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Abstract

The orphan nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1) is a critical regulator of development and homeostasis of
the adrenal cortex and gonads. We recently showed that a complex containing E3 ubiquitin ligase RNF31 and the known SF-
1 corepressor DAX-1 (NR0B1) interacts with SF-1 on target promoters and represses transcription of steroidogenic acute
regulatory protein (StAR) and aromatase (CYP19) genes. To further evaluate the role of SF-1 in the adrenal cortex and the
involvement of RNF31 in SF-1-dependent pathways, we performed genome-wide gene-expression analysis of
adrenocortical NCI-H295R cells where SF-1 or RNF31 had been knocked down using RNA interference. We find RNF31 to
be deeply connected to cholesterol metabolism and steroid hormone synthesis, strengthening its role as an SF-1
coregulator. We also find intriguing evidence of negative crosstalk between SF-1 and both transforming growth factor (TGF)
b and Wnt/b-catenin signaling. This crosstalk could be of importance for adrenogonadal development, maintenance of
adrenocortical progenitor cells and the development of adrenocortical carcinoma. Finally, the SF-1 gene profile can be used
to distinguish malignant from benign adrenocortical tumors, a finding that implicates SF-1 in the development of malignant
adrenocortical carcinoma.
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Introduction

The adrenal cortex is the main site for synthesis of mineralo-

corticoids, glucocorticoids and adrenal androgens and is thus of

critical importance for a wide variety of physiological processes

including salt balance, immune system and stress responses. The

fetal adrenal cortex has a hormone-secretion profile distinct from

the adult cortex and it is not until after birth that the adult cortex,

with its three distinct functional and morphological zones, forms.

The fetal zone then regresses by apoptosis. It is believed that the

subcapsular cell layer of the cortex contains adrenocortical

progenitor cells responsible for the regenerative capacity of the

cortex. The progenitors characteristically express the transcription

factors Steroidogenic Factor-1 (SF-1) and DAX-1 (NR0B2), both

belonging to the nuclear receptor family (see [1] for a recent

review).

Adrenocortical carcinoma (ACC) is a rare disease with an

incidence of approximately one per million per year. It has a poor

prognosis and no efficient therapies exist. ACC is believed to

develop in a multistep process where normal cells first transform

into benign tumors. Rearrangements in the benign tumor

sometimes take place and turn it into a malignant, invasive cancer

[2]. Childhood adrenocortical tumors (ACT) are rare, represent-

ing between 0.05–0.2% of all pediatric cancers. The children

usually present symptoms before five years of age. Childhood

ACTs are believed to represent a failure of the fetal adrenal tissue

to regress fully. The tumors often overexpress IGF2 and also carry

other characteristics of the fetal adrenal cortex [3].

An interesting feature of childhood ACTs is their overexpres-

sion of SF-1 [4,5]. SF-1 is a nuclear receptor almost exclusively

expressed in the steroidogenic tissues of the hypothalamic-

pituitary-adrenal/gonadal axis [6,7]. SF-1 is also crucial during

the embryonic development of the adrenal gland [8] and gonads

[9], a point highlighted by the fact that SF-1 knockout mice lack

both adrenals and gonads [10,11]. Functionally, SF-1 is known to

transcriptionally regulate the expression of genes involved in

steroid hormone synthesis and cellular cholesterol homeostasis

[12]. However, less is known about SF-1’s mechanisms of action

and target genes in proliferation and differentiation during

development and cancer [13].

Mechanistically, SF-1 binds as a monomer to specific response

elements in the promoters of its target genes. Bound SF-1 recruits

either corepressor complexes, which put the gene in a silent state,

or coactivator complexes, which activate transcription by altering

histone modifications and recruiting the general transcription

machinery including RNA polymerase II [14,15,16]. Structural

studies have shown that SF-1 has a ligand-binding pocket that can

accommodate phospholipids [17,18,19] and the search for a
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natural ligand is ongoing. Sphingosine has been shown to act as a

natural antagonist ligand to SF-1 [20] and adrenocorticotropic

hormone (ACTH), which raises intracellular cAMP levels and

induces steroidogenesis, was shown to increase sphingosine

catabolism. As the sphingosine concentration drops, the authors

speculate that a natural agonist ligand binds SF-1 instead and

activates transcription of target genes [21]. This would be an

additional mechanism for ACTH to induce steroidogenesis,

complementary to activation of the cAMP-binding transcription

factors (CREB/CREM) that also regulate expression of steroido-

genic enzymes.

Post-translational modifications of SF-1 are known to play an

important role in regulating its transcriptional actions. Phosphor-

ylation of residues in the hinge region by kinases in the MAPK

pathway enhances SF-1-dependent transcription [22] while

SUMOylation of lysine residues in the same region can repress

SF-1 [23,24,25,26]. What signals induce SUMOylation of SF-1

remains to be elucidated. We recently described how repression of

SF-1 via the orphan receptor/corepressor DAX-1 is reliant on the

putative E3 ubiquitin ligase RNF31 (ZIBRA, PAUL, HOIL).

RNF31 can ubiquitinate DAX-1 and it seems that the ubiquitina-

tion is important for the assembly of a corepressor complex

containing DAX-1, SMRT and RNF31 on StAR and aromatase

(CYP19) promoters. The complex does not co-occupy the

promoter together with active RNA pol II, indicating that

transcription is tuned down [14].

In an effort to elucidate the roles of SF-1 and RNF31 in adrenal

steroidogenesis and adrenocortical carcinoma on a genome-wide

level, we performed siRNA-mediated knockdown of SF-1 or

RNF31 6 cAMP in the adrenocortical carcinoma cell line NCI-

H295R. Analysis of the differentially expressed genes indicates a

systemic role for SF-1 in the adrenal cortex, affecting differenti-

ation, proliferation and steroidogenesis and establishes RNF31 as

an important regulator of adrenal steroidogenesis.

