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EEGs Vary Less Between Lab and
Home Locations Than They Do
Between People
Kaare B. Mikkelsen*, Yousef R. Tabar, Christian B. Christensen and Preben Kidmose

Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark

Given the rapid development of light weight EEG devices which we have witnessed

the past decade, it is reasonable to ask to which extent neuroscience could now be

taken outside the lab. In this study, we have designed an EEG paradigm well suited

for deployment “in the wild.” The paradigm is tested in repeated recordings on 20

subjects, on eight different occasions (4 in the laboratory, 4 in the subject’s own home). By

calculating the inter subject, intra subject and inter location variance, we find that the inter

location variation for this paradigm is considerably less than the inter subject variation.

We believe the paradigm is representative of a large group of other relevant paradigms.

This means that given the positive results in this study, we find that if a research paradigm

would benefit from being performed in less controlled environments, we expect limited

problems in doing so.

Keywords: electroencephalogram, home recording, inter subject variability, intra subject variability, ear-EEG

1. INTRODUCTION

With the advent of smart devices and wearable technologies, real life EEG recordings are getting
increasingly feasible and potentially useful (Debener et al., 2012, 2015; Mullen et al., 2015).
Applications include diagnosing and monitoring of epileptic patients (Gilliam et al., 1999; Askamp
and van Putten, 2014; Zibrandtsen et al., 2017), decoding of auditory attention (Mirkovic et al.,
2015; O’Sullivan et al., 2015; Das et al., 2018), brain-computer interfaces (Birbaumer and Cohen,
2007; De Vos et al., 2014), sleepmonitoring (Shambroom et al., 2012; Younes et al., 2017;Mikkelsen
et al., 2019), and monitoring of human behavior in extreme situations, such as cave exploration or
space travel (Mogilever et al., 2018), to name a few. With the ongoing SARS-CoV-2 pandemic,
the simple need to continue clinical investigations and EEG research outside laboratories has been
added to the list.

However, given that the majority of existing EEG literature deals with single measurements on
many subjects, there is limited data on the likely changes to results, or any decrease in data quality,
that would come about from performing multiple measurements on the same subjects, in different
locations, possibly outside of the laboratory and the immediate control of the investigator.

Looking at the literature, we find some studies focusing on intra- and inter-subject variability
in the lab. Corsi-Cabrera et al. (1997, 2007) looked at patterns of correlation in scalp EEG in
women, and found stable differences between subjects. Stastny et al. (2014) showed that inter-
subject variability in the µ-rhythm could be used to identify subjects between sessions. Dalebout
and Robey (1997) showed in 1997 that the P300 response varies more between subjects then within
them, and in the late 80’ies Lauter et al. showed extensively that audiological responses follow the
same pattern (Lauter and Karzon, 1990a,b).
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More recently, Poulsen et al. (2017) showed that the amount
of intersubject variability in a classroom setting could be used
to gauge group engagement. Given that this is in itself an
example of EEG recordings taken out of the laboratory setting,
the comparison is particularly interesting.

Finally, Shen and Lin (2019) studied both inter and intra-
subject variation in EEG during emotional responses. They found
substantial inter- and intra-subject variation, not unlike what we
show here.

In this study we present a paradigm designed to be both
doable outside a laboratory, as well as reasonably comparable
to a broad class of EEG paradigms. Second, we quantify the
relationship between inter-subject, intra-subject (inter-session)
and inter-location variability for this paradigm, and for each
individual response invoked by it.

We tasked 20 subjects with performing the instructions in a 3-
min long video on 8 separate occasions—4 in our EEG laboratory
and 4 in their respective homes. All while wearing a combination
of EEG, EOG, and chin EMG electrodes. By comparing the
variation contribution from the different sources, we find
clear inter-subject variability in all measures, and only little
location-dependence. However, we do find that the unexplained
variance generally increases for recordings performed outside
the laboratory.

