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Abstract To overcome the limitations of independent

component analysis (ICA), today’s most popular analysis

tool for investigating whole-brain spatial activation in

resting state functional magnetic resonance imaging

(fMRI), we present a new class of local dimension-reduced

dynamical spatio-temporal model which dispenses the

independence assumptions that severely limit deeper con-

nectivity descriptions between spatial components. The

new method combines novel concepts of group sparsity

with contiguity-constrained clusterization to produce

physiologically consistent regions of interest in illustrative

fMRI data whose causal interactions may then be easily

estimated, something impossible under the usual ICA

assumptions.

Keywords Resting state fMRI � Dynamical spatio-

temporal models � Brain connectivity � Sparsity

1 Introduction

There is an ever-growing and pressing need for accurately

describing how brain regions are dynamically interrelated

in resting state fMRI [4]. Thanks to the nature of BOLD

signals, resting state interactions cannot be split into sep-

arate space and time descriptions, especially if the focus

lies on characterizing spatial changes associated to a small

number of regions of interest. The chief challenge is that

any dynamical spatio-temporal model (DSTM) of fMRI

datasets demands many parameters to describe what is also

a large number of observed variables which, nonetheless,

enjoy a great deal of spatial redundancy [3, 5, 37]. Esti-

mating the spatial origin of signal variability for only rel-

atively short sample sizes using DSTMs is problematic

especially under the rather usual unfavourable signal-to-

noise ratio (SNR) conditions [8, 24, 28, 34].

To circumvent limitations of modelling high-dimen-

sionality systems, Wikle and Cressie [33] proposed

dimension-reduced DSTMs aimed at capturing non-

stationary spatial dependence under optimal state repre-

sentations using Kalman filtering. In their formulation of

DSTM, they invoke an a priori defined orthogonal basis to

expand the redistribution kernel of a discrete time/contin-

uous space, linear integro-difference equation (IDE) in

terms of a finite linear combination of spatial components

[33]. This idea was further supported in [14] and extended

in [26] who considered parametrized redistribution kernels

of arbitrary shape that meet homogeneity conditions in

both space and time. Even though the base changes of [33]

improve the understanding of high-dimensional processes,

they by no means ensure sparse solutions which are key to

achieving statistically robust dynamical descriptions.

Model robustness has alternatively been sought by

indirect means as, for example, thru LASSO regression

[29] and basis pursuit [6] for model selection and denois-

ing, or sparse component analysis for blind source sepa-

ration [39] and finally by iterative thresholding algorithms

for image deconvolution and reconstruction [12, 17]. The

latter methods seek sparsity by maximizing a penalized
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loss function in a compromise between the goodness of fit

and the number of basis elements that make up the signal.

Recently, more attention has been given to group sparsity,

where groups of variables are selected/shrunken simulta-

neously rather than individually (for a review see [2]). This

is achieved by minimizing an objective function that

includes a quadratic error term added to a regularization

term that considers a priori beliefs or data-driven analysis

to induce group sparsity [35, 36, 38].

The present paper extends the results in [31] about local

dimension-reduced DSTMs (LDSTMs) involving state-

space formulations that are suited to datasets of high

dimensionality such as fMRI. LDSTMs take advantage of a

sparsifying spatial wavelet transformation to represent the

data thru fewer significant parameters which are then

combined via sparsity and contiguity-constrained cluster-

ing to initialize the observation matrix and sources of a

tailored expectation maximization (EM) algorithm. The

main assumptions here are that the system is overdeter-

mined (there exist more observed signals than sources) and

that the columns of the observation matrix act as point-

spreading functions (see Sect. 2). Finally, results are

gauged using simulated data (Sect. 4) followed by further

method illustration with directed connectivity disclosure

using real fMRI resting state data.

2 Problem formulation

DSTM problems may be formulated as state-space

models (see [9] for a comprehensive review of DSTM)

where space-related measurements zt depend on the

dynamical evolution of a suitably defined source vector xt
through a linear gaussian model

xt ¼
XL

l¼1
Hlxt�l þ wt ð1Þ

zt ¼ Axt þ vt; ð2Þ

where zt is an M dimensional column vector of observed

signals at time t; xt is an K dimensional column vector of

unknown source vectors, A is an unknown M � K obser-

vation matrix, Hl for 1� l� L are unknown K � K

matrices that describe source vector dynamics, wt is an

innovation process and vt is an additive noise. Both wt and

vt are assumed zero mean gaussian, respectively, with

covariance Q and R. The Hl matrices, the observation

matrix A together with Q and R and xt must be inferred

from zt. For added generality, Eq. (1) is presented in a

slightly extended form compared to the corresponding

model in [31].