Results and Discussion

SF-1 affects a multitude of genes in adrenocortical
carcinoma cells

The human adrenocortical carcinoma cell line NCI-H295R

produces the major adrenal steroid hormones, including gluco-

corticoids and dehydroepiandrosterone (DHEA), and has func-

tional SF-1/DAX-1 and CREB/CREM-pathways. To our

knowledge this is the only human adrenocortical carcinoma cell

line available with all these properties. In this cell line we used an

RNAi-silencing approach combined with raised intracellular

cAMP levels following forskolin treatment to assess the effects of

the two main pathways of steroidogenic gene induction.

Cells were seeded 24 h before transfection with SF-1 siRNA

oligos. Optimizing experiments had shown that 72 h of siRNA

treatment had a good silencing effect. We added forskolin to

indicated samples 16 h before harvest (Figure 1A). The RNAi

treatment knocked down SF-1 mRNA about 70% (Figure 1B) and

protein levels even further (Figure 1C). We also saw a dramatic

decrease of the known SF-1 target gene StAR’s protein levels

(Figure 1C), indicating that the achieved knockdown was sufficient

to detect changes at target-gene level.

After quality control, samples were analyzed on microarrays to

reveal genome-wide effects of SF-1 knockdown (Control vs. siSF-

1), effect of cAMP treatment (Control +/2cAMP) and effect of

cAMP treatment when SF-1 was knocked down (siSF-1 +/2

cAMP). After data processing, a total of 326, 367 and 267 genes

were defined as differentially regulated in the Control vs. siSF-1,

the siSF-1 +/2 cAMP and the Control +/2 cAMP comparisons,

Figure 1. Analysis of SF-1 RNAi +/2 cAMP-treated H295R cells. (A) Experimental design. (B) qPCR of Control and siSF 6 cAMP-treated cells
show approximately 70% efficiency of SF-1 RNAi-mediated knockdown on mRNA level. (C) Western blot showing almost complete knockdown of SF-
1 protein after RNAi-treatment. StAR, a protein under transcriptional control of SF-1, is also depleted, showing efficiency of knockdown on target
gene level. (D) Venn diagram showing overlap between the different groups of differentially expressed genes.
doi:10.1371/journal.pone.0032080.g001

Roles of SF-1 and RNF31 in Adrenocortical Cancer
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respectively. Lists of the 35 most upregulated and 35 most

downregulated genes for each comparison can be found in the

supplementary materials (Tables S1, 2, 3, 4, 5, 6). Notably, SF-1 is

the second most downregulated gene in the siSF-1 microarray.

The overlap (Figure 1D) between the cAMP-treated and SF-1-

knockdown samples was 48 genes (Table 1), representing 15% of

the total number of genes found regulated by SF-1 knockdown.

Both SF-1 and cAMP are considered inducers of steroidogenesis,

which should result in upregulation of steroidogenic genes in the

cAMP-treated and downregulation in the siSF-1. This was true

for 11 out of 48 genes, not all of them clearly connected to

steroidogenesis. The overlap between the siSF-1 +/2 cAMP

comparison and the Control +/2 cAMP was 128 genes, which

corresponds to 48% of the Control + cAMP-regulated genes – a

large and expected overlap. Between the siSF-1 and siSF-1 +
cAMP sample, there was an overlap of 69 genes representing 22%

of the siSF-1 genes. The overlap between all three experiments

was 28 genes.

Knockdown of SF-1 upregulates approximately the same

number of genes as it downregulates and though an unknown

number of these genes are indirect targets it seems plausible that

SF-1, as many other NRs including LRH-1, has a repressive effect

on some of its target genes.

SF-1 and cAMP regulate steroidogenic target genes
To further confirm the validity of the knockdown methodology

and the microarray cut-off limits, we ran qPCR on known SF-1

target genes. In a recent review, Hoivik et al. [27] lists adrenal SF-1

target genes. We compared this list to our microarray results and

found 6 of the 13 mentioned genes regulated by SF-1 and 5 by

cAMP treatment, and performed verifications using qPCR (Figure

2A). A 100% overlap is not to be expected since the target genes in

the literature are reported from different systems (cell lines or

tissues) and species. Overall, the genes known to be induced by SF-

1 correlate quite well with those downregulated by SF-1

knockdown in our experiments.

In our system we did not see effects of SF-1 knockdown on

DAX-1 basal expression, neither in the microarray analysis nor

qPCR experiments, even though the standard deviation in the

qPCR data is quite large (the tendency, if any, is rather

upregulation in response to SF-1 knockdown). This is surprising,

as previous studies using promoter reporter assays and overex-

pression have identified SF-1 response elements in the DAX-1

promoter [28,29]. Those appear active in the developing mouse

gonad [30] and DAX-1 levels are decreased in SF-1 knockout

mice [31]. However, it is plausible that SF-1 could regulate DAX-

1 expression in a tissue-specific manner. In that case, it may well

be that DAX-1 is independent of SF-1 in the state represented by

the NCI-H295R cells or that compensatory mechanisms step in

when SF-1 expression is diminished.

The steroidogenic genes tested are also targets of cAMP

signaling and thus serve the same confirmatory purpose for the

Control +/2 cAMP array. The genes are generally upregulated

with two exceptions, DAX-1 and SULT2A1, which are distinctly

downregulated by forskolin treatment. We tested the effect of

raised cAMP levels on proximal (1 kb) promoter reporter

constructs of StAR, DAX-1 and SULT2A1 in the NCI-H295R

cells. Interestingly, while the endogenous gene is clearly down-

regulated, the proximal promoters were induced by cAMP (Figure

2B). This indicates that the effect is mediated either by elements

upstream of the cloned promoter fragments or that chromatin

remodeling events not captured by the artificial promoter are

involved. Manna et al. reported on the inhibitory effect of cAMP

on DAX-1 mRNA and protein expression and showed that it

could be abolished by inhibiting either PKA or PKC and that it

required de novo protein synthesis [32], and therefore should not be

a direct effect of cAMP activating a transcription factor. To our

knowledge, the inhibitory effect of cAMP on SULT2A1 has not

been reported before. It seems to be a tissue-specific effect as raised

cAMP levels in hepatocytes cause an increase in SULT2A1

expression that is dependent on the nuclear receptor CAR [33].

Whether or not the cAMP-dependent repression of SULT2A1 and

DAX-1 follows similar mechanisms and what those mechanisms

may be remains to be investigated.

