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Freedom of assembly: metabolic enzymes come 
together

ABSTRACT Many different enzymes in intermediate metabolism dynamically assemble fila-
mentous polymers in cells, often in response to changes in physiological conditions. Most of 
the enzyme filaments known to date have only been observed in cells, but in a handful of 
cases structural and biochemical studies have revealed the mechanisms and consequences of 
assembly. In general, enzyme polymerization functions as a mechanism to allosterically tune 
enzyme kinetics, and it may play a physiological role in integrating metabolic signaling. Here, 
we highlight some principles of metabolic filaments by focusing on two well-studied exam-
ples in nucleotide biosynthesis pathways—inosine-5’-monophosphate (IMP) dehydrogenase 
and cytosine triphosphate (CTP) synthase.

INTRODUCTION
Classically, intermediate metabolism has been viewed as a kind of 
soup of enzymes and substrates, partially organized by sequestration 
into membrane-bound compartments and limited primarily by diffu-
sion within those compartments. More recently, however, a significant 
level of physical organization of intermediate metabolism has been 
uncovered, where dynamic reorganization of enzymes into discreet 
cellular structures is linked to changes in metabolic conditions. These 
structures include multienzyme aggregates that colocalize different 
enzymes in a pathway, and filamentous polymers that form by self-
assembly of a single enzyme (Chitrakar et al., 2017; Jin et al., 2017).

Several dozen different metabolic enzymes are now known to 
form filamentous polymers in cells (for a comprehensive recent re-
view, see Park and Horton, 2019). Among the best described of these 
metabolic filaments are IMP dehydrogenase (IMPDH) and CTP syn-
thase (CTPS), key regulatory enzymes in the purine and pyrimidine 
nucleotide biosynthesis pathways, respectively. Here, we focus on 
these two examples to highlight common aspects of metabolic fila-
ment structure, evolution, regulation, and molecular mechanisms.

Evolution of assembly
How metabolic enzyme polymerization arose during evolution is not 
well understood. However, theoretical and experimental models 
suggest that single amino acid alterations can be sufficient to drive 
otherwise diffuse enzymes to assemble (Garcia-Seisdedos et al., 
2017). This may be especially true for metabolic enzymes, which are 
frequently homo-oligomeric proteins, and therefore the effect of in-
dividual mutations can be amplified by their presence in each sub-
unit (Figure 1). Indeed, many proteins, and particularly metabolic 
enzymes, have been found to form large assemblies in proteomic 
and imaging-based screens in yeast (Noree et al., 2010, 2019; 
O’Connell et al., 2014; Shen et al., 2016).

The evolution of polymerization in CTPS and IMPDH each fol-
lowed a unique trajectory, but illustrate principals that may be 
relevant to other polymerizing enzymes. Eukaryotic and prokary-
otic CTPS form a conserved tetrameric structure, but adopt very 
different filamentous forms mediated by different assembly con-
tacts (Figure 2, A and B). In bacteria, filaments form from inter-
locking tetramers, while a unique 10 amino acid insertion medi-
ates stacking of eukaryotic CTPS tetramers into filaments (Barry 
et al., 2014; Lynch et al., 2017; Lynch and Kollman, 2020). The 
insertion can be found in some protist and plant CTPS enzymes, 
suggesting that this form of CTPS polymer may have evolved 
∼1.5 billion years ago. The evolution of this insert may have 
driven a transition in CTPS polymer morphology, with the corre-
sponding functional consequences outlined below. Alternatively, 
eukaryotic and prokaryotic polymer forms may have evolved in-
dependently from a nonpolymerizing ancestor, which again 
would be consistent with the idea that polymerization of homo-
oligomeric proteins can be readily achieved with a small number 
of mutations.
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Polymerization of IMPDH appears to have evolved more recently 
than for CTPS. An N-terminal sequence extension, conserved in most 
metazoan IMPDH enzymes, plays a key role in mediating polymeriza-
tion of octamers by a mechanism related to “runaway domain cou-
pling” (Figure 2, C and D; McPartland et al., 2018). Recent high-reso-
lution cryo-EM structures have shown that the flexible N-terminus 
extends from the enzyme core to make ordered interactions across an 
assembly interface, and a single alanine substitution mutation in tyro-
sine 12 prevents the formation of IMPDH filaments (Anthony et al., 
2017; Fernández-Justel et al., 2019; Johnson and Kollman, 2020). At 
each octamer–octamer interface, this reciprocal interaction is seen in 
all eight adjacent monomers, dramatically increasing the valency and 
buried surface area of the interaction, potentially explaining the key 
role of this residue. IMPDH filaments have thus far only been demon-
strated in mammalian cells and despite extensive analysis are not ob-
served in Drosophila. Consistent with this, tyrosine 12 and the sur-
rounding amino acid sequence are not conserved in Diptera but are 
present in some species, such as Trichoplax adhaerens, that are more 
distantly related to mammals. This suggests that IMPDH assembly 
may have evolved during the development of multicellularity but has 
been lost in certain animal lineages. Consistent with their unique evo-
lutionary trajectories, different regulatory mechanisms modulate the 
assembly of CTPS and IMPDH, as described next.

