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Abstract 
Background The COVID-19 pandemic adversely impacted physical activity, but little is known about how contextual changes following the pan-
demic declaration impacted either the dynamics of people’s physical activity or their responses to micro-interventions for promoting physical 
activity.
Purpose This paper explored the effect of the COVID-19 pandemic on the dynamics of physical activity responses to digital message 
interventions.
Methods Insufficiently-active young adults (18–29 years; N = 22) were recruited from November 2019 to January 2020 and wore a Fitbit 
smartwatch for 6 months. They received 0–6 messages/day via smartphone app notifications, timed and selected at random from three con-
tent libraries (Move More, Sit Less, and Inspirational Quotes). System identification techniques from control systems engineering were used 
to identify person-specific dynamical models of physical activity in response to messages before and after the pandemic declaration on March 
13, 2020.
Results Daily step counts decreased significantly following the pandemic declaration on weekdays (Cohen’s d = ‐1.40) but not on weekends (d 
= ‐0.26). The mean overall speed of the response describing physical activity (dominant pole magnitude) did not change significantly on either 
weekdays (d = ‐0.18) or weekends (d = ‐0.21). In contrast, there was limited rank-order consistency in specific features of intervention re-
sponses from before to after the pandemic declaration.
Conclusions Generalizing models of behavioral dynamics across dramatically different environmental contexts (and participants) may lead to 
flawed decision rules for just-in-time physical activity interventions. Periodic model-based adaptations to person-specific decision rules (i.e., con-
tinuous tuning interventions) for digital messages are recommended when contexts change.

Lay Summary 
Physical inactivity is recognized as one of the major risk factors for cardiovascular disease, diabetes, and many cancers. Most American adults 
fail to achieve recommended levels of physical activity. Interventions to promote physical activity in young adults are needed to reduce long-term 
chronic disease risk. The COVID-19 pandemic declaration abruptly changed many individuals’ environments and lifestyles. These contextual 
changes adversely impacted physical activity levels but little is known about how these changes specifically impacted the dynamics of people’s 
physical activity or responses to micro-interventions for promoting physical activity. Using data collected from Fitbit smartwatches before and 
after the pandemic declaration, we applied tools from control systems engineering to develop person-specific dynamic models of physical 
activity responses to messaging interventions, and investigated how physical activity dynamics changed from before to after the pandemic 
declaration. Step counts decreased significantly on weekdays. The average speed of participants’ responses to intervention messages did not 
change significantly, but intervention response dynamics had limited consistency from before to after the pandemic declaration. In short, parti-
cipants changed how they responded to interventions after the pandemic declaration but the magnitude and patterns of change varied across 
participants. Person-specific, adaptive interventions can be useful for promoting physical activity when behavioral systems are stimulated to 
reorganize by external factors.
Keywords COVID-19 · fitness trackers · exercise · patient-specific modeling · social environment · precision medicine

Introduction
Physical activity reduces risk for chronic disease and pro-
motes well-being [1, 2]. The correlates and determinants of 
physical activity span many levels of influence and include 

biological, psychological, social, environmental, and policy-
related factors [3, 4]. The COVID-19 pandemic declar-
ation abruptly changed many individuals’ environments via 
stay-at-home orders and remote work arrangements. These 

© Society of Behavioral Medicine 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

mailto:conroy@psu.edu?subject=
mailto:suh434@psu.edu?subject=
mailto:alexandra.lee@psu.edu?subject=
mailto:sarah.hojjatinia@gmail.com?subject=
mailto:lagoa@psu.edu?subject=
mailto:dlb43@psu.edu?subject=


ann. behav. med. (2022) 56:1188–1198 1189

contextual changes adversely impacted physical activity but 
little is known about how these changes specifically impacted 
the dynamics of people’s physical activity or responses to 
micro-interventions for promoting physical activity [5]. The 
stability of these models needs to be understood to inform 
decisions about whether it is necessary to adapt model-based 
decision rules in the face of dramatic contextual changes. 
The purpose of this paper is to compare how responses to 
digital messaging micro-interventions to promote physical ac-
tivity changed from before to after the COVID-19 pandemic 
declaration.

Physical Activity Behavior
Physical activity contributes to numerous health benefits, 
with the most recent US guidelines showing that bouts of any 
length are beneficial to health [2]. Yet surveillance research 
reports only 24–65% of adults 18 and over in the US meet 
recommendations for aerobic activity [6, 7]. Aerobic activities 
can be tracked with wearable devices to provide behavioral 
feedback on physical activity. That feedback can also inte-
grate with other widely-adopted mobile technologies, such as 
smartphones, to promote aerobic physical activity in the nat-
ural context of daily life.

A recent systematic review shows that digital messaging 
interventions for physical activity promotion are associated 
with small-to-medium sized increases in daily step counts 
(standardized mean difference = 0.38) [8]. These estimates 
are based on differences in aggregated physical activity levels 
between participants who receive digital messages and those 
who do not. They do not speak to the effects of individual 
messages on subsequent physical activity. This gap is im-
portant because physical activity is a dynamic process that 
varies over time within each person and understanding those 
dynamics can improve predictions about behavior change 
[9]. Accelerometer data from the NHANES dataset revealed 
normative differences in physical activity as a function of 
the time of day and day of week [10]. Based on this within-
person variation, just-in-time interventions may be useful for 
providing support to regulate the dynamics of physical ac-
tivity. To realize the potential for just-in-time interventions, it 
is important to understand whether (and how) the dynamics 
of physical activity are impacted by different contexts. That 
information will inform decisions about generalizing models 
across contexts and the value of adapting models based on 
accumulating information.

