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Abstract

Robustness, a long-recognized property of living systems, allows function in the face of uncertainty while fragility, i.e.,
extreme sensitivity, can potentially lead to catastrophic failure following seemingly innocuous perturbations. Carlson and
Doyle hypothesized that highly-evolved networks, e.g., those involved in cell-cycle regulation, can be resistant to some
perturbations while highly sensitive to others. The ‘‘robust yet fragile’’ duality of networks has been termed Highly
Optimized Tolerance (HOT) and has been the basis of new lines of inquiry in computational and experimental biology. In
this study, we tested the working hypothesis that cell-cycle control architectures obey the HOT paradigm. Three cell-cycle
models were analyzed using monte-carlo sensitivity analysis. Overall state sensitivity coefficients, which quantify the
robustness or fragility of a given mechanism, were calculated using a monte-carlo strategy with three different numerical
techniques along with multiple parameter perturbation strategies to control for possible numerical and sampling artifacts.
Approximately 65% of the mechanisms in the G1/S restriction point were responsible for 95% of the sensitivity, conversely,
the G2-DNA damage checkpoint showed a much stronger dependence on a few mechanisms; ,32% or 13 of 40
mechanisms accounted for 95% of the sensitivity. Our analysis predicted that CDC25 and cyclin E mechanisms were strongly
implicated in G1/S malfunctions, while fragility in the G2/M checkpoint was predicted to be associated with the regulation
of the cyclin B-CDK1 complex. Analysis of a third model containing both G1/S and G2/M checkpoint logic, predicted in
addition to mechanisms already mentioned, that translation and programmed proteolysis were also key fragile subsystems.
Comparison of the predicted fragile mechanisms with literature and current preclinical and clinical trials suggested a strong
correlation between efficacy and fragility. Thus, when taken together, these results support the working hypothesis that
cell-cycle control architectures are HOT networks and establish the mathematical estimation and subsequent therapeutic
exploitation of fragile mechanisms as a novel strategy for anti-cancer lead generation.

Citation: Nayak S, Salim S, Luan D, Zai M, Varner JD (2008) A Test of Highly Optimized Tolerance Reveals Fragile Cell-Cycle Mechanisms Are Molecular Targets in
Clinical Cancer Trials. PLoS ONE 3(4): e2016. doi:10.1371/journal.pone.0002016

Editor: Gustavo Stolovitzky, IBM Thomas J. Watson Research Center, United States of America

Received January 9, 2008; Accepted March 4, 2008; Published April 23, 2008

Copyright: � 2008 Nayak et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the gracious financial support of the Cornell University Center for Life Science Enterprise, a New York State Center for
Advanced Technology grant (to J.V. for the support of S. N.) and Engineering Learning Initiatives Undergraduate Research Awards ELI-650 and ELI-895 to M.Z. and
S.S. The Cornell University Center for Life Science Enterprise and the Engineering Learning Initiatives Undergraduate research program played no role in the
design and conduct of the study, in the collection, analysis, and interpretation of the data, and in the preparation, review, or approval of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jdv27@cornell.edu

Introduction

The capability to gather protein-protein and protein-DNA

interaction data, for example using the Yeast Two-Hybrid (Y2H)

system [1,2], Fluorescence Resonance Energy Transfer (FRET)

techniques [3], quantitative Mass Spectrometry (MS) proteomic or

Chromatin Immunoprecipitation (ChIP)-DNA micro-array tech-

niques [4,5] has far outstripped our ability to understand it.

Transforming large-scale interaction data into a better under-

standing of the biomolecular networks underlying disease

progression and eventually to new therapies requires integrative

tools and strategies. Perhaps one strategy to leverage our

knowledge of interaction networks into efficacious therapies would

be to identify and exploit weak or fragile mechanisms while

avoiding the manipulation of robust network interactions.

Robustness, a long-recognized property of living systems and

networks, allows function in the face of uncertainty while fragility,

i.e., extreme sensitivity, can potentially lead to catastrophic failure

following seemingly innocuous perturbations [6–10]. Different

factors can influence why elements of a network are robust or

fragile. Venkatasubramanian and co-workers demonstrated that

the structure of complex networks can result from a trade-off

between efficiency and robustness [11] while You and Yin

explored how the environment has shaped the robust properties

of bacteriophage T7 [12]. Leibler computationally predicted and

later experimentally verified robust features of chemotaxis control

networks [13] and Stelling et al., reviewed several examples of

robust biological networks [9]. Perhaps no better example of

robustness can be found than cell division. The cell-cycle is one of

the most fundamental and highly controlled processes in biology.

The decision to divide is tightly regulated integrating extracellular

signals, such as growth factors and hormones, with intracellular

cues that coordinate events leading to division. However, despite

extensive control and surveillance subsystems guiding the

progression of cells through the division cycle, malfunctions do

occur as evidenced by the uncontrolled proliferation underlying
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many cancers [14]. Thus, while evolutionary pressure may have

programmed cells to be robust to shifting nutritional environments

or varying growth factor availability, perhaps rare challenges could

result in unforeseen consequences. For example, exposure to

radiation, exotic chemicals (carcinogens) or even Single Nucleotide

Polymorphisms (SNPs) may cause seemingly innocuous changes

which manifest themselves in the breakdown of cell-cycle logic.

Carlson and Doyle have hypothesized that highly-evolved

networks can be resistant to some perturbations while extremely

sensitive to others. The ‘‘robust yet fragile’’ duality of networks

and systems has been termed Highly Optimized Tolerance (HOT)

and has been the basis of new lines of inquiry in computational

and experimental biology [10].

Sensitivity analysis is an enabling tool for the investigation of

robustness and fragility in networks relevant to human health and

more generally for model-based knowledge discovery. Cho et al.,

used sensitivity analysis to study TNF-a-mediated NF-kb signaling

where parametric uncertainty was addressed using a monte-carlo

parameter sampling protocol; a family of random parameter sets,

generated from the best parameter guess, was used to calculate the

sensitivity profile in a region of parameter space [15]. Bullinger

and coworkers explored the robustness of models of programmed

cell death or apoptosis [16] while Stelling et al., computationally

identified points of robustness and fragility, using monte-carlo

sensitivity analysis and Overall State Sensitivity Coefficients

(OSSCs), in models of circadian rhythm [17]. Mahdavi et al.,

employed sensitivity analysis to better understand stem cell

differentiation [18], while Luan et al., used an uncertain

mechanistic model of the coagulation cascade in combination

with monte-carlo sensitivity analysis, to show that computationally

derived sensitive mechanisms were consistent with anticoagulation

therapeutic strategies [19]. Sensitivity analysis has also been used

to integrate model identification and discrimination with optimal

experimental design. Several optimal experimental design and

model identification studies are resident in the literature [20–24]

along with many techniques to estimate sensitivity coefficients for

models composed of ordinary differential equations, differential

algebraic and stochastic equations [25–28].