Regulation of assembly
In metazoans, assembly of both IMPDH and CTPS is associated with 
cellular conditions in which nucleotide demand exceeds supply. For 

FIGURE 1: A single amino acid change in the IMPDH N-terminal 
extension disrupts assembly of IMPDH octamers. Intermolecular 
interactions between IMPDH protomers are amplified eghtfold 
through reciprocal interactions across the polymerization interface 
between octamers. The avidity effects of such multivalent interactions 
may facilitate evolution of polymers of oligomeric proteins. Conversely, 
mutation of just one amino acid, tyrosine 12 to alanine, in the 
N-terminal extension, completely prevents octamer polymerization.

example, in Drosophila ovary or salivary gland, CTPS assembly cor-
relates with developmental periods in which cells undergo endorep-
lication (Liu, 2010), a process that dramatically increases nucleotide 
demand. CTPS filaments have also been observed in rapidly divid-
ing cancer cells in culture (Chang et al., 2017), and mammalian T-
cells transiently assemble IMPDH into filaments in response to im-
munological activation before cell proliferation (Calise et al., 2018; 
Duong-Ly et al., 2018). It remains to be seen whether assembly in 
these contexts is simply a response to changes in nucleotide abun-
dance relative to demand or whether it is part of a programmed 
change in cell state.

Filament assembly is also observed when nucleotide supply is lim-
ited, such as in cells treated with pharmacological inhibitors of nucleo-
tide biosynthetic enzymes (reviewed in Schiavon et al., 2018). Con-
versely, increasing nucleotide levels by providing them exogenously 
triggers filament dispersion (Gunter et al., 2008; Calise et al., 2014, 
2016; Duong-Ly et al., 2018). These findings are consistent with 
emerging models for assembly as a means of regulating nucleotide 
homeostasis (Barry et al., 2014; Gou et al., 2014; Noree et al., 2014; 
Calise et al., 2016; Anthony et al., 2017; Lynch et al., 2017; Fernández-
Justel et al., 2019).

Elevating IMPDH or CTPS protein levels in cells also promotes 
their assembly (Ingerson-Mahar et al., 2010; Keppeke et al., 2018; 
Li et al., 2018; Wu and Liu, 2019). IMPDH protein is dramatically 
up-regulated in primary T-cells following T-cell receptor (TCR) acti-
vation and is associated with IMPDH assembly. However, increased 
IMPDH expression is not sufficient for assembly, which also de-
pends on signaling by NFAT and mTOR (Duong-Ly et al., 2018). 
mTOR has also been implicated in CTPS filament formation in 
Drosophila (Aughey et al., 2014; Sun and Liu, 2019). In Drosophila 
ovaries, CTPS filament assembly is regulated by Myc and activated 
cdc42-associated kinase (Ack; Strochlic et al., 2014; Aughey et al., 
2016). It remains unknown how these pathways impact assembly 
but posttranslational modifications of the enzymes themselves 
could be involved. CTPS assembly in the Drosophila ovary is regu-
lated by ubiquitination associated with the Cbl ubiquitin ligase 
(Wang et al., 2015). In cultured cells under nutrient stress, CTPS fila-
ment assembly is regulated by methylation controlled by histidine 
and the folate cycle (Lin et al., 2018). However, as of yet there does 
not appear to be a clear connection between these posttransla-
tional modifications and known signaling pathways associated with 
filament assembly.