Digital Message Effects on the Dynamics of 
Momentary Physical Activity
Dynamical systems modeling can be used to predict future 
behavior based on current and recent behavior. In these 
models, systems refer to processes that connect past and pre-
sent values of an input/stimulus (different types of messages) 
to an output/outcome (physical activity behavior/step count). 
System identification tools from the field of control systems 
engineering can be applied to characterize how physical ac-
tivity changes following digital message delivery [11, 12]. For 
example, these models can regress physical activity during a 
fixed epoch (15 min) on physical activity during prior epochs 
and a series of binary variables indicating whether a person 
received a digital message during each of those epochs. These 
models can be expanded to include multiple series of binary 

variables, each representing a different type of intervention 
content, or to describe the dynamics of weekend and weekday 
activity separately [13]. Coefficients from these models are 
difficult to interpret by themselves but can be used to simu-
late expected responses to different digital messages under 
varying conditions.

Responses to momentary intervention content can be simu-
lated using coefficients corresponding to each message type 
at different lags and plotted to reveal the timing and magni-
tude of instantaneous and cumulative behavioral responses 
to momentary interventions in impulse response curves and 
cumulative step response curves, respectively. These curves il-
lustrate expected instantaneous behavior changes during spe-
cific epochs (e.g., 15 min following message delivery, 60 min 
following message delivery) and cumulative behavior changes 
over time. They can be compared visually or quantitatively by 
extracting features of the responses for statistical analysis [11]. 
For example, features such as initial delay, peak magnitude, and 
peak delay can be extracted from impulse response curves to 
describe how quickly and with what magnitude a momentary 
intervention has its largest instantaneous effects on behavior 
[12]. Likewise, features such as the steady state, rise time, set-
tling time, and effective time can be extracted from cumulative 
step response curves to describe the ultimate effect of a single 
momentary intervention, how quickly that effect initiates, and 
how much time is required both to achieve the maximal effect 
and to have an effect above the noise level [12].

Previous studies applying this approach have led to im-
portant insights. First, both daily and momentary physical 
activity dynamics are regulated differently on weekends and 
weekdays [13]. As a consequence, it is best to model phys-
ical activity dynamics as a switched system; that is, as a pair 
of models that describe weekend and weekday dynamics 
separately. Second, although a generic model of physical ac-
tivity dynamics can be estimated, it is overly conservative for 
estimating the effects of digital messages on physical activity 
[12]. Person-specific models are better suited to describing 
the idiosyncratic effects of different messages on physical ac-
tivity. Third, features of the momentary environment can alter 
responses to digital messages as evidenced by temperature-
graded responses to digital messages [12]. Understanding the 
context around a person can lead to more accurate predic-
tions about their expected responses to different types of mes-
sages at that moment.

This last finding about momentary weather indices mod-
erating the size of expected effects of digital messages on fu-
ture behavior is important in the context of the COVID-19 
pandemic. System dynamics—the processes that reflect how 
people regulate their behavior—can be altered by contextual 
changes. At one level, the need for switched models to cap-
ture differences in physical activity dynamics on weekends 
and weekdays and linear-parameter varying models to cap-
ture temperature-graded behavioral responses illustrate how 
context impacts behavior [12, 13]. The COVID-19 pandemic 
provides another example of an abrupt change in context that 
can affect both physical activity and the systems that organize 
physical activity responses to interventions.

Effects of the COVID-19 Pandemic on Physical 
Activity
Beginning in March of 2020 in the US, the COVID-19 
pandemic became a significant life event with a variety of 
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psychological, social, environmental, and policy implica-
tions. Workplaces, schools, childcare centers, universities, and 
non-essential businesses were shut down or moved to vir-
tual environments and people were ordered to stay-at home. 
Many daily behaviors and routines were affected such as 
physical activity, sleep, alcohol use, and substance use [14–
16]. Research evaluating post-pandemic declaration physical 
activity changes have shown an approximately 20% decrease 
in step counts in the US [5]. Furthermore, survey research 
with participants enrolled in behavioral interventions indi-
cated that 68.4% felt that COVID-19 impacted their ability 
to adhere to behavioral recommendations [17].

Developmental systems theory proposes that severe 
changes in a person’s habitual environment can result in 
functional system disorganization and prompt reorganiza-
tion processes to reconcile the change [18]. The reorganized 
system will reflect altered behavioral dynamics in the new 
context. Responses to system disorganization are proposed 
to be person-specific given the variety of factors (at multiple 
levels) that influence physical activity. To date, evaluations 
of physical activity changes following the COVID-19 pan-
demic have primarily focused on behavior aggregated over 
time across groups of people [5, 19]. Less is known about 
how the dynamics of behavior changed over time despite 
evidence that physical activity involves substantial variance 
within the person over time [9, 20]. Person-specific dynamical 
models can reveal if the pandemic impacted physical activity 
dynamics or behavioral changes in response to intervention 
messages.

The Present Study
Leading up to and following the pandemic declaration, 
we were actively collecting data from a cohort enrolled in 
a physical activity promotion study for insufficiently-active 
young adults. Participants randomly received 0–6 messages 
throughout the day. Messages were drawn at random from 
three content libraries: Move More, Sit Less, or Inspirational 
Quotes, and minute-level step counts were continuously 
monitored via a wearable activity tracker. We previously pub-
lished models based on the subset of data collected entirely 
before the pandemic [12]. This manuscript used data from a 
unique subset of participants who were enrolled prior to and 
following the pandemic declaration. The analyses reported 
here capitalize on the temporally-dense data collected from 
wearable devices and the unique contextual change caused by 
the pandemic declaration to evaluate impacts of that declar-
ation on physical activity and person-specific dynamics.