In this study, we employ mathematical modeling and monte-

carlo sensitivity analysis to explore the working hypothesis that

cell-cycle control architectures are HOT networks. If our working

hypothesis is true, then fragile cell-cycle mechanisms (reaction

steps) should be overrepresented among experimentally observed

malfunctions underlying solid and hematological cancers. More-

over, the manipulation of fragile mechanisms in a therapeutic

context, which has been suggested by Kitano [29] to be more

likely to elicit an efficacious response from a network or system,

should also be prevalent in the treatment literature. We test our

working hypothesis by computationally screening three overlap-

ping qualitative models of cell-cycle control architectures; we

employ monte-carlo sensitivity analysis and k-means clustering to

rank-order mechanisms in cell-cycle and then contrast the

predicted fragile and robust mechanisms with literature. If cell-

cycle control architectures obey the HOT paradigm, then

computational identification of fragile mechanisms using protein-

protein or protein-DNA network models could be a novel strategy

for anti-cancer lead generation or more broadly as a strategy to

identify and exploit weakness in arbitrary networks relevant to

human health.

Results

The whole-cycle model of Novak and Tyson (Fig. 1), the G1-S

model of Qu et al., (Fig. 2A) and the G2/M-DNA damage model

of Aguda (Fig. 2B) were implemented from literature and screened

for fragile mechanisms using monte-carlo sensitivity analysis [30–

32]. The Novak and Tyson model, which employed a complex

description of the G1/S and G2/M checkpoints, programmed

protein expression and degradation, was composed of 18 dynamic

species, 4 species constraints and 74 parameters. The mass-action

G1/S and G2/M-DNA damage models described only the

molecular logic in their respective checkpoints; the G1/S model

was composed of 16 dynamic protein balances, 2 species

constraints and 44 parameters while the G2/M-DNA damage

model consisted of 15 dynamic protein balances,1 constraint and

40 parameters. Parameter values for each model were taken from

literature. Unreported initial conditions were adjusted so that

simulated model trajectories were qualitatively consistent with

published values (Supplementary Material Figure S1). The

published parameter sets, with fixed initial conditions, were used

to generate random parameter sets (N = 500, unless otherwise

noted) where each nominal parameter was perturbed by up to

650%, 61-order, or 62-orders of magnitude. Overall State

Sensitivity Coefficients (OSSCs) were calculated over the random

parameter families for each cell-cycle model using three different

numerical algorithms. For each model, the mean OSSC values

were ranked-ordered and plotted. The Area Under the Curve

(AUC) was used to measure the cumulative sensitivity contribution

of each parameter. A cumulative cutoff of 95% of the overall

sensitivity was used to establish the list of mechanisms (Supple-

mentary Material Figure S2) which were clustered into three

groups (high, medium and low sensitivity) using a k-means

algorithm.

Approximately 65% of the G1/S mechanisms (reaction steps)

were responsible for 95% of the sensitivity, conversely, the G2-

DNA damage network showed a stronger dependence on a few

interactions. Of the 44 G1/S reactions steps, 29 were responsible

for 95% of the sensitivity (Supplementary Material Figure S2). The

distribution of fragility was not specific to any single class of

interaction (Table 1). The dephosphorylation of CDC25, the

expression of cyclin E, the degradation of the cyclin E-CDK2

complex, and the concentration of the transcription factor E2F

were classified as the most fragile reaction steps in the G1/S

checkpoint (Table 1, cluster I). A previous model of G1/S by

Aguda et al., [33] found that although pRB and cyclin E-CDK2

formed a positive feedback loop, they did not form a sharp robust

switch at the restriction point, i.e., the increase in active cyclin E-

CDK2 concentration was gradual and sensitive to model

parameters. However, addition of CDC25 to the positive cyclin

E-CDK2-pRB feedback loop, made the restriction point robust to

model parameter variation, thus supporting our findings of the

importance of CDC25 interactions. The synthesis, activation and

degradation of CKIs, the expression and degradation of CDC25,

pRB concentration, the expression of cyclin D and cyclin E-CDK2

mechanisms dominated the second-tier of G1/S fragility (Table 1,

cluster II). Tier-three of G1/S fragility involved several cyclin D

mechanisms, cyclin E-CDK2 activity and E2F mediated cyclin E

expression (Table 1, cluster III). When taken together, the most

heavily implicated G1/S protein was cyclin E, with 11 of 29

mechanisms, followed by CKIs with six, CDC25 and cyclin D

were each involved in five fragile mechanisms and E2F and pRB

were each listed twice. Moreover, 16 of the 29 fragile parameters

were functionally associated with cyclin E and cyclin E-CDK2

activity. As expected, the expression and degradation of the G1/S-

phase cyclins and their associated CKIs were predicted to be

important. However, the expression and degradation of cyclin E

and other it’s interactions were ranked higher than the

corresponding cyclin D mechanisms with the exception of the

Fragility of the Cell-Cycle
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dissociation of the cyclin E-CDK2-CKI complex. The G2-DNA

