

tion and reducing rosette formation in the case of stem cell-derived

neural retina transplant. Hyaluronic acid-based hydrogels among sev-

eral other biomaterials have been investigated as a vehicle for cell

therapies in the retina and central nervous system.140 Work from our

group has shown enhanced differentiation of retinal organoids cul-

tured with RGD-alginate hydrogels.69 Re-engineering the complex

structure of the IPM would be an enormous task. Presumably, in vitro

cocultures of neural retina and RPE would be capable of generating

an IPM although this needs to be determined. In this case, culturing

RPE on a Bruch's-like membrane could be enough to allow cultured

RPE to begin generating IPM. Masaeli et al have attempted this strat-

egy and bioprinted primary porcine photoreceptors onto ARPE19 cul-

tured on a sheet of gelatine methacrylate.141

6 | MICROPHYSIOLOGICAL SYSTEMS

Microphysiological systems (organ-on-a-chip) combine in vitro

coculture models with biomaterials and/or microfluidics in order to

recapitulate one or more key functions of a tissue.142,143 They offer

control over metabolite/drug delivery and waste removal, compartmen-

talization, simulation of flow and movement, and real time physical

measurements. There are numerous examples of microphysiological

systems outside of ophthalmology. These strategies increase the com-

plexity of in vitro models but must focus on reproducing a specific tis-

sue function or process in order to remain interpretable and practically

feasible. Identifying the current barriers to effective stem cell-derived

retinal transplant and modeling them individually will aid progress in

the field of retinal regenerative therapies. As we have previously identi-

fied, these barriers include efficient synaptic integration of the trans-

plant, interaction between photoreceptors and RPE and maturation of

transplants to a fully functional form, among other issues.144

One focus has been to “upgrade” ex vivo models and retinal

organoids. By introducing microfluidics, it is possible to achieve a

more physiological steady state in terms of removing metabolic

by-products and introducing nutrients and oxygen. This could help to

increase the longevity of retinal explants.

Retinal organoids suffer from a necrosis of centrally located cells

likely due to the diffusion limit of oxygen. Recent characterization of

cerebral cortical organoids has found that maturation into cortical

subtypes is impaired by the activation of stress pathways. This activa-

tion is ameliorated, and subtype specification improved by transplan-

tation of cortical organoids into the mouse cerebral cortex. Likewise,

primary progenitors transplanted into cortical organoids adopt stress

pathway activation.145 This indicates it is the in vitro environment

which impairs cortical organoid maturation.
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Microphysiological systems may be used to investigate local

effects of cell therapy, for example, on glial activation,146 to study the

regeneration of the oBRB in the case of stem cell-derived RPE

transplant,100 to optimize regenerative therapies in disease-specific

states (eg, wet AMD)100 and to optimize synaptic integration of

transplanted neural retina.147 Su et al observed synaptogenesis

between two populations of developing mouse retinal precursors in

4 μm guiding channels.147 Compartmentalized experimental setups

such as this could be used to optimize synaptogenesis between stem

cell derived retina and host neurons.

Paek et al designed a polydimethylsiloxane (PDMS) culture cham-

ber, which they filled with primary choroidal endothelium and choroidal

fibroblasts laden in a fibrin/type 1 collagen hydrogel. They observed

self-assembly of endothelial vascular networks which anastomosed

with an input-output circuit and were thereby perfused with culture

media (Figure 4A). They cultured iPSC-derived RPE on this hydrogel

and found greater basement membrane deposition, melanosome

expression, and RPE-65 expression in their coculture model vs mono-

cultures.148 Interestingly, they were also able to create a vascularized

solid tumor-on-a-chip model in which the self-assembled vascular net-

works anastomosed with the tumor blood supply.148 Another strategy

for in vitro vascular networks is shown in Figure 4B.149 This raises the

possibility of perfused retinal organoids in an adapted micro-

physiological system as has been achieved with liver organoids (Figure

4C).150,151

Achberger et al have created the most advanced retinal micro-

physiological system to date by coculturing 180-day-old human iPSC

retinal organoids in individual wells, embedded in a hyaluronic acid-

based hydrogel over a layer of human iPSC RPE.152 They observed

enhanced maturation of photoreceptor outer segments and impor-

tantly, RPE phagocytosis of photoreceptor outer segments. Although

the retinal organoids were far from adult retina in terms of matura-

tion, and the choroid was not represented, this project marks a clear

advance. Retinal organoids were embedded in the chip at day 180 of

differentiation, while in vivo human neural retina and RPE develop in

close contact from approximately day 30.10 Recapitulation of human

retinogenesis may improve the RPE-photoreceptor interaction,

speedup maturation and enable in vitro modeling of retinogenesis.