The first research question addressed whether physical 
activity volume (i.e., daily step counts) changed following 
the pandemic declaration. Our hypothesis was that daily 
step counts would decrease on both weekdays and week-
ends following the pandemic declaration. The second and 
third research questions examined absolute and relative 
changes in system dynamics by message type. The second 
research question addressed whether person-specific re-
sponse dynamics changed in absolute terms following the 
pandemic declaration (i.e., mean level differences from be-
fore to after the pandemic declaration). We hypothesized 
that the pandemic declaration would slow overall system 
dynamics and weaken the effects of each message type on 
subsequent physical activity responses. The third question 
examined whether the relative changes (rank ordering) of 

response features from the person-specific dynamic models 
were consistent from before to after the pandemic declar-
ation. We hypothesized that corresponding dynamic char-
acteristics of behavioral responses to each message type 
would be positively associated (i.e., participants with larger 
relative response characteristics before the pandemic would 
tend to have larger relative responses after the pandemic 
declaration). Specific characteristics of interest included the 
initial delay, peak magnitude, peak delay, steady state, rise 
time, settling time, and effective time of message-specific re-
sponses, and the response speed. To test these hypotheses, 
piecewise dynamical models of weekday and weekend step 
counts were estimated for each person before and after 
the pandemic declaration. Features of those models were 
extracted from the impulse response and cumulative step 
responses and compared to determine whether specific mes-
sage effects or response speed were systematically impacted 
by the pandemic declaration.

Methods
Participants
Insufficiently-active young adults were recruited using fliers 
posted on campus and community bulletin boards, university 
listservs, and Studyfinder, a web-based recruitment tool for 
Penn State researchers. Eligible participants were 18–29 years 
of age, ambulatory, free of functional activity limitations, free 
of visual impairment that would interfere with smartphone 
use, had verbal, and written fluency in English and were cap-
able of giving informed consent. Participants had to be smart-
phone users (iPhone iOS v10.0 or later or Android operating 
system v7 or later) willing to place the Random AIM (custom 
software) and Fitbit apps onto their phone. Participants were 
excluded from the screening stage if they reported engaging 
in 90 min or more of moderate- or greater intensity physical 
activity per week, were part of organized programs with man-
dated physical activity, needed assistive devices for mobility, 
had a prior diagnosis of cancer, cardiovascular disease, type 
I, or type II diabetes, or metabolic syndrome, were pregnant, 
or had a plan to become pregnant in the following 6 months, 
or had any contradictions to engaging in physical activity ac-
cording to the Physical Activity Readiness Questionnaire.

The United States of America declared the COVID-19 
pandemic on March 13, 2020. All participants included in 
this analysis were enrolled between November 2, 2019 and 
January 24, 2020 to ensure that each had at least 6 weeks of 
data for each of the pre- and post-pandemic models. A total 
of 54 completed screening during that period and 32 were 
excluded due to excessive physical activity (n = 28), failing 
to meet wear time requirements (n = 2), or insufficient data 
either before or after the pandemic declaration (defined as ≤ 3 
messages from a library with accompanying physical activity 
data; n = 2). The study lasted 6 months for all the partici-
pants but the precise number of days for pre-pandemic and 
post-pandemic stages was different for each individual due to 
variability in enrollment dates.

Measurements
Demographic and Anthropometric Characteristics
Participants self-reported age, sex, race, ethnicity, educa-
tional attainment, and employment status. Researcher meas-
ured weight (to the nearest 0.1 lb.) and height (to the nearest 
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0.5 inch) in duplicate using a digital scale and wall-mounted 
stadiometer, respectively.

Physical Activity Screening
Participants were instructed to wear a wGT3X-BT ac-
tivity monitor (Actigraph, Pensacola, FL) for a week during 
their waking hours for a minimum of 10 hr each day. The 
participants kept a paper record of the times that the de-
vice was placed on in the morning and removed at night, 
as well as other removals for bathing, swimming, or other 
reasons. The wGT3X-BT monitor was worn at the waist 
on the participant’s dominant side at the midline of their 
thigh. The monitor used a 3-axis accelerometer to measure 
high-resolution activity with a defined 30 Hz sampling rate. 
Activity data was collected in minute intervals. Wear time was 
validated using the proprietary Troiano 2007 algorithm in the 
ActiLife v.6.13.4 software [21]. Non-wear times, defined as 
greater than 90 min with zero activity counts, were excluded 
from the analysis. Valid days were defined as those with at 
least 600 min of wear time. At least 5 valid days of wear were 
required for analysis in order to be considered for qualifica-
tion into the intervention study. The Freedson algorithm was 
used to classify minutes as light (≤ 1952 counts/min), mod-
erate (1952–5724 counts/min), and vigorous (> 5724 counts/
min) physical activity [22].

Ambulatory Physical Activity Monitoring
Participants wore a Fitbit Versa/Versa Lite smartwatch on 
their wrist for 6 months to track minute-level step counts 
and heart rate. These devices have demonstrated similar ac-
curacy for step counting to research-grade Actigraph moni-
tors and are suitable for use in adults with no limitations on 
mobility [23, 24]. Minute-level step count and heart rate data 
were used to classify minutes as valid wear time or device 
non-wear. Specifically, a minute was classified as valid if step 
counts were greater than zero or a valid heart rate was re-
corded [12].

Procedures
Participants were enrolled in two stages with separate in-
formed consent processes: screening and intervention. All 
procedures were approved by the Institutional Review Board 
at The Pennsylvania State University (Study#00009455).

Screening Stage
A researcher conducted individual telephone interviews 
with participants and scheduled provisionally-eligible par-
ticipants for a lab visit. In the lab visit, participants pro-
vided informed consent and completed questionnaires. The 
participant’s height and weight were measured and the par-
ticipant was provided with an Actigraph wGT3X-BT ac-
tivity monitor to wear at the waist during waking hours for 
one week (along with a paper wear time log to document 
device removals).

After 7 complete days in the field, participants returned 
the activity monitors to the lab and were compensated 
($25). Participants who had at least 5 days of valid device 
wear (600 min/day) and accumulated less than an average of 
21.4 min/day of moderate-to-vigorous physical activity (the 
equivalent of 150 min/week) were invited to participate in the 
second stage of the study.