Under the latter premises, the log-likelihood of model

(1, 2) is given by

log p
�
x;A;R;H1; . . .;HL;Qjz

�

¼ � T

2
log jRj � 1

2

XT

t¼1

ðzt � AxtÞTR�1ðzt � AxtÞ

� T � 1

2
log jQj � 1

2

XT

t¼Lþ1

� xt �
XL

l¼1

Hlxt�l

 !T

Q�1 xt �
XL

l¼1

Hlxt�l

 !
;

ð3Þ

where z ¼ vecð z1 � � � zT½ �Þ; x ¼ vecð x1 � � � xT½ �Þ and vec

stands for the column stacking operator [27].

The EM algorithm has long been the favourite tool to

solve (1,2) for xt because (3) is sure to converge to at least

a local maximum [13, 27]. The traditional EM algorithm

starts with randomly generated solutions for all parameters

and then proceeds by re-iterating its two main steps until

the maximum of (3) is attained. It begins with the E-step

where the unknown xt are replaced by their expected val-

ues given the data and current model parameter estimates.

Under gaussian assumptions, the expected system xt are

obtained via the Rauch–Tung–Striebel (RTS) smoother

[25]. In the second algorithm step, the M-step, one esti-

mates model parameters by maximizing the conditional

expected likelihood from the previous E-step. In practice,

EM algorithm performance degrades rapidly for high-

dimensional systems under (1,2). Its solution may even

become indeterminate and improper initialization, in fact,

often deteriorates estimate quality.

To achieve robust EM solutions, we take into account

two common neuroscientist concerns as to what constitute

meaningful brain activity components: (a) xt be an economic

(i.e. compact/low dimensional) dynamical representation of

the brain resting state fMRI dataset as a whole and (b)

solutions must be spatially localized, i.e. their associated

activation areas mathematically reflect point-spreading

functions. We show that the latter assumptions not only

allows estimating (1,2) parameters but also xt using the

simpler Local Sparse Component Analysis discussed in [32]

on zt. The nutshell description of the present algorithm is

represented in Fig. 1. The aim is to find initial estimators for

the observation matrix and system states which are used to

initialize a EM algorithm for maximization of (3).

3 Algorithm details

3.1 Sparsifying spatial wavelet transformation

Given f/mg1 �m �M an wavelet basis in RM , the first step is

to calculate the wavelet representation of the matrix of

observations Z � ðzm;tÞm;t for 1�m�M and 1� t� T

54 G. Vieira et al.

123



Ẑ � ðẑm;tÞm;t ¼ ðhzt;/miÞm;t ¼ UZ; ð4Þ

where U is the M �M orthonormal matrix, whose rows are

the /m’s. With obvious notation, Z ¼ S þ V, where

S ¼ AX, and Ẑ ¼ Ŝ þ V̂. The transform U should be

chosen such that a tailored clustering of the rows of Ŝ

provides the elements that approximate the rows of X. But

before this step, Ŝ must be estimated using the sparsity

assumption which implies finding a sparse representation

of Ẑ that captures its intrinsic degrees of freedom.

By considering that st ¼ Axt admits a sparse represen-

tation lying in Bs
1;1, a particular kind of Besov space [23],

approximating zt by st 2 Bs
1;1; can be expressed by adding

a penalization term to kzt � stk2
2 requiring that kstks;1 be

small, where kstks;1 is the Bs
1;1 norm of st. In other words,

we want to minimize the following function:

f ðstÞ ¼ kzt � stk2
2 þ kstks;1 ¼ kzt � stk2

2 þ
X

m

kmjŝm;tj;

ð5Þ

where ŝm;t ¼ hst;/mi and km [ 0 for 1�m�M are regu-

larization parameters [12].

For each t, the above function is coercive and strictly

convex which means that it has a unique global minimum.