damage network showed a stronger dependence on a few

mechanisms when compared with G1/S; ,32% or 13 of 40

mechanisms accounted for 95% of the sensitivity (Supplementary

Material Figure S2). Consistent with G1/S, no single class of

mechanism dominated the fragility list. The most sensitive

mechanisms were related to the generation and degradation of

the cyclin B-CDK1 complex otherwise known as the Maturation

Promoting Factor (MPF) (Table 2). The top five mechanisms were

either directly or closely associated with the formation and activity

of MPF while mechanisms leading the deactivation of MPF, e.g.,

the expression, degradation and activity of p21, 14-3-3s and

Wee1 phosphorylation dominated the remaining eight mecha-

nisms (Table 2, cluster III). Activation of inactive MPF complex,

whose expression is negatively regulated by p53, was the most

sensitive G2 mechanism (Table 2, cluster I), followed by preMPF

generation, activation and transport of CDC25 into the nucleus

(Table 2, cluster II). The finding that all CDC25 related

mechanisms were more fragile than Wee1, is consistent with

earlier work by Aguda [34] which showed that even though both

Wee1 and CDC25 form a phosphorylation-dephosphorylation

(PD) loop with MPF, only CDC25 coupling gave rise to

qualitatively different behavior. Interestingly, while the generation

of p53 itself was not predicted to be sensitive, interactions

involving p53 were prevalent, e.g., the expression of inactive MPF

and p21, both of which are regulated by p53, were predicted to be

sensitive. Approximately 77% of the Novak and Tyson parameters

(57 of 74) were responsible for 95% of the sensitivity (Supplemen-

tary Material Figure S2). Both global and local components of the

model were predicted to be fragile. The most sensitive global

mechanism was the translational efficiency while local mechanisms

such as activation of IE (hypothetical protein which activates the

E3-ligase CDC20), expression of cyclin B and CDH1 degradation

were also predicted to be fragile (Table 3, cluster I). The second-

tier mechanisms were associated with deregulation of programmed

proteolysis (Table 3, cluster II). Interestingly, while the percentage

Figure 1. Schematic of the molecular logic of the whole-cycle model of Novak and Tyson [32] used in this study. The Novak and Tyson
model, composed of 18 dynamic species, 4 species constraints and 74 parameters, describes both the G1/S and G2/M checkpoints and programmed
protein expression and degradation. Nomenclature: Cdk1-Cyclin Dependent Kinase 1, Cdk2 - Cyclin Dependent Kinase 2, Cdk4/6 - Cyclin
Dependent Kinase 4 or 6, CycD - Cyclin D, CycB - Cyclin B, CycE - Cyclin E, CycA - Cyclin A, GF - Growth Factor, ERG - Early Response Genes, DRG -
Delayed Response Gene, E2F – Transcription Factor E2F, pRB - Retinoblastoma protein, p27 – A Cyclin Dependent Kinase Inhibitor (CKI), also called
Kip1, PPI - type1 protein phosphatase, IE - ‘‘Intermediary Enzyme’’, PPX-A phosphatase inactivating IE , APC - Anaphase Promoting Complex, a
family of E3 ligases, Cdh1 - an activator of APC class of ligases, Cdc20 - an activator of APC, Small red circle with P represents a phosphate group, a
(+) sign implies positive regulation whereas a (2) sign represents negative regulation.
doi:10.1371/journal.pone.0002016.g001

Fragility of the Cell-Cycle
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of mechanisms responsible for 95% of the sensitivity of the Novak

and Tyson model was the largest of the three models, several

mechanisms in cluster III had small OSSC values, including most

of the G1/S checkpoint logic. Thus, sampling the complex Novak

and Tyson model produced less information than the mechanistic

mass-action based G1/S and G2-DNA damage models.

The qualitative conclusions drawn from sampling the cell-cycle

models were robust to the choice of solution method and the size

of the parameter perturbation but sensitive to the number of

parameter sets sampled. Three different numerical techniques

were used to solve the sensitivity equations to control for possible

numerical artifacts. The ODE15s routine of Matlab (The Math-

works, Natick MA), a third-order backward-difference implicit

method (BDF3; see Supplementary Material S1) and forward finite

difference (FD), generated qualitatively similar sensitivity results

(Fig. 3). The lowest Spearman rank between any two methods

(ODE15s versus FD for the G1/S model) was 0.91 indicating a

worse case correlation of approximately 91%. Interestingly, while

the Spearman rank indicated good agreement between the

solution methods, there were statistically significant shifts in

OSSC values indicating the solution methods systematically

shifted mechanisms, i.e., different OSSC values were calculated

but the order or ranking of mechanisms was maintained (see

Supplemental Material Table S1). Two additional sampling

controls were conducted to verify the robustness of the qualitative

conclusions drawn from our analysis. First, the perturbation size

used to generate the random parameter families was varied to test

if different conclusions would have been drawn with different

perturbation sizes; OSSC values computed over random param-

eter families generated using 650%, 61-order and 62-orders of

magnitude showed no qualitative difference as quantified by the

Spearman rank correlation for the G1/S model (Fig. 4). The worst

case correlation of 0.90 was observed between the 650% and 62-

orders of magnitude cases indicating on average 90% of the

Figure 2. Schematic of the molecular logic of the G1/S (A) and G2/M (B) checkpoint models used in this study. The G1/S model of Qu et
al., is composed of 16 dynamic protein balances, 2 species constraints and 44 parameters [31]. TheG2-DNA damage model of Aguda is composed of
15 dynamic protein balances 1constraint and 40 parameters (30). Both the G1/S and G2/M models employ mass action kinetics and the parameters
are linear in the mass balances. Nomenclature G1/S: CDC25A - Dual Specificity Phosphatase CDC25A, Cdk2 - Cyclin Dependent Kinase 2, Cdk4/
6 - Cyclin Dependent Kinase 4 or 6, CycE - Cyclin E, CycD - Cyclin D, E2F - Transcription Factor E2F, pRB - Retinoblastoma protein, p27 - A Cyclin
Dependent Kinase Inhibitor (CKI), also called Kip1. Nomenclature G2/M: pMPF - pre-Maturation Promoting Factor, a complex of CycB (Cyclin B)
and Cdk1 (Cyclin Dependent Kinase1) in inactive form, MPF – active form of MPF, aCDC25 - active CDC25 phosphatase, iCDC25 – inactive form of
CDC25, aCDC25(P-216) – active CDC25, phosphorylated at Serine 216 residue, iCDC25(P-216) - inactive CDC25, phosphorylated at Serine 216, 14-
3-3s - 14-3-3s protein. In both the schematics, small red circles with P represent phosphate group, a (+) sign implies positive regulation whereas a
(2) sign represents negative regulation.
doi:10.1371/journal.pone.0002016.g002
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conclusions drawn between the two cases were consistent (Fig. 4C).

Such a strong correlation in Spearman ranks across 2-orders of

magnitude in the parameter values might suggest that network

structure (connectivity) is more important than parameter values.

Comparison of exactly similar mechanisms across the three models

supported the hypothesis of connectivity dominance where

mechanisms classified as either fragile or robust in the G1/S

and G2-DNA damage models were also predicted to be important

in the Novak and Tyson model, albeit with different ranks

(Table 4). There were 11 mechanisms which appeared exactly in

each model, 10 mechanisms were classified similarly while one was

ranked inconsistently. Second, the cumulative Spearman rank

correlation between sensitivity results generated using the

ODE15s, BDF3 and FD methods for each model was calculated

as a function of the number of parameter sets sampled. While the

cumulative Spearman rank converged to the population mean as

the number of parameter sets increased, a population size

dependence was observed (Fig. 5). For each model, the results

reported were obtained in the region of convergence; hence, no

new information would have been gained if additional random

parameter sets were sampled.

Discussion

Literature evidence supports the hypothesis that computation-

ally identified fragile cell-cycle interactions represent efficacious

targets. Consider the fragility of CDC25 mechanisms. Boutros et

al., recently reviewed the role of CDC25 phosphatases and

CDC25 inhibitors in human cancer progression and treatment

[35]. While the inhibition of CDC25 as a cancer treatment

strategy is still in the laboratory stage, several CDC25 inhibitors in

development have shown promising results. The CDC25 inhibitor

PM20 inhibited growth in human hepatoma-derived Hep3B cell-

lines at a inhibitory concentration (IC) .700 nM, PM-20 also

inhibited the growth of several other cell-lines, albeit at higher ICs

[36]. BN82685, which inhibited CDC 25A, B and C in-vitro and in-

Table 1. Comparison of Overall State Sensitivity Coefficients (OSSC) calculated for the G1/S model of Qu et al., [31].