2. METHODS

2.1. Setup
The recording setup consisted of 25 iridium oxide electrodes
(Kappel et al., 2019), connected to a TMSi Mobita amplifier.

The TMSi mobita amplifier is a mobile EEG amplifier with 24
bit resolution, individually shielded inputs, less than 0.4 micro
V RMS noise in the 0.1–10 Hz band, greater than 10 G� input
impedance, and greater than 100 dB CMRR.

The setup was a combination of ear-EEG (Mikkelsen
et al., 2015), scalp EEG, EOG, and EMG electrodes: 12
positions within the ears (6 per ear, see Figure 1), 3 chin
EMG electrodes, two EOG electrodes and 8 scalp electrodes
(M1,M2,C3,C4,F3,F4,O1,O2) (see Figure 1). All electrodes were
essentially identical, as seen in Figures 1B–F. To ensure good
connections, all electrodes outside the ears (13 in total) were
treated as wet electrodes and received electrode gel (Elefix
from Nihon Kohden for electrodes on the scalp, Ten20 from
Weaver and Company for face and mastoid). To ensure reliable
connections on the scalp, liberal amounts of Elefix gel were used,
in particular for subjects with long or curly hair (however, it
was ensured that bridging between gel patches never occurred).
All electrodes were embedded in soft silicone holders, and the
cap was an EASYCAP EEG cap (EASYCAP GmbH, Germany),
modified in-house. Ear-EEG ear pieces were costummade for the
individual, ensuring a good and stable connection.

It is worth noting that the electrode gels were specifically
chosen because they do not dry out (they are not hydrogels).
Furthermore, as the dry electrodes, by design, can not dry out
either, the electrode connections in the whole setup should be
expected to be very stable over time.

The signals were sampled at 500Hz, and a disposable electrode
(Ambu, White Sensor, WS-00-S) placed on the neck was used as
ground. The Mobita amplifier always uses an average reference
during recording.

The EEG laboratory used in this study was a dedicated room
in which we have successfully performed a host of different
electrophysiological recordings, and which is used in teaching
electrophysiological methods. During the recordings, no other
activities took place in the room, leading to a quiet setting. The
room has a sufficiently low amount of background electrical noise
that additional electrical shielding has not been necessary.

The study was reviewed and approved by the Central
Denmark Region Committees on Biomedical Research Ethics
(Ref. nr. 1-10-72-413-17) as well as the DanishMedicines Agency
(ref. nr. 2017111085).

2.2. Paradigm
Each recording consisted of two portions—one in a controlled
laboratory in an EEG lab, and one in the subject’s own
home. The electrode setup was performed in the laboratory
immediately prior to the first portion, and then kept on
until the second portion at home. The setup was performed
by an experienced EEG experimenter. The subjects were
informed that they could take out the ear-EEG electrodes
after the lab measurement and then put them back in
before the home measurement. This option was used a
total of 14 times (out of 80 possible). The time difference
between first and second portion was, on average, 5 h
and 9 min.

Each subject had 4 recording days, meaning that the video was
viewed 8 times by each subject. On average, there was a 19 day gap
between each recording day, though with considerable variation
(25% were below 7 days, 51% below 14 days).

Behavioral Paradigm

While watching a video (accessible at
https://www.youtube.com/watch?v=4Uh2UeDzizk),
the participants were instructed to:

• Perform 5 jaw clenches
• Alternate between 20 s of open and closed eyes, with

two repetitions
• Perform rhythmic, lateral eye motions.

The video takes 3 min and 9 s.
Please see Figure 2 for a detailed diagram of

experimental procedure.
It is worth noting that we took inspiration from the typical

paradigms used for quality control of EEG setups in a clinical
setting. This means that the expected responses in the recording
are easy to recognize, and it is possible to positively identify
whether the participant correctly followed the instructions.