If km ¼ k; the minimum value of (5) is obtained via the

soft-thresholding operator [15]

ŝm;t ¼ signðẑm;tÞmaxðjẑm;tj � k; 0Þ: ð6Þ

Since ŝm;t can be zero for some values of t but not for

others, the estimator (6) does not ensure sparsity of st over

time even for large k values. To overcome this problem, we

propose tying ŝm;t for 1� t� T together and using a

recently introduced group-separable regularizer for the

functional (5) but in the wavelet domain

min
ŝm

1

2
kẑm � ŝmk2

2 þ kmkŝmk2; ð7Þ

where ẑm and ŝm are the m-th rows of Ẑ and Ŝ; respectively.

Given km, solving (7) is achieved by the vector soft-

thresholding operator [7, 35]

ŝm ¼ max kẑmk2 � km; 0ð Þ
kẑmk2

ẑm: ð8Þ

In practice, we still need to estimate km in (8) for signal

denoising. Since U is orthogonal, if R ¼ r2IM�M , then

v̂m �N 0;r2IT�Tð Þ, where v̂m is the m-th row of V̂. For

very large datasets, this assumption is quite strong but

commonly employed in literature. As zt is sparse under U,

most of fŝm;tg8m must be zero. Provided that fifty percent of

fŝm;tg8m are zero, the following unbiased estimator for r2

can be defined

r̂2 ¼ median8m ^VARfẑm;tg; ð9Þ

where ^VAR denotes temporal sample covariance.

If VARfŝm;tg ¼ 0, we have that ẑm;t are i.i.d normal

variables, so

ðN � 1Þ ^VARfẑm;tg
r2

� v2
N�1

ð10Þ

implies that an interval with ð1 � aÞ confidence for r2 is

given by

Fig. 1 The main algorithm

consists of (i) the application of

a sparsifying spatial wavelet

transformation, resulting into a

description in terms of wavelet

coefficient time series, (ii)

contiguity-constrained

clustering of the time series of

wavelet coefficients by

grouping only nearby

coefficients and (iii) estimation

of the observation matrix and

system states by linear

dimensionality reduction of the

identified clusters
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"
ðN � 1Þr̂2

v2
1�a=2;N�1

;
ðN � 1Þr̂2

v2
a=2;N�1

#
; ð11Þ

where v2
n;m is the n-th percentile of the chi-square distri-

bution with m degrees of freedom. Since kẑmk2 ¼
ðN � 1Þ ^VARfẑm;tg, (11) leads to km given by

km ¼ ðN � 1Þ2r̂2

v2
a=2;N�1

; ð12Þ

with a ¼ 0:05=M.

3.2 Contiguity-constrained clustering

The next step consists of determining which time series

of wavelet coefficients ŝm are associated to each spatial

component akx
k, where ak is the k-th column of A and xk

is the k-th row of X. For this, we use the spatial local-

ization assumption. As the columns of the observation

matrix are point-spreading functions, they should be

perfectly described by wavelet coefficients forming

localized spatial patterns. In this case, each spatial

component can be determined using a clustering algo-

rithm enforcing spatial contiguity. One way of achieving

this is to apply complete linkage hierarchical clustering

with the help of a dissimilarity measure that combines

the time series temporal correlation and the physical

distance between the wavelet coefficients. In this case,

complete linkage hierarchical clustering is attractive

because it yields relatively homogeneous clusters, a key

property for subsequent accurate reduction of cluster

dimensionality.

Clusterization begins with each ŝm defining a singleton

cluster. At each step, it groups a pair ðA;BÞ of clusters

under the condition of minimizing the following distance

function:

distðA;BÞ ¼ maxfwðŝi; ŝ jÞ : i 2 A; j 2 Bg; ð13Þ

where

wðŝi; ŝ jÞ ¼ 1; j �/i � �/jj[ maxð2li ; 2ljÞ
1 � jcorðŝi; ŝ jÞj; otherwise;

(
ð14Þ

where corðŝi; ŝ jÞ denotes the correlation between ŝi and

ŝ j; �/i ¼
R
R

d sj/ij2ds=
R
R

d j/ij2ds defines de center of mass

of /i and li is the scale index of /i in the wavelet

decomposition. Accordingly, the above dissimilarity mea-

sure combines the absolute value of the correlation coef-

ficient and the physical distance between the wavelet

coefficients. Clusterization stops when the minimal dis-

tance between the clusters is larger than r (i.e.

minfdistðA;BÞ : 8A; 8Bg[ r), for some appropriately

chosen r thus leading to a list of cluster memberships that

characterize the system’s spatial components.