OSSC-BDF OSSC-FD OSSC-ODE15s

Reaction Cluster m6s m6s m6s

Dephosphorylation of aCDC25 I 0.625260.2980 0.631460.2667 0.694260.2518

Degradation of aCycE-Cdk2 I 0.585460.3452 0.637360.3403 0.675660.3423

Concentration of E2F I 0.571060.3247 0.674460.3062 0.646960.2958

Synthesis of CycE I 0.458360.3364 0.513160.3476 0.606360.3502

Generation of aCKIs II 0.451360.2577 0.529760.2540 0.549460.2320

Concentration of pRb II 0.442960.2982 0.522460.2827 0.523860.2725

Phosphorylation of iCDC25 II 0.444260.3245 0.434960.2905 0.480360.2856

Synthesis of iCDC25 II 0.395260.1934 0.453560.2015 0.480160.1690

Synthesis of CycD II 0.336760.2230 0.398460.2340 0.437660.2411

Formation of iCycE-Cdk2 II 0.359060.2275 0.405360.2656 0.427160.2417

Dephosphorylation of iCKIs II 0.384160.2557 0.410160.2428 0.427160.2361

Degradation of iCDC25 II 0.319860.2129 0.371160.2436 0.378960.2239

Formation of CycE-Cdk2-CKI II 0.341060.1997 0.365560.2106 0.370660.1731

Dissociation of CycE-Cdk2 complex II 0.302360.2626 0.334360.2946 0.342860.3002

Degradation of CycE II 0.267160.2791 0.316360.3165 0.325060.3262

Phosphorylation of aCKIs II 0.290960.2459 0.270560.2017 0.318260.2099

Degradation of CKIs II 0.267860.2556 0.298560.2803 0.292160.2618

Formation of CycD-Cdk4/6 III 0.198760.1312 0.232560.1410 0.263960.1485

Dissociation of CycE-Cdk2-CKI III 0.262360.2512 0.264760.2722 0.258560.2563

Degradation of CycD III 0.186760.1654 0.219460.1786 0.257560.1910

iCycE-Cdk2RaCycE-Cdk2 III 0.209660.2617 0.247260.3047 0.232260.2888

Phosphorylation of CDC25 by aCycE-Cdk2 III 0.205760.2446 0.235860.2828 0.231860.2893

Formation of CycD-Cdk4/6-CKI III 0.180160.1130 0.205460.1164 0.226860.1232

Rate constant for pRb dephosphorylation III 0.394560.3126 0.201660.1152 0.226060.1164

Degradation of iCKI III 0.167860.1646 0.164460.1642 0.207760.1815

E2F dependent CycE expression III 0.221960.2849 0.243260.3064 0.206460.3020

Dissociation of CycD-Cdk4/6-CKI III 0.186760.1654 0.199360.1443 0.204660.1376

aCycE-Cdk2 regulated pRb phosphorylation III 0.155160.1055 0.181260.1122 0.200860.1127

Rate constant for CKI phosphorylation III 0.163860.2232 0.199860.2602 0.191160.2547

Three different numerical methods were used to solve the sensitivity equations; OSSC-BDF: 3rd order fixed step-size backward difference method (implicit); OSSC-FD:
forward-finite difference (explicit); and OSSC-ODE15s: 5th order variable step-size backward difference routine (implicit) from the Matlab (The Mathworks, Natick MA)
ODE suite. Each member of the nominal parameter set was randomly perturbed by up to 61-order of magnitude to form a family of random parameter sets (N = 500).
OSSC were calculated for every member of the family of random parameter sets. The mean (m) 61-standard deviation (s) are reported.
doi:10.1371/journal.pone.0002016.t001
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vivo and repressed the growth of HeLa and human pancreatic

tumor Mia PaCa-2 xenografts in athymic nude mice, also

inhibited the growth of human cell lines resistant to cytotoxic

drugs e.g., the human myeloblastic leukemia cell-line HL-60 [37].

The CDC25 antagonist, CPD-5, inhibited the growth of the rat

hepatoma cell-line JM-1 in-vitro and the mouse cancer cell-line

tsFT210 through selective inhibition of CDC25 [38]. Thus,

inhibition of CDC25 represents a viable treatment option which

could be pursued further in the clinic. Inhibition and degradation

of the active cyclin E-CDK2 complex, the second ranked

mechanism in the G1/S network, has also been exploited as a

treatment strategy. Bristol-Myers Squibb (BMS) developed BMS-

387032, a cyclin E-CDK2 inhibitor, with an IC50 of 95 nM [39].

Preclinical and phase I ovarian cancer studies demonstrated that

BMS-387032 possessed better efficacy than Flavopiridol, a

promiscuous CDK inhibitor [40]. Flavopiridol, the first cyclin

dependent kinase inhibitor in clinical trials, alone or in

combination with other drugs is currently being investigated in

52 active phase I or II trials [41]. Flavopiridol has been proposed

for the treatment of recurrent, locally advanced, or metastatic soft

tissue sarcoma [42], lymphoma and multiple myeloma [43],

metastatic breast cancer (with Trastumuzumab) [44] or in

combination with other drugs (Cisplatin and Carboplatin) for

the treatment of advanced solid tumors [45]. Cyclin E expression,

the fourth ranked mechanism in the G1/S model, has also been

explored therapeutically for the treatment of pancreatic and lung

cancers [46,47]. The correlation between fragility and treatment

strategy was also found to hold for the G2/M-DNA damage

network. The activation of preMPF (cyclin B–CDK1 complex),

catalyzed by CDC25, was predicted to be the most sensitive

mechanism in the G2/M-DNA damage model while three of the

four tier-two G2/M-DNA mechanisms were associated with

CDC25 activity. Bryostatin-1, a protein kinase C (PKC) inhibitor

and antagonist of the cyclin B-CDK1 complex, has been explored

in the clinic for the treatment of multiple myeloma [48], relapsed

non-Hodgkin’s lymphoma and chronic lymphocytic leukemia

[49]. In preclinical models, Bryostatin-1 has demonstrated single-

agent activity against B16 melanoma, M5076 reticulum sarcoma

and L10A B-cell lymphoma [50] and has been shown to disrupt

cyclin B-CDK1 complex formation and activity by several

different mechanisms [51,52]. When taken together, the top

fragile mechanisms for both the G1/S and G2/M phases of the

cell-cycle, estimated by monte-carlo sensitivity analysis, were

found to be consistent with on-going preclinical and clinical trials

for the treatment of a broad spectrum of human cancers.

Modulation of translational efficiency and the manipulation of

programmed proteolysis, prominently featured among the group

of fragile mechanisms across all the models, are also active areas of

therapeutic development. Initiation of translation in eukaryotes is

thought to be rate limiting [53] and overexpression of initiation

components, for example the initiation factor elF4E, occurs

frequently in human cancers [54]. Arnqvist and coworkers

explored translation inhibition in MCF-7 breast cancer cells

following cycloheximide, puromycin or emetine exposure in the

presence and absence of Insulin-like Growth Factor1 (IGF-1) [55].