2.3. Cohort
Twenty subjects were recruited, with ages between 22 and 36,
mean 25.9 years. Thirteen were female. Subjects were a mixture
of lay people (4), engineering students (15) and researchers (1).
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FIGURE 1 | (A) The EEG setup, with EEG cap, face electrodes and ear-EEG plugged in. (B) Close-up for single ear-EEG earplug (left in this case). (C) 10-20 reference

diagram, showing the used scalp electrodes, including the 5 facial electrodes. (D) The EOG, EMG and M1/M2 electrodes were held in custom silicone holders. (E) Cap

electrode holder from the outside. (F) Cap electrode holder from the inside. The diameter of the electrode is 3.5 mm and the diameter of the “cup” is approximately 10

mm. Written informed consent was obtained from the individual for the publication of any potentially identifiable images or data included in this article.

FIGURE 2 | Overview of a recording. Top shows the structure of the video and included instructions, bottom shows how the video was seen twice on the same day

by the participant, once immediately after recording setup, and the second time several hours later in their own home (still wearing the recording equipment). The

same video, with the same instructions, is viewed every time.

In total, 3 out of the 20 subjects could be considered to have prior
EEG experience.

Subjects received monetary compensation for
their participation.

2.4. Preprocessing
The timing between the EEG and the video instructions was
determined by identifying the beginning of the lateral eye
movements in the EOG, and extracting data up to 105 s prior
to that as well as up to 85 s after.

As shown in Figure 3, the eye-movement dominated portion
of the EEG is quite clear, and by using this it is possible to get an
automatic, reproducible alignment at sub-second precision.

In preparing all EEG recordings, we employed a mixture of
automatic and manual artifact rejection:

1. All channels in all recordings were band pass filtered to only
keep activity in the 0.3 to 100 Hz band. This was done
using a Hamming windowed sinc FIR filter of order 5500 [as
implemented in EEGLAB (Delorme and Makeig, 2004)].

2. Instances where a single electrode had an amplitude larger
than 350 µV were identified as artifacts, and the samples from
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FIGURE 3 | Top: scaled version of the cross correlation between recorded signal from EOGl electrode and a sample recording used as “pattern.” Bottom:

comparison of EOGl and sample pattern at highest cross correlation. From subject 1, night 1, home recording.

that particular electrode was set to “nan” for a 2-s window
around the event.

3. Finally, we used the fact that the ear electrodes have a high
degree of redundancy between them, meaning that it should
be possible to predict most of the signal from a healthy
electrode using the signal from the neighboring electrodes.
This was implemented by rejecting any ear electrode that
had less than 0.4 Pearson correlation between itself and it’s
projection into the space of all other ear electrodes. The value
of 0.4 was chosen tomatch rejection through visual inspection.

Due to the quite large signal amplitudes evoked by the eye-
movement portion, the amplitude-thresholding was skipped for
that part of the recordings.

Finally, the recordings were checked manually, to spot any
additional channels to reject.

3. DATA MODELING

To maximize clarity and relevance of the analysis, for each part
of the analysis of the paradigm, we focus on specific choices in
modeling and specific electrodes (rather than report outputs from
all possible electrode configurations). Thus, we do not restrict
ourselves to a specific choice among the 25 electrodes, but have
instead chosen to use the derivations that are most relevant for
each sub analysis. See below for further details.

3.1. Jaw Clench Modeling
Jaw clenches are characterized by an increase in power at high
frequencies (40–1,000 Hz), seen easily in electrodes placed close
to the jaw muscles. Because of this, we extracted the power in the

40–80 Hz band for each ear electrode in windows of 0.5 s long,
and calculated median power across electrodes for each window.
By fitting the function:

f (t) = c+

5∑

i=1

ai · e
(t−ci)2/w2

i (1)

we may estimate the intensity of the clenching by the
extracted amplitudes, ai. Here, c, ai, ci,wi are all free parameters
determined through least squares fitting, and the index i
represents the five jaw clenches (such that ci is the timing and
wi the width of clench i). See Figure 4 for an example. Prior
to power estimation, the ear electrodes were referenced to their
own average.