RNF31 is a regulator of adrenal steroidogenic processes
We recently identified RNF31 as a member of a corepressor

complex including SMRT and DAX-1 that is involved in

repression of SF-1-mediated transcription [14]. To investigate

the genome-wide effects of RNF31 we used siRNA to knock down

its expression in the NCI-H295R cell line. The knockdown of

RNF31 was less efficient than that of SF-1, about 60% at the

mRNA level (Figure 3A) and with some residual protein remaining

(Figure 3B). However, the protein level of the target gene StAR

was notably increased upon knockdown of RNF31, indicating that

the achieved level was sufficient to detect putative target genes

(Figure 3B). Using the same experimental outline as for the SF-1

experiment, we observed that RNF31 knockdown resulted in 355

Table 1. Genes changed by both siSF-1 and cAMP treatment.

siSF-1 downregulated siSF-1 upregulated

Gene siSF-1 cAMP Gene siSF-1 cAMP

STAR 21.47 2.30 TFPI2 0.74 3.03

RHOB 21.09 1.46 GNG11 0.79 1.63

CSN1S1 20.99 2.13 SLC12A2 0.79 1.42

SCARB1 20.91 1.43 DNER 0.57 1.26

CYP11A1 20.85 1.05 ENPP2 0.98 1.08

ITGA9 20.85 1.02 PBX1 0.67 0.91

DUSP16 20.84 0.96 ATP1B3 1.29 0.78

CYP17A1 20.81 1.90 OSBPL6 0.82 20.72

HSPD1 20.77 1.10 UACA 0.57 20.75

MOBKL3 20.76 1.47 ZNRF3 0.87 20.75

C2CD2 20.68 1.00 PIP4K2A 1.28 20.78

TMEM200A 21.34 21.03 NKD1 1.57 20.79

SULT2A1 20.83 21.50 AXIN2 1.07 20.85

SV2B 20.71 21.34 SLC7A8 1.37 20.87

SMS 20.61 21.07 KCTD12 0.70 20.98

SLC35D1 20.63 21.04 ANGPTL2 0.85 21.06

PDE2A 20.84 20.90 CCND2 1.36 21.16

KLHL5 20.77 21.01 ACPL2 0.59 21.36

HSPB7 20.70 20.84 APCDD1 1.24 21.42

GSTA2 20.79 21.31 FGF13 1.32 21.48

GSTA1 20.80 21.36 PRSS23 0.80 21.49

FIBCD1 20.67 21.10 ANKFN1 1.83 22.25

CCDC141 20.73 21.23

ALDH1A1 20.57 21.08

AGTR1 20.67 20.77

Values given in log2 (fold change).
doi:10.1371/journal.pone.0032080.t001
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regulated genes. The overlap with the SF-1 knockdown is 50 genes

(Figure 3C and Table 2) and of those, 9 genes were upregulated in

the siRNF31 while downregulated in the siSF-1 sample (Table 2).

Tables of the 35 most up- and downregulated genes,

respectively, in the siRNF31 arrays can be found in the

supplementary materials (Tables S7, 8, 9, 10).

In the Control vs. siRNF31 microarray experiment, the known

RNF31 target genes StAR and CYP19A1 [14] were found to be

regulated. The microarray also identified, and qPCR confirmed,

MC2R, SCARB1, SULT2A1 and CYP17A1 as putative targets

for RNF31. As all of these genes are reported SF-1 targets this fits

our model wherein the corepressor complex including RNF31 is

recruited by SF-1 to its target promoters. Future work has to

confirm this model for these new putative target genes, for

example using chromatin immunoprecipitation (ChIP) assays.

In general, knockdown of SF-1 or RNF31 does not seem to

fully inhibit cAMP induced gene regulation, even though it

attenuates the response as the basal level changes, and thus the

induction starts from a higher (RNF31) or lower (SF-1) level. This

confirms the finding of Sugawara et al. [34] that SF-1 is not the

major factor for cAMP induction of steroidogenic enzymes. Part

of the remaining response, however, is likely due to traces of SF-1

and RNF31 still being expressed, as the siRNA does not

completely abolish their expression. A Venn diagram showing

the overlap between the cAMP-treated samples can be found in

Figure 3D.

Figure 2. Confirmation of steroidogenic target genes differentially expressed in microarrays and promoter assays of StAR, DAX-1
and SULT2A1 proximal promoters after cAMP treatment and flow-cytometry assay of siSF-1 treated cells. (A) qPCR showing mRNA
levels of six steroidogenic target genes. (B) Luciferase reporter assays of StAR, DAX-1 and SULT2A1 promoters after 16 h of 6 cAMP treatment show
that the down regulation of DAX-1 and SULT2A1 mRNA levels after cAMP-treatment cannot be recreated with the proximal 1 kb of the promoters
alone. (C) Expression targets of DAX-1 differentially expressed in the Control vs. siRNF31 microarray as identified by Pathway Studio. Error bars show
standard deviation. Statistical analysis done with Student’s t-test (*p,0.05; **p,0.01; ***p,0.001).
doi:10.1371/journal.pone.0032080.g002
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We used pathway-enrichment analysis to mine the large data

sets for functional implications (Table 3). Interestingly, the top five

most enriched processes affected when RNF31 was silenced are all

indicative of steroidogenic processes. This supports that RNF31 is

indeed involved in steroidogenic regulation, in line with our

proposed model of RNF31 action. Additional sub-network

enrichment analysis revealed that DAX-1 is statistically linked

(p = 0.0015) to the set of differentially regulated genes affected by

silencing of RNF31. DAX-1 turns up as a hub among the genes

related to steroidogenesis that were upregulated upon RNF31

knockdown (Figure 2C). This strengthens our hypothesis that

RNF31 works together with DAX-1 in regulating a subset of the

SF-1 target genes.

As mentioned, 9 of 50 genes were upregulated by siRNF31 and

downregulated by siSF-1. However, the majority of the genes, 29

genes, react the opposite way; they are upregulated by siSF-1 and

downregulated by siRNF31. Remaining 12 genes are regulated in

the same direction by both treatments. How the latter groups of

genes are regulated by SF-1 and RNF31 at a mechanistic level and

if this involves an SF-1/RNF31 interaction remains to be

investigated. The 29 genes could for example be the result of an

indirect regulation where SF-1 upregulates a repressor.