Addition of puromycin, cycloheximide and emetine in the absence

of IGF-1 resulted in increased apoptosis at 48 hr relative to the

control, however, when IGF-1 was present, a concentration

dependent reduction in apoptosis was observed. Bjornsti and

Houghton recently reviewed another small molecule translation

inhibitor, Ramapycin [56], which inhibits the Target of Rama-

pycin (TOR) protein, a serine/threonine kinase involved in

translation and other functions. While Ramapycin has FDA

approval as an immunosuppressant, development of anticancer

therapies has been slow despite anti-tumor activity against

established solid-tumor models [57,58]. Ramapycin analogs have

been evaluated in clinical trials for the treatment of different

indications including pediatric patients with relapsed or refractory

acute leukemia and renal-cell carcinoma [56,59]. Peptide

inhibitors have also been used to downregulate translation e.g.,

BL22, an immunotoxin developed for the treatment of Chronic

Lymphocytic Leukemia (CLL) [60], consists of the variable FV

Table 2. Comparison of Overall State Sensitivity Coefficients (OSSC) for the G2-DNA damage model of Aguda [30].

OSSC-BDF OSSC-FD OSSC-ODE15s

Description Cluster m6s m6s m6s

pMPFRMPF, catalyzed by aCdc25 I 0.875960.1475 0.891060.1271 0.992460.0739

aCdc25RiCdc25 II 0.767660.1442 0.770360.1181 0.884560.0920

Generation of preMPF II 0.941360.1214 0.972060.0838 0.868460.1130

iCdc25cyto.RiCdc25nuc. II 0.927060.1164 0.941760.0938 0.835660.1014

iCdc25RaCdc25, catalyzed by MPF II 0.572860.2291 0.501060.1422 0.283560.1517

Generation of p21 III 0.486060.1784 0.503160.1949 0.283560.1517

Degradation of p21 III 0.483360.1760 0.485460.1838 0.281260.1481

p21+MPFRp212MPF III 0.338260.1406 0.341360.1504 0.201760.1248

p212MPFRp21+MPF III 0.335260.1373 0.325460.1438 0.197960.1172

Generation of 14-3-3s protein III 0.343460.1250 0.380260.1459 0.191360.1060

Degradation of 14-3-3s protein III 0.342160.1247 0.362560.1390 0.190960.1059

Wee1RWee1P, catalyzed by MPF III 0.321460.1338 0.327460.1489 0.173960.0878

Wee1PRWee1 III 0.307860.1306 0.299360.1381 0.166660.0855

Three different numerical methods were used to solve the sensitivity equations; OSSC-BDF: 3rd order fixed step-size backward difference method (implicit); OSSC-FD:
forward-finite difference (explicit); and OSSC-ODE15s: 5th order variable step-size backward difference routine (implicit) from the Matlab (The Mathworks, Natick MA)
ODE suite. Each member of the nominal parameter set was randomly perturbed by up to 61-order of magnitude to form a family of random parameter sets (N = 500).
OSSC were calculated for every member of the family of random parameter sets. The mean (m) 61-standard deviation (s) are reported.
doi:10.1371/journal.pone.0002016.t002
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Table 3. Comparison of Overall State Sensitivity Coefficients (OSSC) for the whole-cycle model of Novak and Tyson [32].

OSSC-BDF OSSC-FD OSSC-ODE15s

Description Cluster m6s m6s m6s

Translational efficiency ( ‘ ) I 0.790460.3264 0.864760.2372 0.665760.3816

Activation of ‘IE’ (k31) I 0.602660.3071 0.602660.3071 0.536160.3843

Generation of CycB (k1) I 0.565060.3015 0.499360.2299 0.500260.3471

Cdh1 degradation (k4) I 0.404360.2443 0.380560.2361 0.499760.3765

Degradation of ‘IEP’ (k32) II 0.495860.2863 0.357660.2219 0.475960.3417

Generation of Cdh1 (k93) II 0.443460.2863 0.357660.2219 0.475960.3417

CycA mediated degradation of Cdh1 (cA) II 0.443460.2934 0.302160.1895 0.448260.3853

Degradation of ‘PPX’(k34) II 0.226660.1621 0.278860.1995 0.283560.2604

Generation of dephosphatase PPX (k33) III 0.222460.1652 0.215260.1616 0.257260.2240

Activation of Cdc20 (k13) III 0.244160.3096 0.255760.2616 0.220260.2782

CycE dependent CycE:Kip1 dissociation (k8) III 0.046360.0798 0.004160.0058 0.198960.2545

CycE:Kip1 dissociation giving Kip1 (k98) III 0.046360.0798 0.010560.0635 0.198860.2545

CycE dependent Kip1 accumulation (yE) III 0.043860.0744 0.007860.0371 0.186160.2386

Cdh1 dependent degradation of Cyc B (k92) III 0.114360.1189 0.086560.1405 0.175960.1690

Generation of Cyc B (k01) III 0.148660.0760 0.133360.0672 0.175160.1649

Degradation of Cdc20 (k14) III 0.240260.2678 0.189860.2238 0.169260.2057

Total E2F (E2FT) III 0.146060.1282 0.424960.2385 0.152460.1424

Degradation of DRGs (k18) III 0.046360.1020 0.000360.0006 0.146160.1720

Expression of CycA, catalyzed by aE2F (k29) III 0.169760.1366 0.263960.1444 0.133460.1525

aE2F (k7) mediate CycE expression III 0.036760.0625 0.003560.0038 0.132560.1489

Formation of ‘GM’ (k27) III 0.091160.1014 0.127660.0863 0.130760.1474

Degradation of Cdc20 (J4) III 0.064960.0743 0.074360.1348 0.128160.1331

CycB dependent degradation of Cdh1 (cB) III 0.090260.1296 0.047860.0563 0.128160.1331

Synthesis of p27Kip1 (k5) III 0.027260.0447 0.003260.0041 0.127460.1232

Synthesis of DRG products (k17) III 0.044260.0992 0.000360.0005 0.120560.1754

Maximum specific growth rate (m) III 0.123160.1431 0.172460.1096 0.117660.1490

CycE dependent decrease in Kip1 (k6) III 0.026460.0432 0.003060.0038 0.116160.1161

Decrease in E2F (k23) III 0.071360.0734 0.213860.2094 0.113060.1080

Degradation of Cdc20 (k12) III 0.068660.0969 0.030860.0419 0.109160.1041

Degradation of free E2F (aE2F (k22)) III 0.068360.0969 0.030860.0419 0.109160.1041