3.2. Alpha Power
The occipital alpha oscillation is present all over the head,
but it is seen clearest in the occipital electrodes. Therefore,
we estimated the power in the 8–12 Hz band averaged over
electrodes O1 and O2, during the eyes open/closed portion of the
paradigm. The two electrodes were referenced to the average of
the scalp electrodes.

3.3. EOG Content
One way to characterize the EEG recordings is to specifically look
at the different noise sources, to see whether they influence the
recordings in the same manner across locations. An example of
this is extracting eye movements using a single-sided ear-EEG
device, which, besides its use in characterizing EEG recordings,
could also be considered as a means to estimate visual attention
(Favre-Félix et al., 2019).
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To test this, we used a linearmodel, similar to what was used in
Mikkelsen et al. (2017), to predict the activity in the EOGr-EOGl
derivation during the “horizontal eye movements” portion of the
behavioral paradigm. More precisely, the 70 s of eye movements
were partitioned into two 35 s intervals, and a linear model (with
a constant term) was trained to mimic the EOG activity using
only the left or right ear electrodes. The model trained on the
first 35 s was then applied to the second 35 s, and vise versa. For
each ear, performance was recorded as the Pearson correlation
between actual EOG signal and predicted.

From this point, we shall exclusively refer to this correlation
as the “prediction quality.”

3.4. Resting State Power Levels
It is generally interesting to know how the spontaneous, or
“background” variation in the EEG data differs between locations
and subjects, to infer whether paradigms known from recordings
in the lab can be performed at home. In practice, this would be the
main contribution to the “noise floor” in an ERP measurement.

We estimate the resting state EEG power by measuring the
power for various electrode combinations (M1, avr. left ear, avr.
right ear, C3, C4, F3, F4, all referenced to M2), and presenting
both the full spectrum (up to 100 Hz) as well as the behavior
of the average power in the 30–100 Hz band (excluding 50 Hz).
We only used the “eyes open/closed” portion of the recordings
for this analysis, and the power spectrum was calculated using
Welch’s algorithm with 3-s window widths.

3.5. Linear Mixed Models
A central question is to which extent variation in the independent
variables causes variation in the results; it is very helpful when
designing an experiment to know what alteration of study design
may risk drowning out the signal.

In this study, the three most interesting sources of variation
are that caused by adding subjects, that caused by repeating
measurements, and that caused by changing location. In short,
for m = 1, ..., 20 subjects, n = 1, ..4 repetitions and l = 1, 2
locations, the 80 observations, ymnl, may be described as:

ymnl ∼ c+ Ll + Sm (2)

Sm ∼ N(µm, σ
2
1 ) (3)

µm ∼ N(µ, σ 2
2 ) (4)

where N(µ, σ 2) is a normal distribution with mean µ and
variance σ 2. In this terminology, σ 2

1 represents the intra subject
variation, and σ 2

2 the inter-subject variation.
We apply our framework to the data using linear mixed

effects models, letting “subject identity” be a “random effect” and
everything else “fixed effects.” Since we are doing the calculations
in MATLAB (using fitlme), we describe the five models using
Wilkinson notation (Wilkinson and Rogers, 1973):

Jaw Clench, alpha power:

y ∼ 1+ location+ (1|subject).

EOG content:

y ∼ 1+ location+ side-of-head+ (1|subject).

Resting power levels:

y ∼ 1+ location+ channel+ (1|subject).

Note that we add either “channel” or “side-of-head”
dependencies in the last two, so as not to unduly add to
the “intra subject variation.”

By fitting the mixed effects models to the data, we can define
the inter-subject, intra-subject and inter-location variation in the
following ways:

Inter-subject: std(µi), where µi is the average response from
subject i.

Intra-subject: The residual error, or root mean square error
of the model fit. This can also be thought of as “day-to-
day variation.”

Inter-location: So as not to compare fixed-effects offsets to sums
of squared errors, we represent the inter-location variation
by the square root of the “squared error” term for the
location-term, as calculated by “fitlme” in MATLAB.