Intervention Stage
Eligible participants provided informed consent for the 
next stage of research and received a Fitbit Versa/Versa Lite 
smartwatch to wear for the next 6 months. The researcher 
assisted the participants with installing the Random AIM 
(custom research software) and Fitbit mobile applications on 
their personal smartphone. Participants were asked to enable 
location services for the Random AIM app to record periodic 
GPS data. Participants identified an availability window of 
10+ hr of time on weekdays and weekends when they were 
available to receive digital messages. They could adjust this 
availability window at any time during the study by con-
tacting the researcher. Participants were provided with infor-
mation about the US Physical Activity Guidelines for Adults 
to assign a goal, potential benefits from increasing physical 
activity, and the principle of progressive adaptation to reduce 
musculoskeletal injury risk. Participants were asked to con-
tact study personnel if they were injured or ill as it may im-
pact their activity levels.

For the next 6 months, participants received between 0 
and 6 messages/day via the Random AIM app. The frequency 
(0–6 messages for the day), timing within the availability 
window, and content of daily messages were determined ran-
domly every night by the backend server. The only restriction 
was that consecutive messages could not be delivered within 
15 min of each other. Messages were drawn from three con-
tent libraries: (i) “Move More” motivational messages (108 
messages), (ii) “Sit Less” motivational messages (108 mes-
sages), and (iii) “Inspirational Quotes” (with no relation to 
physical activity or sitting time; 54 messages). Move More 
and Sit Less messages were based on social-cognitive theory, 
typically highlighting an affective or instrumental outcome 
of physical activity and prompting use of a self-regulation 
strategy (e.g., setting a goal, planning an activity). Half of 
the messages were accompanied with a relevant image (e.g., 
physical activity for Move More messages, standing activity 
for Sit Less messages, and natural landscapes for Inspirational 
Quotes). Participants were asked to acknowledge receipt by 
clicking on the message when they read it (triggering a round-
trip message to the backend server). Participants received a 
micro-incentive for each message acknowledgement ($0.25) 
and message notifications were removed if a message was not 
acknowledged within 30 min of delivery. The mobile app re-
corded timestamped participant locations at the times that 
each message was scheduled to be sent to the participant’s 
mobile device, displayed on the device, and acknowledged by 
the participant. Participants were compensated at 2 months 
intervals throughout the study to support engagement and 
protocol compliance.

After 6 months, a Zoom meeting was scheduled to guide 
the participants through the processes for removing the 
Random AIM app from their smartphone and switching their 
Fitbit app to a personal email account. Participants answered 
end of study questionnaires and engaged in a brief interview 
on their experience with the app and the intervention.

Data Analysis
Pre-processing
Fitbit and message data were downloaded for the study 
period. Days prior to the start date or following the end 
date were removed. Next, any days corresponding to dates 
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when participants reported injury or illness, notifications 
being off, etc., were trimmed. Data were then separated for 
the pre-pandemic and post-pandemic stages. Dates were la-
beled as weekdays and weekends. For all days, Fitbit data 
were trimmed to exclude data recorded more than 2  hr 
before the availability window opened or more than two 
hours after the availability window closed. This choice pro-
vides enough data for identifying the models of the phys-
ical activity behavior changes after receiving a message 
either at the beginning or end of the availability window. 
Appropriate pre-processing steps were taken for parti-
cipants with changes in their provided availability time 
through the study. Minute-level heart rate and step counts 
data were used to classify minutes as valid or missing. If 
heart rate was recorded, the corresponding step count for 
that minute was valid. If heart rate was not recorded but 
steps were greater than 0, the step count for that minute 
was valid. If heart rate was not recorded and zero steps 
were recorded, the step count for that minute was classified 
as missing. If the missing minutes were smaller or equal to 
three, step counts for those minutes were interpolated using 
linear interpolation method. Finally, minute-level step data 
were aggregated up to 15-min summaries (total step counts 
for the 15 min epoch).

Modeling and Statistical Analysis
The system identification methods used to generate person-
specific models are described in Supplemental File S1. Based 
on those person-specific models, simulated impulse and cu-
mulative step responses were computed for each message 
type using the six coefficients for each message type (cor-
responding to model order, that is five plus the present 
epoch) and coefficients related to past five epochs of step 
counts. Impulse responses represent the expected step count 
changes during each 15-min epoch following receipt of each 
message type (compared to what would be expected if the 
message was not received). Cumulative step responses rep-
resent the total expected effect of each type of individual 
message (compared to what would be expected if the mes-
sage was not received). Error bounds were computed for 
each response curve to differentiate patterned behavior 
change from mere noise in the data and modeling error. The 
magnitude of the dominant pole in each model was also 
extracted as a summary measure of intervention response 
speed.

Descriptive statistics were used to characterize the par-
ticipant sample and identify mean and standard deviations 
for step counts and model features. Normality of the dis-
tributions for pre- and post-pandemic declaration values 
for step count, intervention response speed, and message-
specific response features was assessed. Based on the 
findings of the normality check, we ran paired t-tests or 
Wilcoxon signed-rank exact tests to test the statistical sig-
nificance of the change in means after the pandemic declar-
ation. Cohen’s d (standardized mean difference) and r were 
calculated to provide an estimate of effect size for para-
metric tests and non-parametric tests, respectively. Pearson 
or Spearman rank correlations between model features seg-
mented by message type and day type were calculated to 
understand the consistency of rank orderings between pre- 
and post-pandemic averages for person-specific dynamic 
model features.

Results
As shown in Table 1, the analytic sample (n = 22) comprised 
women (55%) and students (82%) with a mean age of 22.2 
years (SD = 1.7, range = 20–27). The sample consisted of White 
(n = 9 [41%]), African-American (n = 8 [36%]), and Asian (n 
= 5 [23%]) participants; the majority were not Hispanic or 
Latino (n = 21 [95%]). Participants had an average BMI of 
27.1 (SD = 7.1, range = 20.3–46.6) with 27% having obesity 
(BMI ≥ 30), 27% having overweight (BMI = 25–29.9), and 
45% having a normal weight (BMI =18.5–24.9).