Total PP1T (PP1T) III 0.022060.0394 0.000160.0002 0.101160.1034

Synthesis of CycB (J1) III 0.057760.0356 0.059460.0378 0.099960.1341

Degradation of ‘GM’ (k28) III 0.084160.0957 0.102560.0688 0.096160.1092

CycE/A activation of PP1 (K21) III 0.020660.0370 0.000160.0002 0.094560.0972

Cdh1 dependent CycB degradation (k2) III 0.070660.0676 0.054760.0447 0.091160.1137

CycD dependent E2F:Rb dissociation (k20) III 0.022460.0402 0.002260.0208 0.087860.0941

CycE dependent activation of PP1 (wE) III 0.018360.0324 0.001160.0104 0.086560.0911

Degradation of ‘IEP’ (J32) III 0.046760.0551 0.031360.0428 0.085360.0774

Degradation of CycD and CycD:Kip1 (k10) III 0.017460.0307 0.000260.0004 0.085260.0889

GF dependent synthesis of CycD (k9) III 0.017160.0304 0.001260.0104 0.080560.0874

Degradation of ERG (k16) III 0.012960.0227 7.1946102761.72861026 0.080260.0912

Total pRb concentration (RbT) III 0.017960.0321 0.006860.0530 0.078060.0817

PP1 dependent pRb activation (k19) III 0.017960.0321 0.000160.0002 0.077260.0807

CycB dependent Cdc20 formation (k11) III 0.013860.0230 0.002360.0171 0.077060.0826

Formation of Cdh1 (J3) III 0.015360.0224 0.011860.0136 0.071060.1542

Formation of CycE-Cdk2-Kip1 (k25) III 0.014260.0246 0.000460.0006 0.069560.0687

Cdc20 dependent CycB degradation (k02) III 0.069760.1035 0.048960.0944 0.068560.1210

Formation of ERGs (k15) III 0.012460.0222 8.5936102762.23361026 0.066260.0759

DRG dependent formation of ERG(J15) III 0.020860.0399 4.9986102768.46561027 0.064960.0997
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fragment of the RFB4 antibody conjugated to the anti-translation

peptide PE38. The second group of fragile mechanisms predicted

in Novak and Tyson and more generally across the G1/S and G2/

M-DNA damage networks involved deregulation of programmed

protein degradation. Programmed proteolysis via the Ubiquitin

Proteasome System (UPS), a critical component driving cell-cycle

progression [61], has been the target of several different

therapeutic developments [62]. The ubiquination of target

proteins involves the coordinated activity of the ubiquitin

activating enzyme family (E1), the ubiquitin-conjugating enzyme

family (E2) and the ubiquitin ligase family (E3) [63]. While E1

malfunctions have not been observed in cancer, deregulation of E3

and to a lesser extent E2 activity has been directly linked to cancer

progression [63]. The Novak and Tyson model has only a skeleton

representation of UPS, however, it does explicitly represent Cell

Division Cycle protein 20 (CDC20), CDH1 and Anaphase

Promoting Complex/Cyclosome (APC/C), all of which are E3

components. APC/C is the core subunit to which the adapter

proteins CDC20 and CDH1 bind [64–66]. Inhibition of specific

E3 ligases remains a technical challenge [67], however, cis-

imidazoline analogs called Nutlins have been developed which

inhibit MDM2, an E3-ligase responsible for the recognition of

p53. Activity of Nutlins-3 against a human osteosarcoma xenograft

model in nude mice showed 90% inhibition of tumor growth

relative to control [68].

While multiple lines of experimental evidence support the

assertion that malfunctions in fragile mechanisms are implicated in

solid and hematological cancers, some evidence is contradictory.

CDC25 activity, cyclin E expression and activity of cyclin E-

CDK2 were the largest group of fragile G1/S mechanisms.

Traditionally, cyclin E expression and cyclin E-CDK2 activity

were thought to be critical for cell-cycle progression [69]. Ohtsubo

et al., have shown that cyclin E-CDK2 activity was maximum

during the G1/S phase and overexpression of cyclin E accelerated

cell-cycle progression [70]. Lucas et al., showed that abnormal

cyclin E but not Cyclin D1 expression was able to override G1

arrest by the INK4a family of CKIs [71]. Keyomarsi et al., found

that cyclin E expression plays a strong role in human breast cancer

tumors and the cyclin E-CDK2 complex remains active

throughout the cell-cycle suggesting the now established hypoth-

esis that truncated (deregulated) cyclin E variants were responsible

for the constitutive function of cyclin E-CDK2 in breast cancer

tumors [72,73]. Recent studies, however, have challenged the

traditional role of cyclin E. Deletion of both cyclin E genes was

lethal in-utero but deletion of cyclin E1 or cyclin E2 was tolerated

with no obvious abnormalities [74]. Interestingly, double cyclin E

knockout mice were born alive if cyclin E was restored in the

embryonic component of the placenta [74] and CDK2 null mice

were born viable and healthy [75]. Thus, while the cyclin E and

CDK2 knockout studies seem to contradict the essential role of

cyclin E, clinical evidence suggests further studies are required.

Evidence supporting the involvement of other fragile components,

such as the concentration of E2F and pRB (constraints in the G1/

S and Novak and Tyson models), is also prevalent in the literature

[76,77]. However, contradictory evidence suggests that the role of

cyclin D mechanisms maybe complex. Sensitivity analysis

suggested that cyclin D-CDK4/6 and cyclin D-CDK4/6-CKIs

trimer mechanisms were robust or only moderately sensitive while

cyclin D expression was fragile in the G1/S checkpoint. While

Keenan et al., demonstrated in IIC9 Chinese hamster embryonic

fibroblasts that cyclin E expression renders cyclin D-CDK4

dispensable [78], overexpression of cyclin D variants, particularly

cyclin D1, has been observed in several human cancers [79,80].

Moreover, cyclin D1, D2 or D32/2 mice displayed tissue specific

phenotypes including defective proliferation [81–83]. However,

while mice lacking all the cyclin D genes died by day E17.5 of

gestation, most tissue and organs were formed by day E13.5

indicating that cyclin D was not required for embryogenies [84].

When taken together, the retrospective cyclin E studies in breast

cancer patients and the CDC25 studies support the hypothesis that

malfunctions in fragile mechanisms are strongly implicated in

cancer progression. However, the cyclin E and CDK2 knockout

studies as well the confusing role of cyclin D suggests a more

nuanced perspective in which redundant proteins or subsystems

might be able to compensate for malfunctions in fragile

mechanisms.