We calculate these for each of the analyses described above,
and rescale them such that the largest source of variation is 1
for each comparison, to make it easier to compare results from
different paradigms.

3.6. Analysis of Location Influence
To specifically quantify the effects of doing measurements in
multiple locations, we calculate p-values for both the differences
in mean values between laboratory and home measurements, as
well as the unexplained variances for each location (the “noise”).

p-values for the significance of mean differences are extracted
from the mixed linear model fits (the “ANOVA” field in
the fitlme output) and for variation differences, we use
permutation testing (by pairwise permutation of the location
information) to estimate the probability of getting a greater
difference than the one observed. All p-values are for two-
tailed tests.

4. RESULTS

4.1. Data Quality
On five occasions, the behavioral data were lost. This happened
on four occasions in the lab, and on one occasion at home. In
the lab, it was due to human error in mismanagement of the
recording, at home, the subject simply forgot to do it.

The automatic and manual artifact rejection resulted in 9% of
the data samples being rejected (11% in lab, 7% at home). 1.5%
of the data was rejected in the manual step. Viewing the setup
as a whole, 2% of the time points were rejected (meaning that
at 98% of the time, at least one electrode was recording). These
numbers for lab vs. home were 4.6 vs. 0.2%. We have excluded
the 5 missing recordings when calculating this.

4.2. Jaw Clenching
In Figure 4 is seen an example of the extracted median gamma
band power. The most common deviations from this pattern
are either a missing first peak (some subjects forgot to do the
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FIGURE 4 | Example of the MEG model [f in (1)] fitted to median gamma

power.

FIGURE 5 | Median median clench amplitude for each subject, in the two

locations. Meaning that we calculate the median clench for each recording,

and then find the median of those values. We see that median clench is very

consistent between home and lab environments, and that the value varies

between subjects. Identity line included for reference.

first clench) or some disturbance occurring halfway through
(coughing, other movements). In Figure 5 is shown the “median
of medians” peak amplitude, meaning that first the median
amplitude is calculated for each recording, and subsequently
the median is taken for each subject’s recording date. We see
that this observable is very consistent within subjects between
home and lab settings. Since the peak amplitude is influenced
by how vigorously the subjects clench, we interpret this to mean
that subjects were equally enthusiastic with and without direct
supervision; they did not just go through the movements when
at home, but strove to do the task as well as they had done in
the laboratory.

FIGURE 6 | Reproducibility of median alpha power in occipital electrodes,

referenced to the average of the rest of the scalp electrodes. Identity line

included for reference. Units are dB relative to 1[µV ]2. (A) Open eyes alpha

scalp. (B) Closed eyes alpha scalp.

4.3. Alpha Power
In Figure 6 is shown both alpha power for open and closed eyes.
As with jaw clenching, we see that alpha powers measured at
home and in the lab are very similar, but with some intersubject,
reproducible variation.

Not shown in Figure 6 is the subject-wise alpha modulation.
When analyzing that, we find an average of 3.6 dB, or slightly
more than a two-fold change in power. This is comparable to
what is otherwise seen in the literature (Alloway et al., 1997).

4.4. EOG Prediction
Figure 7 shows an example of successful EOG prediction in the
lab. Figure 8 shows that EOG prediction works to the same
extent at home as it does in the lab, though with a great deal of
“noise” added.

We find no differences between the two ears. Instead, when
calculating the Pearson correlation between prediction quality in
left and right ear, we obtain a quite high value of 0.6, meaning that
the performance in either ear tends to follow each other. On the
other hand, we find very little correlation between performance at
home and in the lab on the same day, at 0.11. By investigating the
distribution of prediction performances, we find that the major
variation in prediction quality is between “high” values that are
between 0.5 and 1, and low values which are between 0 and 0.5.
It appears that the variation between these two ranges is driven
by variations in signal quality in both EOG and ear electrodes.
In other words, if the prediction quality is not good (meaning
below 0.5), it is most likely due to either many electrodes in the
given ear having a bad connection, or one of the EOG electrodes
being faulty. This is not particularly correlated between the two
locations, which explains the low home vs. lab correlation.