Message Delivery
In total, 10,805 messages were received and displayed on 
mobile devices (M = 491.1 messages/person, SD = 81.7) of 
which 5860 (54%) messages (M = 266.4 messages/person, 
SD = 101) were received in the pre-pandemic stage and 4945 
(46%) messages (M = 224.8 messages/person, SD = 70.8) 
were received after pandemic declaration. Received messages 
were distributed between the “Move More” (pre-pandemic: n 
= 2327 [40%]; post-pandemic declaration: n = 1994 [40%]), 
“Sit Less” (pre-pandemic: n = 2313 [39%]; post-pandemic 
declaration: n = 1945 [39%]), and “Inspirational Quotes” 
(pre-pandemic: n = 1220 [21%]; post-pandemic declaration: 
n = 1006 [20%]) content libraries. Messages were randomly 
distributed across each participant’s availability window. 
A total of 8994 (75%) messages met criteria for system 

Table 1 Sample characteristics

Characteristic n (%) 

Age (years; mean [SD]) 22.2 (1.7)

Sex

 � Female 12 (55)

 � Male 10 (45)

Educational attainment

 � Completed high school or a received GED 3 (14%)

 � Some college/Associate’s degree 7 (32%)

 � Completed college 9 (41%)

 � Graduate or professional degree 3 (14%)

Employment status

 � Employed full-time 1 (5%)

 � Employed part-time 2 (9%)

 � Student 18 (82%)

 � Unemployed and not looking for work 1 (5%)

Race

 � Asian 5 (23)

 � Black/African-American 8 (36)

 � White 9 (41)

Ethnicity

 � Hispanic or Latino 1 (5)

 � Not Hispanic or Latino 21 (95)

BMI (kg/m2; mean [SD]) 27.1 (7.1)

BMI classification

 � Normal weight (18.5–24.9) 10 (45)

 � Overweight (25–29.9) 6 (27)

 � Obesity (≥ 30) 6 (27)

Note. SD standard deviation; GED General Educational Development 
credential.

http://academic.oup.com/abm/article-lookup/doi/10.1093/abm/kaac051#supplementary-data
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identification through evidence of step count and heart rate 
data collection at the time of the message receipt.

Changes in Physical Activity
In total, 2,422,306 min of physical activity were used to iden-
tify the models, of which 1,373,960 min preceded the pan-
demic declaration and 1,048,346 min followed the pandemic 
declaration. On weekdays, participants took an average 
(M ± SD) of 6170.36  ±  2008.4 steps/day before the pan-
demic declaration and 3278.1  ±  1733.4 steps/day after the 
pandemic declaration. This difference represented a large 
and statistically-significant decrease, t(21) = 6.55, p < .001, 
Cohen’s d = ‐1.40. On weekends, participants took an average 
of 4199.7  ±  1650.5 steps/day before the pandemic declar-
ation and 3645.7 ± 2185.1 steps/day after the pandemic dec-
laration. This difference was not statistically-significant, t(21) 
= 1.23, p = .23, Cohen’s d = ‐0.26. Supplementary Table 1 
summarizes participant-level data on average daily steps be-
fore and after the pandemic declaration.

Response Dynamics
Seven features were extracted from the simulated impulse 
response and cumulative step response curves. Each feature 
was extracted separately for weekends and weekdays before 
and after the pandemic declaration. These features include 
initial delay, peak magnitude, peak delay, steady state, rise 
time, settling time, and effective time, and are illustrated in 
Fig. 1. This figure represents all these features on the im-
pulse and cumulative step responses of one participant to 
“Move More” messages. As shown, initial delay, peak mag-
nitude, and peak delay extracted from the simulated im-
pulse response curve (left panel) represent features of the 
latency to initiate a momentary message effect, i.e., the time 
that it takes for the message to start having a momentary 
effect, magnitude of peak momentary message effects, i.e., 
the maximum momentary effect that the message has, and 
latency to peak momentary message effects, i.e., how long it 
takes for the message to have its maximum momentary ef-
fect, respectively. In the cumulative step response plot (right 
panel), the curved line is the upper error bound, and the 

thin straight black lines depict lines y = 10%, 90%, 95%, 
and 105% of the steady state. Steady state value is the ul-
timate amount of the cumulative step response, i.e., the sum-
mation of all step counts taken after receiving the message. 
Rise time is the time that it takes for the cumulative step 
response to advance from 10 to 90% of the steady state, i.e., 
the time that takes for the message to rise from low to high 
effect, as a ratio of the ultimate step counts. Settling time 
describes the time that the step response enters a boundary 
around the steady state with the upper- and lower-bounds 
being 95% and 105% of the steady state which means the 
time that the response settles down around and close to the 
ultimate value. Effective time is the duration that the system 
response is above the noise level (outside the error bounds), 
i.e., the time that the effect of the message is measurable/dif-
ferentiable from noise. Initial delay was uniformly zero for 
this dataset, thus we focus on reporting results based on the 
other six features.

Tables 2 and 3 summarize descriptive statistics for overall 
response speed of the system and features of the simulated 
impulse response and cumulative step response based on the 
person-specific models before and after the pandemic declar-
ation for weekdays and weekends, respectively. Of note, the 
range of participant values for each response feature is very 
wide. Supplementary Tables 2–4 provide participant-level 
data for each of these variables on weekdays and weekends.

Absolute Changes in the Intervention Response 
Speed
The magnitude of the dominant poles represents the speed of 
the response. Poles were estimated separately for weekdays 
and weekends using data from before and after the pandemic 
declaration. On weekdays, the average dominant pole magni-
tude was 0.70 (SD = 0.10) before the pandemic declaration 
and 0.68 (SD = 0.08) after the pandemic declaration. On 
weekends, the average dominant pole magnitude was 0.73 
(SD = 0.10) before the pandemic declaration and 0.70 (SD = 
0.06) after the pandemic declaration. As seen in Tables 2 and 
3, dominant poles did not change significantly from before to 
after the pandemic declaration on either weekdays or week-
ends (p > .05). We concluded that, on average, the overall 

Fig. 1. Features of the simulated impulse response (left panel) and cumulative step response (right panel) represented on the response of a participant 
to “Move More” messages shown in blue. indel Initial delay; pmag peak magnitude; pdel peak delay; SS steady state; rt rise time; st settling time; eft 
effective time.

http://academic.oup.com/abm/article-lookup/doi/10.1093/abm/kaac051#supplementary-data
http://academic.oup.com/abm/article-lookup/doi/10.1093/abm/kaac051#supplementary-data
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speed of the response describing physical activity dynamics 
did not change.