In addition to regulation by signaling pathways, small molecules 
including substrates, products, and allosteric regulators can influ-
ence metabolic enzyme polymerization. ATP and GTP both allosteri-
cally regulate filament assembly and activity of IMPDH (Anthony 
et al., 2017; Buey et al., 2017; Fernández-Justel et al., 2019) and 
GTP allosterically regulates CTPS activity (Habrian et al., 2016). Like-
wise, the presence or absence of their substrates strongly influences 
CTPS and IMPDH polymer assembly in vitro (Anthony et al., 2017; 
Lynch et al., 2017). Interestingly, in cultured cells, CTPS and IMPDH 
can assemble into distinct structures or can assemble together, de-
pending on the method of induction (Carcamo et al., 2011; Chang 
et al., 2015, 2018). This suggests the intriguing possibility that coas-
sembly could mediate coordination between purine and pyrimidine 
biosynthetic pathways. Consistent with this, pharmacological inhibi-
tors of CTPS promote the assembly of IMPDH filaments (Carcamo 
et al., 2011; Chang et al., 2015, 2018).

These examples highlight the complexity of regulation of meta-
bolic enzyme assembly. Future work must begin to connect these 
different levels of regulation to form a complete picture of how cells 
sense their metabolic state and initiate enzyme polymerization.
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Assembly is an allosteric regulator
Although there are only a handful of examples of studies on the 
biochemical effects of polymerization, it appears that in most cases 
filament assembly directly tunes enzyme kinetics. Assembly-based 
allosteric tuning can take very different forms, including decreasing 
or increasing specific activity, altering the response to other alloste-

FIGURE 2: Structures of CTPS and IMPDH filaments. (A) CTPS structures. CTPS monomers 
each have two catalytic domains (blue and green), and assemble into tetramers. Tetramers can 
dynamically assemble filaments with different geometries. A unique eukaryotic insert mediates 
assembly contacts of human CTPS, while Escherichia coli CTPS tetramers form more extensive, 
interlocking interactions. (B) Cellular polymerization of CTPS is broadly conserved (adapted 
from Barry et al. 2014; Gou et al., 2014). (C) IMPDH structures. IMPDH is an octamer, with each 
protomer consisting of catalytic (green) and regulatory (pink) domains. ATP binding in the 
regulatory domains stabilizes octamers, and GTP binding promotes a conformational change in 
that, in the context of the octamer and in the filament, results in a compressed, inactive 
conformation. (D) IMPDH polymers are observed to form in mouse lymphocytes upon TCR 
stimulation (adapted from Duong-Ly et al. 2018). (E) Cryo-tomography of HEp-2 cells shows 
IMPDH forming extensive bundles with spacing consistent with the spacing observed in in vitro 
reconstituted single filaments (adapted from Juda et al. 2014). Scale bars: B (top) = 10 μm, B 
(bottom) = 3 μm, D = 5 μm, E = 200 nm, inset in E = 10 nm.

ric regulators, or enhancing the cooperativity 
with which a population of enzymes transi-
tions between activity states (Figure 3).

Tetrameric CTPS has a conserved confor-
mational equilibrium, with cooperative transi-
tions between active and inactive conforma-
tions resulting from relative motions of the 
two catalytic domains in each protomer 
(Lynch et al., 2017). The inactive conforma-
tion is promoted by CTP binding, in a form of 
feedback inhibition. Filaments provide an ad-
ditional layer of allosteric control on top of 
this conformational equilibrium, although 
these effects vary between domains of life. 
For example, in bacteria, filament assembly 
interactions sterically lock the CTPS tetramer 
into the inactive conformation (Figure 2A; 
Barry et al., 2014; Lynch et al., 2017). This 
suggests that for bacterial CTPS, polymeriza-
tion is a mechanism to maintain homeostasis 
by rapidly shutting down activity in response 
to elevated CTP levels. A similar mechanism 
was recently described for filaments of bud-
ding yeast glucokinase 1, suggesting that po-
lymerization can act as a “molecular surge 
protector” to prevent deleterious metabolic 
effects of excess flux through the initial phase 
of glycolysis (Stoddard et al., 2020).