Even though the dissimilarity measure (14) already

establishes much of the structure that forms the spatial

components of (17), one must decide when to stop clus-

tering by an appropriate value of r. Note that the distðA;BÞ
depends solely on the correlation between the wavelet

coefficients in A and B. The Fisher z-transform of corre-

lation coefficients, 0:5 logeð1þr
1�r

Þ, follows a well-known

statistic whose upper limit with an ð1 � a=2Þ % confidence

under the null hypothesis of independence is approximately

u ¼ zð1�a=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðN � 3Þ

p
; ð15Þ

where zð1�a=2Þ is the standard normal. Hence, we set the

stopping value as

r ¼ 1 � jðexpð2uÞ þ 1Þ=ðexpð2uÞ � 1Þj ð16Þ

for a ¼ 0:05, which interestingly allows estimating the

number of spatial components with reference neither to the

actual noise level nor to the number of variables, but solely

depending on sample size.

3.3 Within cluster dimensionality reduction

The next step consists of estimating the observation matrix

A and system states of (1, 2) by linear dimensional

reduction of each spatial cluster identified in the previous

step. After clustering the rows of Ŝ, the k-th spatial com-

ponent akx
k can be approximated by

Yk ¼
X

i2Ik
/�1
i ŝi; ð17Þ

where Yk is an M � T data matrix, /�1
i is the i-th column

of the inverse of UðUT , for wavelet transforms) and Ik
contains the indexes of the k-th cluster. We assume that the

rows of Yk have zero mean, otherwise their mean value can

be removed after (17).

According to the approximation model,

Yk ¼ akx
k þ Ek; ð18Þ

where Ek is an M � T approximation error matrix, and one

must find ak and xk minimizing the approximation error

min
ak ;xk

kYk � akx
kkF ; ð19Þ

where k � kF denotes the Frobenius norm.

In fact, each spatial component akx
k is a rank-one M �

T matrix given by the first singular value of Yk, i.e.

Yk 	 r1u1vT
1 ; ð20Þ

where r1 is the largest singular value of Yk, and where u1

and v1 are, respectively, the left-singular vector and the
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right-singular vectors associated to r1. With no loss of

generality, we consider that the norm of ak equals one

leading to

ak ¼ u1 ð21Þ

xk ¼ r1vT
1 : ð22Þ

3.4 LDSTM parameter estimation

The remainder of the algorithm consists of applying the

traditional EM algorithm for xt estimation [27] using the

estimators for xk and ak from previous section to set the

initial values for xt and A. Additionally, during the iterative

process, A matrix estimation is modified to accommodate

linear equality constraints that ensure well-localized ak’s.

This is done by solving the following least squares

problem:

min
ak

kakx
k � Zk2

2

subject to Cak ¼ 0;
ð23Þ

where C ¼ ðci;jÞi;j is an M �M matrix with ci;i ¼ 1 if

VARðski;tÞ[ 0 and ci;j ¼ 0 otherwise.

4 Numerical illustration

Using simulated data to examine algorithm performance

under different conditions, we created a vector time series

corresponding to points on a discretized one-dimensional

space consisting of M ¼ 256 space points whose activity

evolves in over a period of T ¼ 500 points each. The

observation matrix that we used (Fig. 2a) consists of the

columns of

A ¼ ½f80f180f100�;

where fl ¼ ½f1;l; . . .; fM;l�T with fi;l ¼ f ði� lÞ and f fol-

lowing a discretized Gaussian point-spread function. The

observations were corrupted by white Gaussian noise with

covariance matrix

R ¼ r2I128;128;

with r2 accounting for the SNR level defined as SNR ¼
10 log10ðVARðsÞ=r2Þ where s ¼ vecð Ax1 � � �AxN½ �Þ. The

dynamics of the spatial components evolved according to a

first-order autoregressive model ðL ¼ 1Þ with

H1 ¼
0:5 � 0:5 0

0 0:5 0

0 0 0

2
64

3
75;

and

Q ¼
1 0:5 0

0:5 2 0

0 0 2

2
64

3
75:

Figure 2b shows the sample variance for a simulated

DSTM using the above parameters under SNR ¼ �19db.