Absolute Changes in System Dynamics by 
Message Type
On weekdays, steady state, settling time, effective time, 
and peak delay did not significantly change after the pan-
demic declaration for any message type (p > .05). As seen 
in Table 2, Wilcoxon signed-rank tests indicated that the 
median peak magnitude decreased significantly for both 
(a) “Move More” messages from before (Mdn = 54.7) to 
after the pandemic declaration (Mdn = 35.8), and (b) “Sit 
Less” messages from before (Mdn = 51.5) to after the pan-
demic declaration (Mdn = 30.1). The mean rise time for 
“Inspirational Quotes” also decreased significantly after the 
pandemic declaration.

On weekends, peak magnitude, peak delay, and effective 
time did not significantly change after the pandemic dec-
laration for any message type. As seen in Table 3, the mean 
steady state and rise time for “Move More” messages de-
creased following the pandemic declaration, such that both 
the overall step response decreased and the time it took to 
move from 10 to 90% of that overall step response decreased 
after the pandemic declaration. Settling time increased sig-
nificantly for “Move More” messages, indicating that more 
time was required for responses to reach their ultimate level 
following the pandemic declaration. Steady state, rise time, 

and setting time did not change significantly for “Sit Less” or 
“Inspirational Quotes” messages.

Relative (Rank-Order) Changes in System 
Dynamics by Message Type
Table 4 presents correlations between corresponding fea-
tures of each message type before and after the pandemic 
declaration. Overall response speed pre-pandemic was 
not significantly correlated with post-pandemic declar-
ation response speed on weekdays or weekends. Specific 
model features before and after the pandemic declaration 
were, with a few exceptions, weakly correlated, and not 
statistically-significant. On weekdays, rise time for pre- 
and post-pandemic declaration responses to “Sit Less” and 
“Inspirational Quote” messages exhibited statistically-
significant positive correlations, as did settling time for 
pre- and post-pandemic declaration responses to “Sit Less” 
messages. None of the other weekday response features 
were significantly correlated nor were any weekend re-
sponse features significantly correlated.

Discussion
We investigated the impact of the pandemic declaration on 
physical activity and person-specific response dynamics to 
a digital messaging intervention. Step counts significantly 
decreased on the weekdays after pandemic declaration but 

Table 2 Average values of impulse and step response features and response speed for all person-specific models for pre-pandemic and post-pandemic 
stages over the weekdays; all times are measured in minute scale

Response features and message type Pre-pandemic Post-pandemic Test statistic p Effect size 

Mean (SD) Range Mean (SD) Range 

Response speed 0.70 (0.10) 0.47, 0.86 0.68 (0.08) 0.54, 0.85 t(21) = ‐0.84 .408 d = ‐0.18

Peak magnitude

 � Move more 69.18 (51.14) 16.03, 195.05 43.97 (35.55) 7.97, 180.93 z = ‐2.09 .036 r = ‐.45

 � Sit less 58.78 (32.93) 15.11, 130.27 39.60 (26.75) 15.53, 118.59 z = ‐2.16 .031 r = ‐.46

 � Inspirational quotes 81.00 (81.64) 15.27, 413.79 49.80 (43.80) 9.29, 198.59 z = ‐1.32 .189 r = ‐.28

Peak delay

 � Move more 25.23 (22.39) 0, 60 26.59 (23.11) 0, 60 t(21) = 0.18 .856 d = 0.04

 � Sit less 33.41 (23.11) 0, 60 25.23 (22.86) 0, 60 t(21) = ‐1.05 .307 d = ‐0.22

 � Inspirational Quotes 28.64 (21.17) 0, 60 31.36 (23.56) 0, 60 t(21) = 0.39 .699 d = 0.08

Steady state

 � Move more 96.75 (263.86) ‐472.77, 784.59 61.56 (262.98) ‐240.24, 1106.29 z = ‐0.70 .485 r = ‐.15

 � Sit less ‐40.37 (203.49) ‐583.64, 264.1 ‐19.02 (176.96) ‐550.75, 279.76 t(21) = 0.48 .635 d = 0.10

 � Inspirational quotes ‐2.38 (326.65) ‐470.83, 1072.26 0.95 (148.38) ‐326.14, 354.66 z = 0.05 .961 r = .01

Rise time

 � Move more 82.50 (64.60) 0, 270 103.64 (54.56) 0, 225 z = 0.96 .337 r = .20

 � Sit less 87.95 (56.75) 0, 225 85.91 (61.09) 0, 255 z = ‐0.49 .623 r = ‐.10

 � Inspirational quotes 94.09 (52.41) 15, 225 64.09 (55.78) 0, 195 t(21) = ‐2.61 .016 d = 0.56

Settling time

 � Move more 159.55 (66.21) 60, 360 160.91 (54.81) 75, 330 z = 0.28 .778 r = .06

 � Sit less 163.64 (63.46) 75, 360 150.00 (60.53) 75, 315 z = ‐1.47 .142 r = ‐.31

 � Inspirational quotes 162.27 (61.70) 60, 315 169.77 (71.92) 60, 315 t(21) = 0.48 .637 d = 0.10

Effective time

 � Move more 197.73 (249.31) 15, 600 239.32 (280.49) 15, 600 t(21) = 0.48 .634 d = 0.10

 � Sit less 137.73 (218.73) 15, 600 262.50 (269.12) 15, 600 z = 1.40 .161 r = .30

 � Inspirational quotes 235.91 (264.31) 15, 600 111.14 (200.16) 15, 600 z = ‐1.45 .147 r = ‐.31

Note. All times are measured in minute scale.
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not on weekends. We hypothesized that overall intervention 
response speed would slow after the pandemic declaration 
and that message-specific response features would change; 
however, on average, overall response speed did not sig-
nificantly change and, with few exceptions, most model 
response features did not change either. Finally, we hypothe-
sized that the rank ordering of model features would re-
main consistent after pandemic declaration and they would 
be significantly positively correlated; however, for the most 
part, correlations were weak showing that model features 
were not consistent within participants after the pandemic 
declaration. Together, these results support the notion that 
significant changes in context can impact physical activity 
behavior and participant response dynamics within a digital 
messaging intervention.