SF-1 and RNF31 affect genes involved in Wnt/b-catenin
signaling

We performed pathway-enrichment analysis on the siSF-1

dataset (selected gene ontology (GO) terms in Table 4, first 50 GO

terms in Table S11) and found several interesting regulated

pathways, among them the Wnt/b-catenin pathway. Activation of

the Wnt signaling via binding of Wnt proteins to the Frizzled

receptors inhibits phosphorylation of b-catenin by Casein-

dependent kinase 1 and Glycogen synthase kinase-3; this leads

to b-catenin stabilization and relocalization to the nucleus, where

it can activate TCF-dependent transcription of target genes

including Axin-2 and Cyclin D. SF-1 and Wnt/b-catenin signaling

have previously been shown to synergize in the activation of SF-1

target genes such as Inhibin a [35] and luteinizing hormone [36]

in the gonadal tissues, probably through direct interaction between

b-catenin and SF-1, something that has also been shown for LRH-

1 [37], SF-1’s closest relative within the NR family.

Our analyses show that genes involved in the Wnt/b-catenin

signaling pathway is overrepresented among both SF-1- and

RNF31-regulated genes (Figure 4B). Transcripts for the Wnt

protein Wnt5a were detected as SF-1 regulated by both

microarray and qPCR (Figure 4A), as was the activator CK-1c,

the repressors DKK2 and AXIN2 and the Wnt target genes

Cyclin D2 and AXIN2. The genes are mostly upregulated in

response to SF-1 knockdown, identifying SF-1 as a functional

repressor of their transcription. The mechanistic explanation of

this remains to be investigated but possibilities include transrepres-

sion on the promoters or decreased expression of another

transcriptional repressor. Figure 4C shows the placement of the

siSF-1 regulated genes within the Wnt/b-catenin pathway.

Using the Wnt/b-catenin luciferase reporter plasmid TopFlash,

we could see that increasing concentrations of SF-1 repressed b-

catenin induced transcription (Figure 4B). Thus it seems that SF-1

can repress Wnt/b-catenin signaling directly which might explain

the increase of Wnt/b-catenin targets Cyclin D2 and Axin 2 upon

SF-1 knock down in NCI-H295R cells.

For RNF31, GO term-enrichment analysis identified the Wnt

pathway as significantly affected (p = 0.015) and 8 Wnt-pathway

targets were found among the differentially expressed genes

Figure 3. Analysis of differentially expressed genes in siRNF31 ± cAMP-treated H295R cells. (A) qPCR showing approximately 60%
efficiency of RNF31 RNAi-treatment on mRNA level. (B) Western blot showing efficient knockdown of RNF31 protein and upregulation of RNF31
target StAR in RNF31 RNAi-treated H295R cells. (C) Venn diagram showing overlap of differentially expressed genes in siSF-1 and siRNF31 microarrays.
(D) Venn diagram overlap among the differentially expressed genes in all cAMP-treated samples.
doi:10.1371/journal.pone.0032080.g003
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(DKK2, DKK1, NXN, KREMEN2, NLK, MITF, PPM1A, FZD6).

Of these, only DKK2 was also changed by siSF-1. All genes but NLK

were downregulated by RNF31 knockdown, indi-

cating that RNF31 is directly or indirectly repressing these genes.

Interestingly, SF-1 and Wnt/b-catenin signaling are function-

ally connected both in the development and homeostasis of the

adrenal cortex. Conditional knockout mice where b-catenin is

removed from SF-1-expressing cells show adrenal agenesis, similar

to the SF-1 knockout mice [38]. Development initiates normally

but the KO adrenals show increased differences in size compared

to wild type and at E18.5 no traces of the developing gland can be

seen [38]. In addition, Wnt4 KO mice show gonadal develop-

mental defects with adrenal-type cells infiltrating the gonads

indicating that Wnt ligands play a role in directing the cellular fate

of the adrenogonadal primordium [39]. In the adult, active b-

catenin signaling is restrictively located to the subcapsular region

of the adrenal cortex [38]. This region is of special interest, as it is

Table 2. Genes changed by both siSF-1 and siRNF31
treatment.

siSF-1 siRNF31

siSF-1 downregulated

STAR 21.47 0.89

CSN1S1 20.99 0.71

SCARB1 20.91 0.42

ITGA9 20.85 0.76

DUSP16 20.84 0.48

SULT2A1 20.83 0.45

CYP17A1 20.81 1.12

MC2R 20.61 0.88

OR4S2 20.58 0.47

NCRNA00086 20.99 20.45

ZBTB7C 20.85 20.55

KLHL5 20.77 20.55

FNDC3B 20.64 20.73

SLC35D1 20.63 20.52

FAM114A1 20.57 20.62

siSF-1 upregulated

MYB 0.98 0.47

TGFB2 0.76 0.76

GJB2 0.76 0.74

TFPI2 0.74 0.74

CD164 0.73 0.41

RNFT1 0.72 0.49

GPR37 2.72 20.51

GPR64 1.90 20.86

CHGB 1.88 20.53

ANKFN1 1.83 21.32

DKK2 1.48 20.65

FGF13 1.32 20.87

PIP4K2A 1.28 20.42

APCDD1 1.24 20.85

SLC17A5 1.22 20.44

STC1 0.96 20.90

FST 0.94 20.80

FAH 0.87 20.51

LIN7B 0.85 20.62

ANGPTL2 0.85 20.65

GRN 0.82 20.48

OSBPL6 0.82 20.52

SLC1A1 0.82 20.64

SMAD9 0.81 20.60

ASAP1 0.78 20.47

LRP12 0.77 20.63

CTTNBP2 0.74 20.49

DACH2 0.72 20.73

KCTD12 0.70 20.80

ANXA2 0.68 20.50

ZNF462 0.67 20.53

Table 2. Cont.

siSF-1 siRNF31

SLC20A2 0.62 20.47

MUM1L1 0.61 20.42

ANXA2P1 0.61 20.48

ACPL2 0.59 20.82

Values given in log2 (fold change).
doi:10.1371/journal.pone.0032080.t002

Table 3. Top 20 GO biological processes in functional
analysis of siRNF31 microarray results.