We used Daubechies (D2) functions to transform the

data and gauged performance by executing 100 Monte

Carlo simulations leading to the mean and deviation results

as shown in Fig. 3. Algorithm effectiveness was evaluated

in terms of how well sources were recovered, as measured

by their correlation to the estimated xt, and by how well Hl

and Q could be estimated as evaluated by computing the

connectivity between states using Partial Directed Coher-

ence (PDC) [1].

4.1 Simulation results

The mean absolute values of the correlation coefficient

between the simulated and estimated sources versus SNR

in Fig. 3a show that LDSTM outperforms traditional EM,

with very good results for all the three sources even under

very unfavourable SNR. Figure 3b shows PDC from x2

towards x1 for different SNR levels compared to the

Space

V
ar

ia
nc

e

0 50 100 150 200 250

1.
8

2.
0

2.
2

2.
4

ba

Fig. 2 a Measurement matrix A and b sample variance of the example model with N ¼ 500 and SNR ¼ �19 db
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corresponding EM estimates. Correct PDC patterns were

obtained whose magnitude decreases as SNR decreases but

whose overall shape remains.

5 Real FMRI data

For further illustration purposes, we used fMRI images

from seven healthy volunteers under a resting state proto-

col (approved by the local ethical committee and under

individual informed written consent).

5.1 Image data acquisition

Whole-brain fMRI images (TR ¼ 600 ms;TE ¼ 33 ms; 32

slices, FOV ¼ 247 � 247 mm, matrix size 128 � 128, in-

plane resolution 1:975 � 1:975 mm, slice thickness

3:5 mm with 1:8 mm of gap) were acquired on a 3T Sie-

mens system using a Multiplexed Echo Planar Imaging

sequence (multi-band accelerator factor of 4) [16]. To aid

in the localization of functional data, high-resolution T1-

weighted images were also acquired with an MPRAGE

sequence (TR ¼ 2500 ms; TE ¼ 3:45 ms, inversion

time = 1000 ms, 256 � 256 mm FOV, 256 � 256 in-plane

matrix, 1 � 1 � 1 mm voxel size, 7 
 flip angle).

5.2 LDSTM preprocessing

Motion and slice time correction and temporal high-pass

filtering (allowing fluctuations above 0:005 Hz) were car-

ried out using FEAT v5:98. The fMRI data were aligned to

the grey matter mask via FreeSurfer’s automatic registra-

tion tools (v. 5.0.0) resulting in extracted BOLD signals at

regions with preponderantly neuronal cell bodies. To fur-

ther group analysis by temporal concatenation of the par-

ticipants’ fMRIs, individual grey matter images were

registered to the 3-mm-thick Montreal Neurological Insti-

tute (MNI) template using a 12-parameter affine transform.

To generate the spatial wavelet transformation, we used 3D

Daubechies (D2) functions up to level 3. The model order

for the dynamical component in (1) was defined by the

Akaike information criterion.

5.3 ICA processing

To compare the LDSTM components with ICA, PICA was

performed by multi-session temporal concatenation group

ICA (using MELODIC in FSL). Preprocessing included

slice time correction, motion correction, skull stripping,

spatial smoothing (FWHM equals to 5 mm) and temporal

high-pass filtering (allowing fluctuations above 0:005 Hz).

The functional images were aligned into the standard space

by applying 12 degrees-of-freedom linear affine transfor-

mation, and its time series were normalized to have vari-

ance of unity. The number of components was fixed at 30

to match the distinct pattern of resting state networks

(RSN) usually found by other authors [4, 10].

5.4 Image results

5.4.1 LDSTM results

Figure 4 illustrates the advantage of wavelet transforming

resting state fMRI datasets: the entropy in the image

domain is much larger than that in the wavelet domain.