Furthermore, this model does not overcome the problem of necrosis

at the organoid center due to the oxygen diffusion limit as the

organoids are not vascularized.152

7 | CONCLUSIONS

Coculture models will advance our understanding of outer retinal

physiology and disease. Furthermore, they will help optimize the

delivery, integration, maturation, and functionality of stem cell-

derived retina for transplantation.

In our search, we have not identified a coculture system which

incorporates neural retina, RPE, and choriocapillaris. As we have

shown, all the techniques to achieve such a system are available. In

the coculture systems we have reviewed, the neural retina is most fre-

quently represented by retinal explants, which can be taken from ani-

mals with retinal degenerations. However, the neural retina

component of coculture models may also be represented by hESC- or

iPSC-retinal organoids. In this way, human retinal organogenesis and

patient-specific disease models can be studied.

Microphysiological systems (retina-on-a-chip) incorporate bioma-

terials to mimic Bruch's membrane, choroidal basement membrane, or

the IPM and culture tissues in a 3D organotypic fashion. They may

also incorporate in vitro generated and perfusable vascular networks

to represent the choriocapillaris. Future work may look at incorporat-

ing lab-on-a-chip technology to allow the real-time measurement of

calcium dynamics, cell trafficking, or light responses, for example.

These in vitro models need only capture the essential elements of

complex in vivo interactions to reproduce phenomena of interest.

In vitro models for optimization of neural retina transplant may benefit

from focusing on recapitulating the environment of the host subretinal

space, the important elements of which may be the neural retina, RPE,

and IPM. Models for the optimization of RPE transplant may focus on

modeling diseased Bruch's membrane and choriocapillaris.

Future work may also examine the optimum way to integrate reti-

nal organoids into coculture with RPE and/or choriocapillaris. Factors

such as day of differentiation, coculture media components, and RPE

lines need to be optimized. Additionally, biomaterials can play an

important role in recapitulating the retinal environment. Although

much work has been done in identifying the building blocks of retinal

ECM, more work needs to be done in identifying the 3D organization

of tethering domains and physical properties which emulate the

healthy or diseased retinal ECM.

Recapitulating embryogenesis by providing the correct developmen-

tal queues will direct stem cells toward developing in vitro models and

tissues suitable for transplant. A significant barrier to successful cell

F IGURE 4 Perfusable in vitro generated vasculature may provide models of choriocapillaris. A, De novo generation of endothelial networks
within an extracellular matrix-laden hydrogel. These networks anastomose with main channels (representing arteries and veins, respectively) and
the endothelial network can be perfused with tissue culture medium. RPE is cultured over the vascular networks to generate a model of the RPE

and choriocapillaris. Reprinted with permission from Paek et al.148 Copyright 2019 American Chemical Society. B, Synthetic microvascular
networks embedded within a hydrogel become lined with endothelium and allow remodeling of the surrounding hydrogel by parenchymal cells.
In vitro perfusable tissue is thereby generated and can be linked to a host blood supply via surgical anastomoses (in this case, the rat femoral
artery and vein). Adapted by permission from Springer Nature Customer Service Centre GmbH: Zhang et al.149 Copyright 2016. C, Liver organ
buds generated by recapitulation of mesenchymal condensation are perfused by the host vasculature when transplanted into the mouse
cerebrum (days post-transplant shown). Adapted by permission from Springer Nature Customer Service Centre GmbH: Takebe et al.150 Copyright
2013 Springer Nature. RPE, retinal pigment epithelium
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therapies may be providing immature transplants with the correct cues

for integration into an adult diseased host environment. Advance in vitro

coculture models will be invaluable tools in solving this problem.

In combination with retinal organoid technology, these strategies

will lead to realistic, disease-specific models of ocular diseases. Using

these models, we will be able to create rationally designed stem cell

therapies for the retina and iteratively improve these therapies before

moving to in vivo models and human trials.
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