Biological process Count P-Value

GO:0006694,steroid biosynthetic process 12 6.75E-07

GO:0008202,steroid metabolic process 14 1.52E-04

GO:0008610,lipid biosynthetic process 18 1.82E-04

GO:0016126,sterol biosynthetic process 6 5.20E-04

GO:0016125,sterol metabolic process 9 7.42E-04

GO:0030198,extracellular matrix organization 9 9.00E-04

GO:0030199,collagen fibril organization 5 2.20E-03

GO:0046394,carboxylic acid biosynthetic process 10 3.14E-03

GO:0016053,organic acid biosynthetic process 10 3.14E-03

GO:0043062,extracellular structure organization 10 4.38E-03

GO:0008203,cholesterol metabolic process 7 8.72E-03

GO:0042471,ear morphogenesis 6 8.83E-03

GO:0043583,ear development 7 1.01E-02

GO:0009719,response to endogenous stimulus 16 1.22E-02

GO:0007267,cell-cell signaling 21 1.25E-02

GO:0044092,negative regulation of molecular function 14 1.30E-02

GO:0006695,cholesterol biosynthetic process 4 1.33E-02

GO:0016055,Wnt receptor signaling pathway 8 1.46E-02

GO:0045859,regulation of protein kinase activity 14 1.66E-02

GO:0009064,glutamine family amino acid metabolic
process

5 1.78E-02

doi:10.1371/journal.pone.0032080.t003
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believed to harbor the progenitor cells responsible for the

regenerative capacity of the adrenal cortex. These cells are also

SF-1 and DAX-1 positive and may stem from the fetal cortical

zone (see [1] for a recent review). A conditional KO where b-

catenin signaling is impaired but not totally ablated in the SF-1

expressing cells has been made [38]. Interestingly, these mice are

born with functioning adrenal glands but the cortex degenerates

with age, indicating that the subcapsular progenitors are not

functioning properly or that there is a shortage of progenitor cells,

again highlighting the importance of b-catenin signaling in the SF-

1 positive progenitors.

Aberrant b-catenin signaling is also a common feature in

cancer, including somatic, activating mutations of b-catenin,

which lead to continuous activity of b-catenin target genes. Such

mutations have been identified both directly in adrenal tumors and

in the cell line NCI-H295R. In NCI-H295R the S45P mutation

has been shown to cause the b-catenin pathway to be constitutively

active [40]. The Wnt target Cyclin D2 [41] that is upregulated in

our data is important for cell-cycle progression and increase in its

expression might increase tumor growth.

A thorough mapping of the functional and mechanistic

relationship between the SF-1 and Wnt/b-catenin pathways

promises to provide insights into both adrenal development and

homeostasis that could eventually lead to efficient strategies for

fighting adrenocortical carcinomas. Especially encouraging in this

aspect is the data showing that repression of either pathway

inhibits the growth of adrenocortical cells [42,43]. Our data show

Table 4. Selected GO biological processes from siSF-1
pathway-enrichment analysis.

Term Count P-Value

2. Positive regulation of developmental process 16 9.15E-05

4. Positive regulation of macromolecule
biosynthetic process

25 3.69E-04

5. Adherens junction 11 4.61E-04

6. Wnt receptor signaling pathway 10 4.74E-04

7. Positive regulation of cell differentiation 13 5.98E-04

8. Response to hormone stimulus 17 6.01E-04

9. Steroidogenesis 4 6.21E-04

10. Response to organic substance 26 6.38E-04

11. Osteoblast differentiation 6 7.20E-04

12. 39,59-cyclic-nucleotide phosphodiesterase activity 5 7.35E-04

13. Positive regulation of macromolecule
metabolic process

29 7.65E-04

19. Sex differentiation 10 1.11E-03

27. Regulation of cell proliferation 26 2.16E-03

45. TGF-beta signaling pathway 7 4.16E-03

doi:10.1371/journal.pone.0032080.t004

Figure 4. Putative SF-1 targets in the Wnt/b-catenin-signaling pathway. (A) qPCR data of three genes in the Wnt/b-catenin pathway that are
changed after siSF-1 knockdown. (B) Change in b-catenin responsive reporter plasmid TopFlash activity with increasing amounts of SF-1. Values
shown are fold change compared to reporter plasmid luciferase activity without transfected b-catenin. (C) Schematic Wnt/b-catenin pathway with
genes changed by siSF-1 marked in red (upregulation). Error bars show standard deviation. Statistical analysis done with Student’s t-test (* p,0.05;
**p,0.01;***p,0.001).
doi:10.1371/journal.pone.0032080.g004
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that SF-1 may actively impact Wnt/b-catenin signaling both

directly by inhibiting b-catenin-induced transcription (Figure 4 B)

and by affecting the levels of proteins involved in the Wnt/b-

catenin pathway.

SF-1 knockdown regulates genes involved in TGFb
signaling

Overrepresentation analysis identified TGFb signaling as a

significantly enriched pathway (p = 0.004) among SF-1-regulated

genes. Nine genes classified as belonging to the TGFb pathway

were regulated (TGFB2, BMP4, SMAD9, MAPK1, NOG,

LTBP1, FST, TGIF1, RUNX2) by SF-1 knockdown. We selected

four of these (TGFB2, SMAD9, FST and BMP4) and confirmed

their regulation using qPCR (Figure 5A). We further mapped the

locations of most of the regulated genes in the TGFb pathway

(Figure 5C). Prominently, all TGFb-connected genes but MAPK1

(ERK2) were upregulated upon SF-1 knockdown. This indicates a

role for SF-1 as a negative regulator, direct or indirect, of the

expression of genes in the TGFb pathway. The functional output

of these changes awaits future investigations.

TGFb signaling has previously been shown to act inhibitive on

steroidogenesis in the NCI-H295R cell line [44]. A connection to

SF-1 was made when it was shown that TGFb1 downregulates SF-

1 expression [45] and SMAD3 inhibits SF-1-induced CYP17

expression [46], but the molecular mechanisms and physiological

consequences remain unclear.