A key contribution of these findings is that the pandemic 
declaration impacted physical activity more on weekdays 
than on weekends. Prior work evaluating the impacts of the 
COVID-19 pandemic on physical activity in the United States 
have reported significant decreases in physical activity fol-
lowing the pandemic declaration [5, 25, 26]. Compared to 
analyses that specifically evaluated step counts, the change we 
observed was greater (1000 step/day decrease across 239,543 
people [5]; 2232 steps/day decrease in 268 adults [26]). This 
could be due to age differences; our sample focused specif-
ically on insufficiently-active young adults whereas those 
studies sampled any US Argus app users ([5]) and US adults 
18–74 years old ([26]). A longitudinal study in England that 

looked at the effects of age showed that younger people 14–34 
years old experienced the most change in activity after lock-
down and remained the least active throughout compared to 
persons 35–44, 45–54, 55–64, and 65 years or older [27]. 
However, our work contrasts with an analysis of US college 
students physical activity based on pre-pandemic activity level 
[28]. Active students were the only group that experienced 
decreases, while inactive, and moderately-active students ex-
perienced increases or no change based on activity intensity. 
Our entire sample was composed of insufficiently-active indi-
viduals. Another key difference is that we used device-based 
measures that could capture behavior before and after the 
pandemic declaration, whereas Barkley et al. [28] used self-
report measures that asked students to recall their activity 
before and after the pandemic declaration, which may have 
been susceptible to recall bias.

To our knowledge, this is the first evaluation that shows 
different physical activity changes on weekdays and week-
ends after the pandemic declaration. Physical activity is 
a dynamic behavior that can vary by time of day or from 
day to day across groups, and demonstrate significant vari-
ability within individuals [10, 20]. Given prior work showing 
different physical activity patterns on weekends and week-
days, it stands to reason that the impacts of the pandemic 
on physical activity would differ by day type. Lockdown/
stay-at-home orders directly impacted engagement with work 
and school, which occupy a significant amount of time, typic-
ally only on the weekdays. The weekends inherently involve 

Table 3 Average values of impulse and step response features and response speed for all person-specific models for pre-pandemic and post-pandemic 
stages on weekends

Response features AND message type Pre-pandemic Post-Pandemic Test statistic p Effect size 

Mean (SD) Range Mean (SD) Range 

Response speed 0.70 (0.10) 0.73 (0.10) 0.54, 0.88 0.70 (0.06) z = 0.86 .389 r = .18

Peak magnitude

 � Move more 60.53 (35.80) 19.78, 145.28 61.00 (45.68) 6.32, 209.86 z = 0.18 .858 r = .04

 � Sit less 62.51 (47.17) 22.14, 217.46 70.00 (52.79) 13.47, 238.50 z = ‐0.11 .910 r = ‐.02

 � Inspirational quotes 97.85 (115.44) 26.66, 532.27 74.54 (55.55) 13.70, 216.33 z = 0.60 .548 r = .13

Peak delay

 � Move more 23.86 (21.54) 0, 60 15.00 (16.69) 0, 60 z = 1.52 .128 r = .32

 � Sit less 27.27 (20.51) 0, 60 23.86 (22.04) 0, 60 t(21) = ‐0.57 .576 d = ‐0.12

 � Inspirational quotes 23.86 (24.78) 0, 60 29.32 (21.45) 0, 60 t(21) = 0.86 .401 d = 0.18

Steady state

 � Move more 54.23 (195.05) -359.64, 428.56 -87.16 (225.44) -902.87, 235.93 t(21) = ‐2.32 .031 d = ‐0.49

 � Sit less 39.24 (246.55) -325.55, 773.19 29.27 (253.44) -614.32, 522.56 z = ‐0.08 .935 r = ‐.02

 � Inspirational quotes 131.58 (400.83) -200.49,1458.44 -3.47 (218.04) -455.16, 399.50 z = 0.80 .426 r = .17

Rise time

 � Move more 115.91 (73.51) 0, 285 75.00 (48.55) 0, 150 t(21) = ‐2.37 .028 d = ‐0.50

 � Sit less 102.95 (68.39) 0, 210 85.91 (66.63) 0, 270 z = 1.09 .276 r = .23

 � Inspirational quotes 90.68 (60.26) 0, 210 90.00 (51.75) 0, 225 t(21) = ‐0.04 .966 d = ‐0.01

Settling time

 � Move more 205.23 (73.10) 105, 420 158.86 (65.08) 90, 405 z = 2.31 .021 r = .49

 � Sit less 190.23 (76.54) 60, 330 158.86 (67.82) 90, 375 z = 1.32 .186 r = .28

 � Inspirational quotes 176.59 (63.46) 90, 300 184.09 (59.31) 105, 300 t(21) = 0.35 .729 d = 0.08

Effective time

 � Move more 240.00 (268.17) 15, 600 246.82 (271.97) 15, 600 t(21) = 0.10 .921 d = 0.02

 � Sit less 297.95 (284.31) 15, 600 301.36 (279.66) 15, 600 t(21) = 0.05 .961 d = 0.01

 � Inspirational quotes 256.36 (265.80) 15, 600 296.59 (280.39) 15, 600 t(21) = 0.48 .635 d = 0.10

Note. All times are measured in minute scale.
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less exogenous control; thus, people may have experienced 
a less significant change in their routine on the weekends or 
they were able to adapt better to experienced changes due to 
having more discretionary time.