4.5. Resting State Power Level
Figure 9 shows average power spectra in the EEG for different
locations and electrode combinations. There are different
observations to be made. (1) The relative difference in power
is frequency dependent. For some reason, we see a higher level
in the lab setting than home for frequencies below 10 Hz. We
hypothesize that this is either due to some special circumstance
in our laboratory (since it is unlikely that the noise environments
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FIGURE 7 | Examples of EOG signals reproduced from the electrodes inside the left or right ear. This example is based on data recorded in the lab.

FIGURE 8 | Comparison of EOG prediction quality in the lab and at home, for different subjects. Identity line included for reference.
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FIGURE 9 | (A) Grand average specters, for the M2-C3 EEG channel. For each frequency is calculated the distribution of power densities across all measurements,

the region between 25th and 75h percentile is shown (colored area), together with the median (line). (B) Difference between median lab and home power specters for

different measurement electrodes (all referenced to M2). Note that the specters (excluding the 50 Hz-peak) have been smoothed for added clarity.

of the test subjects should have some common bias) or long-term
settling of the electrodes. (2) The variation in power density is
greater than the difference caused by location. (3) The 50 Hz
peak behaves differently from the surrounding noise floor—some
combinationsmay have higher 50Hz power in the laboratory, but
lower noise in the surrounding frequency bins.

Performing an ANOVA on the average power between 30
and 100 Hz (excluding 50 Hz), with “subject” and “night” being
random factors, the p-value for “location” is found to be 5% for
all 7 EEG derivations plotted here. If we restrict the data to single
EEG channels, the location p-value jumps between high (> 18%)
and low values (< 3%).

4.6. Variational Analysis
Figure 10 shows an estimation of the relative contribution to
total variation in the data from different sources.We see that in all
cases, primary drivers are inter and intra-subject variation, with
“location” being mostly a distant third. Note that this is not an
estimate of significance—it is absolutely possible for a variable to
have a very small, but very probable influence. For instance, it
seems quite probable from the results in Figure 9 that location
has an influence. But from Figure 10 we see that it contributes
less uncertainty to the grand average than both the inter and
intra-subject variation.

4.7. Significance of Location
In Table 1 is shown differences in mean values and “unexplained
error” between laboratory and home recordings. We see that for
three of the sub paradigms, the unexplained error is significantly
larger at home than in the laboratory, despite the fact that the
difference in means is minimal.

It is worth noting that “EOG” is a clear outlier, with a smaller
variation in home recordings than in the laboratory, and a quite
large p-value. This is well explained by the observation made
previously—that the main variation in EOG prediction quality
is driven by electrode connection, which has no clear pattern
between locations.

FIGURE 10 | Measures of how much variation is added to the EEG results

from different independent variables. Within each subparadigm, the measured

standard deviations have been scaled relative to the strongest component.

TABLE 1 | Analysis of location dependence for all sub paradigms.

Clench Open-alpha Closed-alpha EOG Resting S.d.

Location offsets 14.65 0 −0.05 0.05 1.55

Location offsets

p-values

0.54 0.94 0.15 0.04 0

Unexp. var. diff. 91.03 0.19 0.18 −0.02 1.35

Unexp. var.

p-values

0 0 0 0.51 0

The units of offsets and standard deviations are, for column 1: [µV ]2, and for column 2

and 3: dB relative to 1 [µV ]2. Column 4 is dimensionless Pearson correlation. Positive

values mean that the “home” value is larger.

5. DISCUSSION

By analyzing the evoked EEG from a behavioral EEG paradigm
performed under many different conditions, we are able to
compare the variation in response due to subject difference,
location differences and that driven simply by the uncertainty of
doing EEG measurements (“intra subject variation”).
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We find that for our paradigm, inter subject and intra subject
variation contributes more to measurement noise than switching
between laboratory and home measurements.