The TGFb family of cytokines contains over 30 members in

humans and drives processes that promote differentiation and

control proliferation in pre-malignant tissues. However, in some

instances the dysregulation occurring in malignant tumors can

turn TGFb cytokines into mitogens that stimulate continuous

growth and metastasis [47]. To investigate the effects of TGFb2,

which was upregulated by SF-1 knockdown, in adrenocortical

NCI-H295R cells, we treated the cells with TGFb2 and measured

cell proliferation 16 h later using flow cytometry. The number of

cells in S-phase increased and those in G1/G0 decreased upon

treatment, indicating that the rate of proliferation increased

(Figure 5B). Thus, the NCI-H295R cells have acquired the

deregulated TGFb signaling of a cancer cell. It has been suggested

that childhood adrenocortical tumors could be treated by lowering

the expression levels of SF-1 or by inhibiting its transcriptional

activities using antagonist ligands. Potentially, the increased

TGFb2 expression resulting from SF-1 knockdown could pose a

problem for such a therapy if childhood tumors have dysregulated

TGFb signaling like the NCI-H295R cells, and this needs to be

explored further.

SF-1 and genes involved in adrenocortical development
and cancer

As described above, we found genes involved in Wnt- and

TGFb-signaling pathways to be enriched among the SF-1-

regulated genes, as were genes related to developmental processes

and cellular proliferation. SF-1 has been linked to adrenocortical

cancer in general and to childhood adrenocortical tumors (ACTs)

in particular [13]. Studies have shown that SF-1 is overexpressed

in childhood ACTs compared to normal adrenal tissue [4,5] and

that in NCI-H295R cells overexpression of SF-1 leads to increased

proliferation and tumor growth [48]. In a paper studying the

genome–wide effects of SF-1 overexpression in NCI-H295R cells,

Doghman et al. showed that FATE1 is involved in mediating this

effect but the exact mechanism remains elusive [48]. We

compared the two datasets: ours, where we have knocked down

SF-1 and theirs, where they have overexpressed SF-1, and we

found an overlap of 12 genes out of 71 genes that are comparable

between the different microarray platforms (Doghmann et al.

report a total of 98 genes as regulated by overexpression). 10 of the

12 genes are regulated in the opposite direction in the knockdown

compared to the overexpression: FATE1, C21orf25, KIAA1913,

APOA1, HSPB7 and SULT2A1 are upregulated by SF-1

overexpression and downregulated by SF-1 knockdown while

ANKFN1, ENPP2, FGF13 and ACPL2 are regulated the opposite

way. The low degree of overlap could be due to the effects of

clonal selection when Doghman et al. made the SF-1 overexpress-

ing subclone of the NCI-H295R cells or other differences in

experimental setup. Surprisingly, the overexpression data set does

not show changes in known SF-1 target genes such as StAR or

CYP17A1. This could indicate that the NCI-H295R cells already

contain maximum dosage of SF-1 for full SF-1 activity or that

some activating signal or ligand is functioning inappropriately

when SF-1 is overexpressed. The Doghman study also showed that

RNAi-mediated SF-1 knockdown decreased proliferation in NCI-

H295R cells. We also saw a slight reduction of proliferation rate in

siSF-1-treated cells compared to control-treated cells (Figure 5D).

The reduction of cells in S-phase was statistically significant at the

5%-level (both from histogram and BrdU staining).

We found that Insulin-like growth factor-II (IGFII) gene IGF2

was downregulated following SF-1 knockdown. IGF2 encodes a

protein known to have proliferative effects on adrenal cells [2]. It is

abundantly expressed during fetal development and thought to

govern growth of the fetal zone of the adrenal cortex. After birth,

levels of IGFII drop and the fetal zone regresses in an apoptotic

process while the adult zonation of the cortex takes place. It has

also been shown that IGFII affects steroidogenesis in the adrenal.

IGF2 is overexpressed in most adrenocortical carcinomas and its

overexpression is believed to play a pivotal role in the

transformation of a tumor from a benign to a malignant state

[2]. The NCI-H295R cell, which is derived from a malignant

adrenocortical carcinoma, has been shown to produce IGF2,

which has a proliferative effect on the cells [49]. IGF2

downregulation upon SF-1 knockdown could be beneficial with

respect to decreased tumor growth and of interest therapeutically

as different treatments designed to decrease IGF2 levels have been

suggested for adrenocortical carcinoma [1]. Interestingly, cAMP

treatment of the cells did not affect IGF2 mRNA levels indicating

that the effect may be due to SF-1 activity directly and not due to

decreased hormone levels in the growth medium.

During embryonic development, SF-1 expression has been

shown to be driven by a fetal adrenal enhancer element (FAdE)

located within intron 4. This enhancer element contains binding

sites for the homeobox protein Pre-B-Cell Leukemia Transcription

Factor-1 (PBX1) and SF-1 itself. PBX1 seems to initiate SF-1

expression in early development and SF-1 then drives its own

expression [50]. In line with this data is the observation that PBX1

is expressed in the developing adrenal and that PBX1 knockout

mice (embryonically lethal at day 15/16) suffer from adrenal

agenesis [51]. PBX1 also seems to be important for adult adrenal

proliferation as PBX1 haploinsufficient mice (PBX1+/2) have

lower adrenal weight and a reduced regenerative capacity of the

adrenal than wild type mice [52]. Interestingly, PBX1 and SF-1

seem to share steroidogenic target genes within the adrenal

(MC2R and CYP17) and SF-1 has been reported to upregulate

PBX1 expression in NCI-H295R cells in transfection assays [52].

In our data however, loss of SF-1 seems to increase PBX1

expression, perhaps via some compensatory mechanism. Increased

PBX1 expression could be of importance for adrenal proliferation

rate and this should be investigated if SF-1 antagonists are tried for

reducing adrenal tumor growth.