After evaluating absolute and relative changes in response 
dynamics by message type, we concluded that change oc-
curred in intervention response post-pandemic declaration 
and the type and magnitude of the change differed within 
and between people. Relative changes in model features show 
that some aspects of intervention responses were more stable 
on weekdays than weekends. This finding could be due to 
instability in the model due to having less weekend data or 
it could reflect larger reorganizations of behavior given the 
greater discretionary time that people have on the weekends 
compared to the weekday. Developmental systems theory pro-
poses that when humans experience transformational change, 
they can reject or suppress the change and maintain existing 
organization, they can change aspects of themselves to ac-
commodate the change, or they can change their relationship 
with their environment to accommodate the change [18]. This 
array of options for how change can be accommodated may 
provide a framework for responses across varying contexts. It 
could be that pandemic-induced contextual changes affected 
cognitive, affective, or motivational processes resulting in a 
change in behavioral response to message content. However, 
we are unable to test this mechanistic speculation because this 

study design focused on measuring what excites the system 
and elicits a response rather than what changes inside the 
person.

This work extends a prior publication from our group on 
dose-finding by showing that person-specific models vary 
as the context of behavior evolves [12]. We have previously 
found that generic models are conservative in representing 
the physical activity of individuals and there is a need for 
person-specific models [12, 13]. The person-specific models 
in this analysis showed considerable variability in extracted 
model features before and after the pandemic declaration, 
adding support that person-specific approaches are needed 
for dynamic behaviors. Additionally, differences in individ-
uals’ responses over the weekends and weekday reinforce 
the need for switch systems based on the day of week [13]. 
These findings are consistent with prior findings that a struc-
ture describing group-level variations cannot describe the 
variations in the individual level and thus person-specific 
approaches may yield efficient treatment decisions for indi-
viduals [29]. Failure to deploy person-specific decision rules 
could lead to less effective interventions and potential treat-
ment fatigue by users [30]. Furthermore, this analysis adds 
support for the development of continuous tuning inter-
ventions since it provides evidence that abrupt changes in 
context impact health behavior and intervention response 
within and between people. Continuous tuning interventions 
“use data about the individual to progressively refine and 
‘tune’ the intervention content, delivery feature(s) or timing 
to the idiosyncrasies of the individual” [31]. We hope that 
we will not experience another pandemic, but other normal 
life events could dramatically impact behavioral systems 
(e.g., pregnancy, parenting a child, adopting a pet, moving, 
starting school, or a new career). Physical activity interven-
tions may need to be person-specific and continuously-tuned 
in order to have the greatest effect across people. Future 
work is needed to empirically test the efficacy and effective-
ness of person-specific adaptive interventions for physical 
activity promotion.

Limitations and Challenges
The small sample size reduced our ability to detect statis-
tical significance, thus explaining the differences observed 
in significant p-values and meaningful effects. Findings were 
based on insufficiently-active young adults and may not gen-
eralize to more active young adults or to midlife and older 
adult populations. Physical activity behavior was measured 
with a wrist-worn Fitbit device, which may not be as accurate 
as a research-grade activity monitor worn at the waist or 
thigh. We investigated the effect of the pandemic as an ex-
ternal factor on physical activity behavior and intervention 
response; however, given that this was a natural experiment, 
other unmeasured factors may have influenced these changes, 
such as physical or mental health. Young adults may have ex-
perienced temporary changes in living arrangements during 
campus closures or after loss of employment. From a statis-
tical standpoint, assumptions were checked before running 
each test, however, there were some potential concerns with 
linearity for the correlation analyses. All of our dynamical 
models assumed similar memory (all order 5) and model 
parameters were constants and not allowed to vary as a func-
tion of other conditions at the time of message receipt, such 
as location or weather.

Table 4 Correlations between pre- and post-pandemic response speed 
and response features to different message types for weekday and 
weekends

Response feature Message type 
Weekdays Weekends

r p r p 

Response speed .26 .24 ‐.15 .50

Peak magnitude

Move more .08 .73 ‐.07 .76

Sit less ‐.05 .81 .00 .99

Inspirational quotes ‐.08 .74 .10 .67

Peak delay

Move more ‐.18 .43 ‐.12 .60

Sit less ‐.27 .22 .13 .57

Inspirational quotes ‐.06 .79 .17 .44

Steady state

Move more .13 .57 .08 .73

Sit less .41 .06 ‐.16 .48

Inspirational quotes ‐.05 .75 ‐.13 .58

Rise time

Move more .04 .86 .17 .46

Sit less .54 .01 ‐.12 .60

Inspirational quotes .50 .02 .13 .57

Settling time

Move more .28 .21 .17 .45

Sit less .68 < .001 ‐.14 .53

Inspirational quotes .40 .06 ‐.33 .13

Effective time

Move more ‐.16 .47 .30 .18

Sit less .26 .24 .34 .12

Inspirational quotes .05 .83 ‐.03 .91
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Notwithstanding these assumptions, dynamical system 
modeling provided a solid framework for developing person-
specific models and interpreting the dynamic physical activity 
behavior of the participants. Other techniques like reinforce-
ment learning algorithms cannot be applied to the amount of 
data used in this study. Additionally these methods are not 
capable of handling the noisy data [32]. System identifica-
tion methods applied in this paper make a balance between 
using sensor collected data to explore the dynamic physical 
activity behavior of the participants and the efficiency in the 
amount of data required for analysis. Additionally, these tools 
are well-suited to handle noisy datasets.

Conclusions
This study revealed that the abrupt change(s) in daily life 
following the COVID-19 pandemic declaration significantly 
impacted both physical activity levels and the dynamics of 
physical activity, including how people responded to digital 
messaging interventions. Researchers evaluating behavioral 
interventions may want to consider the implications of the 
COVID-19 pandemic when assessing the efficacy or effect-
iveness of their intervention as this event may have impacted 
participant responses to other interventions as well. The 
implications of this work demonstrate the importance of 
developing person-specific, continuously-tuned interventions 
that take into consideration external factors that can cause 
reorganization of behavioral systems.
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