This means that only a few wavelet coefficients are enough
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Fig. 3 a Efficiency comparison between LDSTM (solid lines) and

EM (dashed lines) in recovering source temporal information. Lines

represent the mean correlation between the simulated hidden state xk;t
and the estimated hidden state x̂k;t across 100 simulations. Vertical

error bars denote the 95 % confidence interval of the mean value. b
Dotted lines represent the theoretical PDC of x2 towards x1 together

with estimated PDC values of x2 towards x1 using LDSTM (solid)

and EM (dash)
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to account for much of the signal energy. In the example,

10 % of the wavelet coefficients explain 80 % of the image

energy which is two times more than the 10 % of the most

powerful image domain coefficients which represent just

40 %.

LDSTM analysis identified thirty nine well-localized

spatial components comprising cortical (18), subcortical

(2) and cerebellar (19) regions. Cortical and subcortical

spatial components (ak’s) are shown in Fig. 5 which

includes the following anatomical areas: occipital cortex

(SC1 and SC2), lateral and superior occipital gyrus

(SC5; SC6 and SC20), superior temporal gyrus (SC9 and

SC10), precentral gyrus (SC13 and SC14), superior parietal

gyrus (SC17 and SC18), precuneus (SC3 and SC19) and

posterior cingulate (SC4), inferior frontal gyrus and ante-

rior cingulate (SC7; SC8; SC11 and SC11)) and thalamus

(SC15 and SC16). Cerebellar regions also form well-

localized bilateral activity patterns as shown in Fig. 6.

The absence of artificial stochastic model constraints

permitted exposing the dynamic connectivity between the

identified components. Figure 7a summarizes the connec-

tivity network estimated using PDC applied to the recon-

structed system components. In addition, PDC also

highlights that resting state connectivity is present mainly

at low frequencies (Fig. 7b), corroborating several studies

of resting state brain connectivity [4].

5.4.2 ICA results

Among the 30 component maps obtained by performing a

PICA across all participants, 14 components were consid-

ered artifactual components due to scanner and physio-

logical noise. Their signal variances are related to

cerebrospinal fluid and white matter, head motion and large

vessels. Figure 8 depicts fourteen functional components

related to previously report resting state studies. They

Fig. 4 Fraction of cumulative

energy in the image (green) and

wavelet (red) domain for the

resting state fMRI dataset. The

blue vertical line crosses the

fraction of cumulative energy

represented by 10 % of the most

energetic coefficients in the

image (40 %) and wavelet

(80 %) domains

Fig. 5 Cortical and subcortical components identified by LDSTM
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comprise the default mode network (IC2, IC9, IC10) and

brain regions involved in visual (IC1, IC4), auditory/motor

(IC5), sensory/motor (IC8), attentional (IC7, IC6, IC12,

IC13) and executive functions (IC7, IC11, IC14). In addi-

tion, we found 2 components rarely reported in resting state

studies. One is a cerebellum component (IC16) and the

other is a brainstem component (IC15).

6 Discussion

Local dimension-reduced modelling (LDSTM) as pre-

sented here addresses an approach to source estimation and

localization in resting state fMRI data analysis that dis-

penses with artificial stochastic model assumptions, such as

those used in classical blind source separation (principal

Fig. 6 Cerebellum components identified by LDSTM

Fig. 7 FMRI resting state analysis using LDSTM. Numbers represent

different components. Components numbered twice represent two

components located at the same region. a Connectivity map showing

components whose system states are connected via the PDC. b PDC

plots for each arrow drawing in a Dashed lines denote the 95 %

confidence interval of the mean value (solid lines)
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component analysis (PCA), independent component ana-

lysis (ICA) and non-negative matrix factorization (NMF)

[3, 18, 19, 21]). In addition to being sparse, the columns of

the observation matrix act as point-spreading functions that

allow system sources and their observation matrix to be

identified via LSCA [32] of the whole fMRI dataset.

The cortical components identified by LDSTM (Fig. 5)

reflect most of the data variability and coincide with tradi-

tional resting state regions observed across different individ-

uals, data acquisition and analysis techniques. They comprise

the default mode network ðSC8Þ and brain regions involved in

visual ðSC1; SC2; SC5; SC6Þ, motor ðSC13; SC14; SC7Þ and

attentional functions ðSC9; SC10; SC17; SC18Þ, indicating

that most of the ICA components (Fig. 8) can in fact be

decomposed into several local sparse components. However,

the present results draw attention to the fact that they were

obtained without any additional assumption, such as source

independence and/or stationarity. All that was assumed was ak

spatial localization, which goes along the line of [11]’s

observation that ICA effectiveness for brain FMRI is linked to

their ability to handle sparse sources rather than independent

ones. This could be explained by pointing out that ICA pre-

processing steps involve projecting the data into a reduced-

dimensional subspace via the singular value decomposition

which in turn confines the sources to regions of high signal

variance.