Roles of SF-1 and RNF31 in Adrenocortical Cancer
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Figure 5. Putative SF-1 target genes in TGFb signalling pathways identified from pathway enrichment analysis in the DAVID online
resource, siSF-1 effect on H295R cell proliferation. (A) qPCR showing the effect on mRNA level of SF-1 knockdown 6 cAMP treatment proteins
in the TGFb-pathway. (B) Flow-cytometry analysis of cells treated with TGFb2 show significantly more cells in S-phase and less in G1/G0 after TGFb2
treatment. (C) Schematic representation of the TGFb-pathway with genes changed by SF-1 knockdown marked red for upregulation and green for
downregulation. (D) Flow cytometry analysis of siSF-1 or control treated cells show more cells in G1/G0-phase and less in S-phase after SF-1
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Our findings were made in the NCI-H295R cell line, the

standard adrenal cell line expressing SF-1 that is highly relevant

for the human adrenal cortex. As this represents the only human

cell line available to study the effects of SF-1 in the human

adrenal cortex and in adrenocortical carcinoma, we cannot

replicate these data in another cell line. To address this

limitation, and to assess the clinical relevance of the genes

affected by SF-1 knockdown in NCI-H295R, we interrogated

their expression in a recent transcriptome-profiling study of 92

adrenocortical tumors [53]. By hierarchical clustering, our gene

set (Control vs. siSF-1) was able to part the tumor samples into

two major clusters, whereof one consisted of all (34/34) malignant

ACCs and six (6/58) adrenocortical adenomas (ACAs). The other

cluster consisted entirely of benign ACAs (52/58) (Figure 5E).

The clustering of ACAs showed statistical significance per

bootstrap resampling for a majority of the samples (p,0.05,

data not shown). Although the clustering of ACCs did not show

statistical significance per bootstrap resampling, the association of

tumor type with cluster was significant (p,0.01), as determined

by Fisher’s exact test. The regulation of these genes did not

completely concur with up-/downregulation in our microarray

experiments; nevertheless, it shows that they are involved in the

tumorigenic processes in aggressive adrenocortical tumors and it

is also possible that there is a subtype of ACCs where SF-1

signaling is aberrant. The strong ability of the SF-1 profile to

classify between benign and malignant clinical samples of

adrenocortical tumors indicates SF-1 signalling as imperative

during development of adrenocortical cancer.

Conclusions and future directions
In this study we have mapped the effects of depleting

adrenocortical cells of either SF-1 or RNF31. We found a strong

connection between RNF31 and the steroidogenic pathway, which

corroborates our previous result connecting SF-1, steroidogenesis

and RNF31. Our data additionally suggest a role for SF-1 beyond

regulation of steroid hormone production in the adrenal.

Connections to TGFb and Wnt/b-catenin signaling are made,

for the first time indicating that SF-1, through yet to be described

mechanisms, may have a repressive effect on these intracellular

signaling pathways.

Transrepression is a specific mechanism of transcriptional

crosstalk that allows some nuclear receptors to inhibit other

signaling pathways [54]. Intriguingly, SF-1’s closest homologue

LRH-1 (NR5A2) can transrepress genes involved in the hepatic

immune response via a tethering mechanism [55]. LRH-1 and SF-

1 share many functional similarities and it will be interesting to see

if SF-1 mimics the tethering mechanisms of LRH-1. In the case of

LRH-1, SUMOylation appears to play a pivotal role in the

transrepression mechanism by allowing it to tether to target

transcription factor-corepressor complexes. SUMOylation is also

known to repress the actions of SF-1 in part by decreasing its

affinity to certain DNA response elements [25]. Perhaps this, in

combination with an LRH-1-like tethering mechanism, could

trigger SF-1 transrepression of pathways such as TGFb or Wnt

(Figure 6). Experiments exploring such hypotheses will hopefully

lead to advances in the SF-1 field and also result in a better

understanding of the physiology of SF-1 in its target tissues.

Materials and Methods

Cell lines and cell culture
The human adrenocortical carcinoma cell line NCI-H295R was

acquired from ATCC (CRL-2128). Cells were maintained in

DMEM/F12 (Invitrogen) medium supplemented with 1% ITS+
(BA Biosciences) and 2.5% NU-Serum (BA Biosciences) and

subcultured every 2–3 days.

siRNA and forskolin treatment
A mixture of four siRNA oligos was used for knockdown of SF-1

(siGENOME SMARTpool M-003429, Dharmacon, Thermo

Scientific) and RNF31 (siGENOME SMARTpool D-021419,

Dharmacon, Thermo Scientific), respectively. As non-targeting

control an oligo targeting luciferase was used (D-001206-14,

Dharmacon, Thermo Scientific). siRNA transfections were

performed as described in [14]; for qPCR 15 mm cell culture

dishes were used; for microarrays 10 cm dishes. 25 mM forskolin

was added to indicated samples 16 h before harvest.

RNA isolation and qPCR
RNA was harvested using the E.Z.N.A. total RNA kit (Omega

Biosciences) according to the manufacturer’s instructions. RNA

concentration was measured and quality assessed with a Nanodrop

(ND-100) spectrophotometer. cDNA (500 ng RNA/reaction)

synthesis was performed using Superscript III (Invitrogen)

knockdown. (E) The SF-1 gene expression profile can classify malignant from benign adrenocortical tumors in clinical samples. The heatmap shows
relative expression of genes differentially expressed in our siSF-1 microarray experiments in a study cohort of 58 ACCs and 34 ACAs [53]. Up- and
downregulation is indicated by red and green, respectively, scaled across rows. The top bar illustrates the significant (p,0.01) separation of
carcinomas (red) from adenomas (blue) by hierarchical clustering. Error bars show standard deviation. Statistical analysis done with Student’s t-test
(* p,0.05; **p,0.01; ***p,0.001).
doi:10.1371/journal.pone.0032080.g005