Consistent with the conjecture of Kitano, the anecdotal

comparison between predicted fragile mechanisms and literature

suggested that cell-cycle control architectures are HOT networks

[29]. However, while different controls were conducted to ensure

the fidelity of the monte-carlo sampling protocol, the mathemat-

ical models being explored were coarse-grained and not

structurally complete. While quantifying the impact of structural

uncertainty remains a critical challenge, the general correlation

OSSC-BDF OSSC-FD OSSC-ODE15s

Description Cluster m6s m6s m6s

CycB dissociation of CKI complex(gB) III 0.017060.0328 0.000360.0004 0.059860.0787

CycD-Cdk4/6-Kip1 association(k24) III 0.011060.0199 0.000260.0004 0.046960.0563

CycE dissociation of CKI complex(gE) III 0.009960.0134 0.002160.0022 0.046160.0510

Cdh20 depdendent Cdh1 formation (k3) III 0.073260.1007 0.060760.1165 0.043960.0851

CycE dependent pRb phosphorylation (lE) III 0.009860.0173 7.8126102561.04461024 0.041360.0467

Cyclin dependent pRb phosphorylation (k26) III 0.011260.0199 0.000160.0002 0.038360.0470

CycB dependent pRb phosphorylation (lB) III 0.012360.0238 5.4476102561.56761024 0.033360.0515

Cdc20 dependent CycA degradation (k30) III 0.018260.0289 0.013860.0184 0.032960.0458

Three different numerical methods were used to solve the sensitivity equations; OSSC-BDF: 3rd order fixed step-size backward difference method (implicit); OSSC-FD:
forward-finite difference (explicit); and OSSC-ODE15s: 5th order variable step-size backward difference routine (implicit) from the Matlab (The Mathworks, Natick MA)
ODE suite. Each member of the nominal parameter set was randomly perturbed by up to 61-order of magnitude to form a family of random parameter sets (N = 150).
OSSC were calculated for every member of the family of random parameter sets. The mean (m) 61-standard deviation (s) are reported.
doi:10.1371/journal.pone.0002016.t003

Table 3. cont.
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between efficacy and fragility appears to be model independent as

other studies have yielded similar results [19]. Moreover, initial

results presented here suggest that while the quantitative values of

sensitivity coefficients calculated using different models with

overlapping biology will change between models, the qualitative

conclusions drawn may be invariant. However, this conclusion is

likely true only for a subset of mechanisms. One possible strategy

to explore structural uncertainty would be to construct detailed

subsystem models of the coarse-grained components which were

determined by our analysis to be fragile, e.g., translation or UPS.

While this top-down strategy does not specifically address

structural uncertainty, it does allow us to determine the molecular

interactions which are perhaps mediating fragility in the coarse-

grained model. A second critical issue is the choice of sensitivity

metric. OSSCs quantify the overall impact that a parameter has;

however, other measures of sensitivity might be better suited for

analysis of the cell-cycle. Doyle and colleagues have established

tools for the analysis of mammalian circadian rhythm that could

prove useful in understanding how fragility influences phenotypic

properties such as division frequency [17,85,86]. A third critical

issue not addressed in this study was safety. Highly efficacious

strategies have resulted in unwanted and possible harmful side

effects, e.g., the association of rofecoxib with adverse cardiovas-

cular events [87]. While there may not be an obvious linkage

between fragility and safety for single agents, initial retrospective

studies by Luan et al., using combinations of coagulation inhibitors,

have suggested that shifts in mechanism rank could be used to

understand molecular drug-drug synergies [19].

Figure 3. Sensitivity analysis results as a function of model and numerical method. Scaled Overall State Sensitivity Coefficients (OSSC)
were calculated for each cell-cycle model over a family of random parameters sets (N = 500 unless otherwise noted) generated by randomly
perturbing the published set by 61-order of magnitude. Three different numerical methods were used to solve the sensitivity equations to control
for numerical artifacts. A–C: Sensitivity results for the Novak and Tyson model [32]. D–F: Sensitivity results for the G1/S checkpoint model of Qu et al.,
[31]. G–I: Sensitivity results for the G2/M-DNA damage model of Aguda [30]. The different numerical techniques used to solve the sensitivity
equations yield qualitatively similar results as quantified by the Spearman rank correlation between any two methods (lower right-hand corner of
each plot).
doi:10.1371/journal.pone.0002016.g003
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Materials and Methods

Model formulation and sensitivity analysis
The cell-cycle models used in this study [30–32] were

represented as systems of Differential Algebraic Equations (DAEs):

f x,pð Þ{H
dx

dt
~0 x t0ð Þ~x0 ð1Þ

where xMRm denotes the concentration vector, f(x, p)MRm denotes the

mass balance equation vector describing the kinetics and connec-

tivity of the cell cycle network and pMRp denotes the parameter

vector. The diagonal m6m matrix H contains 1’s for dynamic

elements of the concentration vector, 0 otherwise (constraints).

The fragile elements of the cell-cycle networks were determined

by computing Overall State Sensitivity Coefficients (OSSC) [17].

OSSC values were calculated by first calculating the first-order

sensitivity coefficients (at time tk):

sij tkð Þ~
Lxi

Lpj

����
tk

ð2Þ

which are solutions of the equation:

H
dsj

dt
~A tð Þsjzbj tð Þ j~1,2, . . . ,P ð3Þ

subject to the initial condition sj(t0) = 0. The quantity j denotes the

parameter index, P denotes the number of parameters and sj

denotes the m61 vector of first-order sensitivity coefficients with

respect to parameter j. The Jacobian matrix (A) and the matrix of

first derivatives of the mass balances w.r.t the parameter values (B)

(whose columns are denoted by bj) are given by:

A~
Lf

Lx

����
x�,p�ð Þ

B~
Lf

Lp

����
x�,p�ð Þ

ð4Þ

where x denotes a point along the nominal or unperturbed system

solution. We solved the sensitivity equations for each parameter

using three different numerical methods to control for possible

artifacts; a 3-order Backward Difference (BDF3) method was

compared with forward Finite Difference (FD), and the fifth-order

variable step-size ODE15s routine of Matlab (The Mathworks,

Natick MA). The matrices A and B were estimated numerically at

each time step using a generalized gradient algorithm [88].

Overall State Sensitivity Coefficients (OSSC), first used by Stelling

et al., to characterize mechanisms in circadian rhythm as fragile or

robust [18], were calculated for each parameter j:

Soj tð Þ~
p�j
Ns

XNT

k~1

XNs

i~1

1

x�i

Lxi

Lpi

����
tk

" #2
0
@

1
A

1=2

ð5Þ

The quantity NT denotes the number of time points used in the

simulation while Ns denotes the number of proteins/protein

complexes in the model. To account for parametric uncertainty,

the OSSC values (Soj) were calculated over a family of random

Table 4. Comparison of OSSC ranks for common mechanisms
in the G1/S, G2-DNA damage and Novak and Tyson models.