PDC analysis shows a network where the information

flows from regions in the superior parietal cortex (SPC) to

regions in the cerebellum (CER) and anterior cingulate. As

expected, the right SPC sends information to the left CER,

and left SPC sends information to the right CER. Although

the relationship between these structures is known, this

stresses two main systems engaging in the mentioned

network. The connectivity between SPC and CER is in line

with recent studies showing evidence of a cerebellar-pari-

etal network involved in phonological storage [22]. In

addition, visual–parietal–cerebellar interactions are expec-

ted by following studies of effective connectivity using

FMRI [20]. We also observe a network running from the

left to right parietal cortex passing through the posterior

cingulate. Altogether, we believe that our results provide

insight into the mechanisms of how the regions of the

fronto-parietal network interact. It also highlights under-

studied aspects of the cerebellum in this network during

resting state.

In our model, LDSTM identified approximately 50 % of

components in the cerebellum. This result is surprising as

the rate of cerebellar components identified in resting state

using ICA is below 20 % in general [4]. Some of these

regions seem to be related to noise sources for being

located near cerebellar arteries and veins. The components

SM1, SM2, SM12, SM17 and SM18 run in the superior

surface of the cerebellum near to the superior cerebellar

veins, while the components SM8 and SM9 extend into the

end of the straight sinus near to internal cerebral veins. On

the other hand, the idea that the cerebellum should present

as many components as the cortex is encouraging. Many

recent fMRI studies have shown that different cerebellar

regions are critical for processing higher-order functions in

different cognitive domains, in the same way as it occurs in

the cortex [30]. In these studies, it is worth mentioning that

cerebellar clusters are always smaller than those of corre-

sponding functionality in the cortex. We believe that some

differences between ICA and LDSTM may be explained in

part by the features along the domain in which they rep-

resent the sources.

Fig. 8 ICA spatial components. The components are sorted according to their relative percentage of variance from top left to bottom right
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Since spatial wavelet analysis efficiently encodes the

data neighbourhood information via a orthogonal trans-

formation, the present method properly addresses a number

of issues involving whole-brain connectivity estimation.

The first one is associated to the lack of knowledge about

the spatial localization of the sources. The method provides

a data-driven approach to locate the main sources of data

variability, thus avoiding the effects and uncertainties due

to a priori region of interest delineation. The second aspect

is that the new method naturally employs multi-scale

transformations to create a compact model of the images, a

feature of growing importance as higher-resolution images

are sure to become available in the near future and whose

computational processing load may be thereby substan-

tially mitigated. Finally and most importantly, unlike ICA,

the method permits deeper connectivity analysis between

the identified spatial components as no independence

assumption is made ’a priori’.

Various method extensions are possible, especially

when it comes to estimate appropriate regularization

parameter choice as a function of the amount of noise

present in the data. In the present implementation, spatial

noise is assumed homogeneous and normally distributed

which implies a chi-squared distribution for wavelet coef-

ficient variance. Examination of wavelet coefficients vari-

ance for real fMRI data, however, points to the need to

consider heavy-tailed distributions, so that a more general

approach is currently being developed to estimate wavelet

domain noise variance from a finite mixture of exponential

distributions that could then be used to quantify the level of

data sparsity.

7 Conclusions

Here, an EM-based algorithm was presented for LDSTM

identification. By projecting high-dimensional datasets into

smoothness spaces, one can describe the system’s spatial

components via a reduced number of parameters. Further

dimension reduction and denoising is obtained by soft-

vector thresholding under contiguity-constrained hierar-

chical clustering. Finally, simulated results corroborate that

the new algorithm can outperform the traditional EM

approach even under mild conditions. Even with very large

datasets as in the fMRI example, LDSTM shows promise

in its ability to parcelate the human brain into well-local-

ized physiologically plausible regions of spatio-temporal

brain activation patterns.
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