Humans have two CTPS isoforms, CTPS1 
and CTPS2, that both form filaments with in-
teraction interfaces that are completely differ-
ent from the bacterial interface (Figure 2A). 
The biochemical consequences of polymer-
ization vary between the two human iso-
forms. CTPS1 is much more active in fila-
ments, and disassembles upon inactivation 
(Lynch et al., 2017). CTPS2, thought to be the 
more “housekeeping” isoform, is able to 
transition between active and inactive confor-
mations while remaining assembled; in this 
case, coupling conformational changes be-
tween many CTPS tetramers increases coop-
erativity of the structural transition between 
active and inactive states (Lynch and Kollman, 
2020). These different regulatory outcomes 
likely reflect the different cellular roles of the 
two isoforms: shifting CTPS1 into polymers 
would increase flux through the enzyme to 
produce the higher nucleotide levels re-
quired during proliferation, while enhanced 
cooperativity in CTPS2 filaments provides a 
mechanism for ultrasensitive, switch-like con-
trol of CTP synthesis during more homeo-
static conditions. Like CTPS1, other meta-
bolic enzymes appear to be stabilized in 
active conformations in filaments (Webb 

et al., 2017; Kim et al., 2019). And like CTPS2, at least one other 
enzyme filament, acetyl-CoA carboxylase, can form filaments in ac-
tive or inactive states depending on what allosteric ligands or regu-
latory partners are bound (Hunkeler et al., 2018).

Like CTPS2, IMPDH filaments can accommodate active or inac-
tive conformations (Anthony et al., 2017), although in this case 
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assembly does not have a direct effect on specific activity and does 
not enhance cooperativity (Figure 2C). Instead, IMPDH filament as-
sembly is sensitive to the levels of both substrate and downstream 
product (GTP) pools. In the presence of substrate, filament assem-
bly interactions stabilize an enzyme conformation that resists allo-
steric inhibition by the downstream product GTP (Johnson and 
Kollman, 2020). This allows IMPDH to retain activity in the presence 
of otherwise inhibitory GTP concentrations, consistent with the high 
nucleotide demands where IMPDH assembly is observed, such as 
lymphocyte activation (Calise et al., 2018; Duong-Ly et al., 2018).

IMPDH filaments have also been shown to form large, lateral 
bundles in cells; these bundles have a periodicity consistent with the 
spacing between octamers in in vitro reconstituted single filaments 
(Figure 2E; Juda et al., 2014). Given the large size of most cellular 
metabolic filaments, we anticipate that this kind of lateral bundling 
of single filaments may be a common form of higher order associa-
tion, although the functional importance of bundles has not yet 
been explored for any enzyme filament.

Why filaments?
It may seem surprising that filament assembly has evolved as a 
general mechanism for tuning enzyme kinetics; after all, there are 
limitless examples in metabolism of allosteric control being 
achieved through smaller, defined oligomers. One simple expla-
nation may be that polymer assembly is relatively easy to evolve 
with a small number of mutations, as suggested above (Garcia-
Seisdedos et al., 2017). By this logic, filament assembly is a 
straightforward way to introduce an additional layer of regulation 
on top of existing allostery.

Nevertheless, it seems peculiarly baroque to build micron-scale 
cellular structures simply to regulate the activity of a single enzyme. 
One intriguing possibility is that large, ordered, multivalent struc-
tures like metabolic filaments may serve as platforms for signaling 
the state of cellular metabolism. There are hints from cell biological 
studies that this might be the case. For example, coassembly of 
IMPDH and CTPS filaments suggests the possibility that biosyn-
thetic activity of these two separate but interrelated pathways may 
be coregulated through physical interaction, whether direct or me-
diated by an as yet unidentified scaffold. Even more intriguing, 
other signaling molecules colocalize with these filaments (Strochlic 
et al., 2014; Hayward et al., 2019), supporting the idea the filaments 
may be coordinating multiple activities in response to changing 
metabolic conditions.

Outlook
While many enzyme filaments have been observed in cells, only a 
few have been characterized at the level of structure and biochemi-
cal function. Given the diversity of structural and regulatory out-
comes of the few cases where these details are known, it seems 
likely that other novel mechanisms remain to be discovered.

One pressing challenge is to uncover the physiological role of 
the various metabolic filaments. In vitro studies of filament struc-
tures, assembly mechanisms, and biochemical regulation are pro-
viding context and tools for studying the role of metabolic filaments 
in cells and tissues. Understanding how filaments specifically alter 
metabolite levels and/or flux through the associated pathways un-
der varying physiological conditions is an important next step in 
understanding their biological function. Identifying whether other 
cellular factors specifically recognize and interact with metabolic fil-
aments is another important step in understanding how they com-
municate with other cellular components.
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