Mechanism
G1/S
(%)

G2/M
(%)

Whole-cell
model (%)

Generation of preMPF - 9362 80618

Total concentrations

Total E2F concentration 93615 - 77610

Total pRb concentration 86615 - 43616

Reactions of CKIs

Generation of CKIs 86610 8562 68612

CycE-Cdk2 associating with CKI 7069 - 38615

Dissociation of CycE-Cdk2-CKI 57619 - (8623, 5619)

CycD-Cdk4/6 associating with CKI 4868 - 31619

Dissociation of CycD-Cdk4/6-CKI 39611 - (47614, 8623,
4619)

Generation and Degradation

Degradation of CycE 66624 - 38615

Degradation of CycD 55615 - 47614

CycE generation catalyzed by E2F 41626 - 73616

The mean percentage ranking, defined as the fractional distance from the
lowest ranked mechanism, 61-standard deviation is reported. The 95% cutoff
for mechanisms to be included in the fragile set was 34%, 68% and 23% for the
G1/S, G2-DNA damage and Novak and Tyson models, respectively.
doi:10.1371/journal.pone.0002016.t004

Figure 4. Effect of the parameter perturbation size on conclusions drawn from sensitivity analysis of the G1/S model. A family of
random parameter sets was constructed (N = 150) from the nominal set, where each parameter was perturbed by upto 650%, 61-order or 62-orders
of magnitude. The ODE15s routine of Matlab (The Mathworks, Natick MA) was used to solve the sensitivity equations. A: Cumulative Spearman ranks
between parameters sets with 650% change and 61order change. B: Cumulative Spearman ranks between parameters sets with 61-and 62-orders
of magnitude change. C: Cumulative Spearman ranks between parameters sets with 650%-and 62-orders of magnitude change.
doi:10.1371/journal.pone.0002016.g004
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Figure 5. Spearman rank correlation as a function of the number of random parameter sets sampled. The red-dashed line in all cases
denotes the cumulative Spearman Rank obtained by sampling all parameter sets for any two methods. A–B: Cumulative Spearman rank versus the
number of parameter sets sampled for the G1-S model using the BDF3 and ODE15s methods (A) and Finite Difference (FD) and ODE15s methods (B),
respectively. C–D: Cumulative Spearman rank versus the number of parameter sets sampled for the G2-M model using the BDF3 and ODE15s
methods (C) and Finite Difference (FD) and ODE15s methods (D), respectively. E–F: Cumulative Spearman rank versus the number of parameter sets
sampled for the whole-cycle model using the BDF3 and ODE15s methods (E) and Finite Difference (FD) and ODE15s methods (F), respectively. In all
models and numerical methods, the cumulative Spearman rank converges to population value, however, the rate of convergence, i.e., the number of
random sets required to be sampled, is different for each model and method.
doi:10.1371/journal.pone.0002016.g005
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parameter sets; we randomly perturbed each nominal parameter

by up to 61-order of magnitude then solved the sensitivity

balances for each family member. To control for perturbation

effects, two other random parameter families were also tested

(650% and 62-orders of magnitude, N = 500).

Statistical and clustering analysis of OSSC values
Three different tests were performed to identify large statistically

significant shifts in the OSSC values. The OSSC values calculated

over the family of parameter sets were assumed to be normally

distributed. The statistical significance of shifts in OSSC values for

each algorithm relative to ODE15s (control) were determined by

performing a Welch t-test with the null hypothesis that the means

of the OSSC values were equal at a 1% significance level [89].

The list of significant OSSC values was further restricted to only

those shifts with a magnitude larger than a specified z-score (1.0)

away from the squared mean displacement over the significant

OSSC values. We defined the displacement of an OSSC value

relative to the control as:

dj,q~ �SSq
oj
{�SSc

oj

� �2

, j~1,2, . . . ,P ð6Þ

where SSC
oj

denotes the mean OSSC value over the family of

parameter sets for parameter j in the control while SSq
oj

denotes the

same quantity for algorithm q. A significant shift in OSSC value

was accepted if:

dj,qwzsdq
zmdq

ð7Þ

where z denotes a desired z-score, sdq
denotes the standard

deviation of the total displacement over all significant OSSC

values for the qth numerical algorithm and mdq
denotes the mean of

the significant displacements for algorithm q. Large statistically

significant shifts in OSSC values, while perhaps indicative of the

shifting importance of mechanisms, do not guarantee that

mechanisms are qualitatively different between the algorithms

considered (see Supplementary Material Table S1). The Spear-

man rank correlation denoted by r and defined as:

r~1{
6
P

P
i~1d2

i

N N2{1ð Þ ð8Þ

was used to measure the difference in qualitative ranking of

mechanisms between algorithms considered. The quantity di denotes

the difference in the ordinal rank of mechanisms between algorithms

or perturbation size, N denotes the number of pairs of values and P

denotes the number of parameters considered. The Spearman rank

is bounded by 21$r$1; a Spearman rank of one indicates that two

ranked lists are identical, a Spearman rank of negative one indicates

a perfect negative correlation, while a Spearman rank of zero

indicates that two ranked lists are uncorrelated.

The distributions of OSSC values obtained from monte-carlo

sampling were clustered using a k-means algorithm [90]. The

mean and standard deviation obtained from the monte-carlo

sensitivity analysis was used to estimate the underlying OSSC

distribution (N = 500 points) where the OSSC values were

assumed to be normally distributed. One-hundred different

clustering attempts were run for each model to control for

clustering artifacts. The most probable configuration was reported.

Supporting Information

Material S1

Found at: doi:10.1371/journal.pone.0002016.s001 (1.07 MB

DOC)

Figure S1 Qualitative comparison of simulations results of the

model implementations used in this study. A–B: Free and bound

Cyclin E versus time for the reimplementation (A) and published

(B) the G1/S model of Qu et al., [31]. C–D: Concentration

profiles of the Wee1, MPF and active CDC25 proteins versus time

for the reimplementation (C) and published (D) G2/M DNA

damage model of Aguda [30]. E–F: Concentration profiles for the

Cdh1 protein and the Cdk1:CycB complex versus time for the

reimplementation (E) and published whole-cycle model of Novak

and Tyson [32]. In all cases the reimplemented models were

qualitatively consistent with published results.

Found at: doi:10.1371/journal.pone.0002016.s002 (1.95 MB EPS)

Figure S2 Cumulative Sensitivity as a function of parameter

rank. The cumulative sensitivity contribution of each parameter

was calculated by calculating the Area Under the Curve (AUC)

using the trapazoid rule. Mechanisms responsible for 95% of the

total sensitivity in each model were collected, clustered and

analyzed. Panel A shows the result for G1/S model, Panel B - G2/

DNA damage model and Panel C shows the plot for the whole cell

model.

Found at: doi:10.1371/journal.pone.0002016.s003 (0.33 MB EPS)

Table S1 Statistically significant shifts of Overall State Sensitiv-

ity Coefficients (OSSCs) between solution methods computed

using the Welch t-test. The mean and one standard deviation of

the OSSC score computed over the family of random parameter

sets is reported. Only shifts recorded with a p-value of 0.01 and z-

score of 1 are shown.

Found at: doi:10.1371/journal.pone.0002016.s004 (0.04 MB

DOC)
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