We also find that the signal quality as obtained in the home
environment is decent; the rejection rate is actually lower for
the home recordings than the lab recordings (7 vs. 11%). The
signal to noise ratio is low enough that all parts of the paradigm
could be shown to have reproducible results, as presented in
Figures 5, 6, 8.

Note that this study does not conclude that location can
not have a statistically significant effect on the measured EEG.
Instead, we are concluding that the uncertainty added to the
results from recording in multiple locations was less than both
the intra subject and inter subject variation. Indeed, we do
find that in most cases, the amount of unexplained variance
(the “fitting error”) is significantly greater (statistically speaking)
outside the laboratory than inside it.

We also point out some decisions which had to be made
in the design, and which could have changed the results in
non-intuitive ways:

1. Some decisions had to be made regarding the definitions of
both inter-subject, intra-subject and inter-location variation.
Specifically, the choice of modeling “subject” as a random
factor means that the “shrinkage” caused by “partial pooling”
resulted in the inter-subject variability being roughly 85% of
what we would have found if “subject” had been modeled as a
fixed parameter. We have determined this by simply running
both analyses.

2. We chose to use the estimated standard deviation of the
location offset, rather than the offset itself, to represent
the location-based effect. Had we chosen otherwise, the
location-based variance would have been estimated at a much
lower value.

3. It is likely that “intra-subject variability” could be defined in
any number of ways, leading to smaller or larger estimates.
However, we do believe that the unexplained variance,
which we have chosen here, is a highly relevant quantity
for comparison.

4. The “intra-subject” variation is, presumably, quite sensitive
to the precise study design. Had the paradigm been
longer, resulting in more data for each response calculation,
it seems likely that “intra-subject” variation would have
been less.

5.1. Limitations
In addition to the considerations listed above, there
are certain circumstances which limit the generality of
our results:

Themain things to keep inmind when considering the general
relevance of our results are:

1. While the “home” setting is presumably quite varied, the “lab”
is not. If the laboratory conditions are somehow exceptional
in this study, then that will bias the results. We do not think
that this is the case.

2. The way the study was designed, the lab recording always
preceded the home-recording. This means that certain time-
based effects, such as long-term settling of the electrodes,
necessarily influences the two locations differently. It is
possible that this is part of the reason for the difference in
background power spectra observed in Figure 9.

3. As is common in many neuroscience studies on healthy
individuals, our subject cohort was not randomly drawn from
the general population. The majority of the participants were
engineering students, and it is possible that they would be
better than average at carrying out instructions. As to the
subset of participants with prior EEG experience, we do not
think they biased the results. These subjects were considerably
more likely to remove the ear-EEG electrodes between lab
and home recordings, which is not the behavior we would
expect from participants making an effort to maximize
data quality.

4. The study does not include impedance measurements. This
was no accident; to the best of our knowledge there are
simply no commercially available EEG amplifiers which both
have the necessary high input impedance and active shielding
required for dry-contact EEG recording as well as the ability
to measure electrode impedance. However, as we find that
the signal quality (both in terms of automatic data rejection
and in terms of recorded responses) is at least as good in the
home setting as in the lab, in accordance with the design of
the hardware (dry electrode and non-evaporating gels), we
are convinced that our electrode connections are stable across
both recording sessions.

Finally, we have specifically designed a paradigm which does
not rely on precise alignment between recordings and stimuli.
While we do believe that such a recording setup could be
implemented, we did not attempt to do so in this study, and
leave the solution of this problem to future works by either us or
our colleagues.

6. CONCLUSION

We present a mixed EEG paradigm which is shown to be
insensitive to moving the subject outside the laboratory and out
of the direct control of the researcher.

On this basis, we believe that any researchers considering
home measurements in a paradigm suited for it (our setup
did not require strict control of sensory input, for instance),
could do so without worrying that the lack of oversight would
unduly contaminate their data. According to our results, if
an EEG paradigm is known to work on a broad selection
of subjects, it will also work on those subjects in their
respective homes.
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