Figure 6. Hypothesis of SF-1 mechanism acting both in cis and
in trans. (A) Classical SF-1 action on steroidogenic enzyme gene
promoters. SF-1 binds promoters in cis and recruit coactivators and the
general transcription machinery to activate transcription. Raised
intracellular cAMP levels due to ACTH (in the adrenal) activation of
MC2R activates the CREB/CREM transcription factors that work
synergistically to further increase transcription rates. Input from Wnt/
b-catenin signalling through direct binding of b-catenin to SF-1 can also
increase transcription. (B) Possible mechanisms of SF-1 dependent
repression of Wnt/b-catenin signaling. 1. SF-1 binds in cis to promoters
but due to post-translational modifications and/or specific corepressor
recruitment represses instead of activates target gene transcription. 2.
SF-1 binds in trans to transcription factor complex and directs
corepressors to the site to repress transcription. This could also be
mediated by post-translational modifications like SUMOylation. A third
option is that transcription factors or corepressors whose expression is
activated by SF-1 acts as repressors of the TGFb and Wnt/b-catenin
signalling making SF-1 an indirect regulator.
doi:10.1371/journal.pone.0032080.g006
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according to Invitrogen’s protocol. qPCR primers were designed

using Primer Express (Applied Biosciences) or Primer-BLAST

(NIH) and span exon-exon junctions in all possible cases. qPCR

was run on 7500 Fast instruments (Applied Biosciences) using Fast

SYBR Green Master Mix (Applied Biosciences), qPCR data were

analyzed using the DDCT-method. All samples were run in

biological quintuplicate (n = 5) and analyzed for statistical

significance compared to the control sample using Student’s t-

test with Welch’s correction (not assuming equal variance). A

confidence interval of 95% was used. Calculations were performed

in GraphPad Prism 5.0 for Macintosh.

Protein preparation and Western blot
Cells were lysed in 200 ml RIPA buffer (1% NP-40, 0.1% Triton

X-100, 150 mM NaCl, 50 mM Tris, Complete protease inhibitors

(Roche), pH 7.4). Protein concentration was assayed using the

BCA kit (Pierce). Equal amounts of protein were mixed with SDS-

PAGE sample buffer, boiled and run on 10% SDS-PAGE gel.

Proteins were transferred to Hybond-C super membrane (GE

Healthcare), membranes were blocked with 5% milk in PBS

+0.05% Tween-20 (PBS-T) and incubated with antibody (aStAR

(rabbit polyclonal, Affinity Bioreagents) dilution 1:1,000, aSF-1

(rabbit polyclonal, Upstate) dilution 1:1,000, aRNF31 (rabbit

polyclonal, in-house [14]), dilution 1:5,000 or ab-actin (mouse

monoclonal, Sigma Aldrich) dilution 1:10,000) for 2 h at room

temperature or 4uC overnight. Membranes were washed in PBS-T

and incubated with a-rabbit/mouse-HRP-coupled antibody (GE

Healthcare), 1:10,000 dilution, for 1 h and washed 3 times in PBS-

T. SuperSignal West Pico chemiluminescent substrate (Pierce) was

added according to manufacturer’s instructions and blots devel-

oped on light-sensitive film (GE Healthcare).

Microarrays and bioinformatics
Microarray analysis was essentially performed as described in

[56]. In short, RNA was hybridized to Operon’s nucleotide arrays

from Microarrays Inc. Obtained TIFF-images were analyzed in

GenePix Pro 6.1 where they were manually inspected for

irregularities. Data were then further analyzed in the R statistical

environment using the packages Bioconductor bundle [57],

Limma [58], Aroma and KTH. Unreliable spots were filtered

and intensity data was normalized using the print-tip lowess

method within the Aroma package. Afterwards, a linear model

using the least-square method fit for each gene and the empirical

Bayes moderated t-test within the Limma package was applied to

the data, which generated a list of differentially expressed genes

with p-values and B scores. Genes not detected in at least three out

of four arrays were discarded. Raw data and detailed protocols

were submitted in accordance with MIAME guidelines and are

available from the ArrayExpress data repository using the

accession number E-MEXP-3259.

Microarray data were confirmed by qPCR analysis of 20 genes

in quintuplicate samples, where all samples were independent of

the microarray samples.

The online DAVID Bioinformatics resource v 6.7 [59,60] was

then used for analysis of overrepresented gene ontology (GO)

groups by biological process and involved pathways. P-values in

DAVID below 0.05 were considered significant.

Pathway Studio analysis software (Ariadne Genomics) was used

for sub-network enrichment analysis (SNEA).

Data from de Reyniès et al. [53] was downloaded from

ArrayExpress, accession E-TABM-311. Expression values for

genes of interest were extracted with gene symbol as identifier,

for duplicate probes the mean was used. A heatmap was generated

by hierarchical clustering of rows and columns using average

linkage with Pearson’s correlation as similarity metric. All analysis

was performed in R using the packages gplots and pvclust for

statistical analysis. Certainty of clusters was determined by

multiscale bootstrap resampling. Significance of association

between clustering and tumor type was assessed by two-sided

Fisher’s exact test.

Promoter assay
Promoter assays were performed essentially as described in [14].

0.5 mg of either pGL3-Basic, pGL3-Basic-SUL2A1-LUC or

pGL3-Basic-DAX-1-LUC reporter plasmid together with 0.1 mg

b-Galactosidase reporter plasmid was used.

Luciferase readings were normalized against b-gal measure-

ments. Mean fold-change of forskolin (cAMP) compared to mock-

treated cells and standard deviations were calculated and statistical

significance tested using two-tailed, unpaired, Student’s t-test.

The Wnt/b-catenin reporter TopFlash was transfected to HeLa

cells together with b-catenin and increasing amounts of SF-1.

Luciferase activity was read after 24 h and fold change compared

to TopFlash without b-catenin was caluclated. Statistical signifi-

cance was tested with two-tailed, unpaired Student’s t-test.

Proliferation assay
Cells were seeded and, when indicated, transfected with siRNA

as described in siRNA and qPCR. 5nM TGFbII was added to

indicated samples 24 h after seeding and cells were then treated

for 16 h. At 15 h 30 mM BrdU was added to each sample to label

cells in S-phase. Cells were harvested by trypsination, pelleted by

centrifugation, fixed in 1 ml ice-cold 70% ethanol and stored at

220uC. On the day of analysis, cells were labeled with anti-BrdU-

antibody (BD Biosciences) and propidium iodine and assayed

using flow cytometry. Mean values and standard deviations of five

replicates are presented and statistical significance tested as in the

promoter and qPCR assays.
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