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Objectives:We aimed to explore the alteration of circulating lymphocyte subsets before

and after tacrolimus (TAC) therapy in neuromyelitis optica spectrum disorder (NMOSD)

and its correlation with clinical outcomes.

Methods: Anti-aquaporin-4 antibody (AQP4-ab)-positive patients with NMOSD treated

with TAC were followed and clinically evaluated at 0, 3, 6, and 12 months after initiation

of TAC. Flow cytometry was employed to detect the proportion of various whole blood

lymphocyte subsets at every time point. Correlation analysis was further performed to

explore the association between annualized relapse rate (ARR), the Expanded Disability

Status Scale (EDSS) score, and the proportion of circulating lymphocyte subsets before

and after TAC therapy.

Results: A total of 13 eligible patients with NMOSD were included. The proportion

of CD19+CD24hiCD38hi/CD19+ and CD19+CD5+CD1dhi/CD19+ lymphocyte subsets

increased significantly after TAC therapy (p = 0.010 and p < 0.001). The proportion of

CD19+BAFFR+, CD19+IFN-γ+, and CD19+IL-10+ subsets decreased significantly after

TAC therapy (p= 0.015, 0.018, and 0.042, respectively). There was a negative correlation

between CD4+CD25hi subset and EDSS score (p = 0.016, r = −0.652).

Conclusion: Possibly through increasing regulatory B and suppressing BAFFR+ B

and interferon (IFN)-γ+ B subsets, TAC could decrease relapse. EDSS score may be

correlated with some lymphocyte subsets after TAC therapy.
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INTRODUCTION

Neuromyelitis optica spectrum disease (NMOSD) is one of
the central nervous systems inflammatory diseases mainly
mediated by antiaquaporin-4 antibody (AQP4-ab) and involving
the optic nerve, spinal cord, and specific brain regions (1).
Previous immunological studies have shown that NMOSD was
dominated by humoral immunity, with AQP4-ab deposition and
complement activation in the lesions (2, 3).

Numerous B cell subsets play important roles in the
pathogenesis of NMOSD, including naïve B cells, regulatory B
cells, memory B cells, and plasmablasts (4). Follicular helper
T cells (Tfh) could promote the differentiation of B cells in
the germinal center into memory B cells and plasma cells,
thereby participating in the pathogenesis of NMOSD (5). It was
generally believed that T helper cell 17 (Th17)-related cytokines
such as interleukin-17 (IL-17) and B cell cytokines such as B-
cell-activating factor (BAFF) were elevated in the serum and
cerebrospinal fluid of patients with NMOSD, and whether there
were abnormalities in the number and function of regulatory
T cells in NMOSD was still controversial (6, 7). Studies have
found that the proportion of Tfh in NMOSD during relapse
was significantly higher than that in the remission period and
healthy controls while the proportion of regulatory B cells
and IL-10 during the acute attack was significantly lower than
healthy controls (8, 9). High-dose methylprednisolone therapy
in NMOSD could significantly reduce the proportion of Tfh and
interferon-γ (IFN-γ) in B cells (8, 10).

Tacrolimus (TAC) was originally a macrolide compound
extracted from the genus Streptomyces tsukubanesis. Although
TAC and cyclosporin A (CsA) both belong to calcineurin
inhibitors, the potency of TAC is 10–100 times of CsA (11).
TAC plays a major role in cellular immunity. It binds to TAC
binding protein 12 in the cell and forms a complex to inhibit
phosphatase activity, thereby preventing the dephosphorylation
and translocation of nuclear factor of activated T cell, inhibiting
the transcription of cytokines including IL-2, interfering with
the differentiation and proliferation of T cells, thereby inhibiting
the inflammation and alleviating the symptoms of autoimmune
diseases (12). Studies have shown that TAC could specifically
inhibit the number and proportion of Tfh in lymph nodes and
blood in kidney transplant patients without affecting regulatory
T cells and other subgroups (13). In addition, the proportion of

CD19+BAFFR+ cells in patients with myasthenia gravis (MG)
decreased after taking TAC (14).

Tacrolimus was previously applied in the field of solid

organ transplantation (15). There were also studies using TAC
as a maintenance therapy for NMOSD in remission, which
proved to be effective in preventing the relapse of NMOSD,
reducing annual relapse rate (ARR) and the Expanded Disability
Status Scale (EDSS) score (16–18). Tacrolimus was less likely
to cause leukopenia and liver function damage, making it
one of the alternatives for patients who were intolerant of
azathioprine (AZA) or mycophenolate mofetil (MMF). Although
the imbalance of Tfh and regulatory B cells has been clarified in
the immunopathogenesis of NMOSD, there still lacked whether
the effectiveness of TAC was related to it. In this study, we

aimed to explore the correlation between clinical outcomes and
immunological measures during TAC therapy.

MATERIALS AND METHODS

Participants and Data Collection
This was a single-center prospective observational cohort study.
Patients with NMOSD taking TAC (3 mg/d) as maintenance
therapy were prospectively included in the Department of
Neurology of Huashan Hospital from December 2017 to October
2018. The inclusion criteria were: (1) taking TAC (3 mg/d)
combined with or without small dose oral glucocorticoid;
(2) not simultaneously receiving other immunosuppressive
treatment such as AZA, MMF, cyclophosphamide (CTX), and
rituximab (RTX); (3) meeting the diagnostic criteria of NMOSD
established by the International Panel in 2015; (4) age ≥ 18
years. Demographics and clinical data were collected, including
the number of patients, gender, onset age, disease duration,
disease course, serum AQP4-ab or MOG-ab titer, and previous
immunotherapy. These patients were followed-up and evaluated
during the baseline, 3, 6, and 12 months after TAC initiation
to record relevant outcomes, including ARR and EDSS scores
before and after treatment. Blood samples were taken to detect
the proportion of whole blood lymphocyte subsets during
each follow-up. We confirmed that no symptoms or data
related to infection were detected when blood samples were
obtained. During TAC therapy, if the patient had relapsed and
received high-dose methylprednisolone therapy, it would affect
the proportion of lymphocyte subsets, which were not included
in further analysis. Those discontinuing TAC or changing the
immunosuppressive agent because of the adverse events within
1 year would not be included in further analysis.

AQP4-ab and MOG-ab Detection
All patients at Huashan Hospital had undergone serum AQP4-ab
and MOG-ab detection using fixed cell-based indirect immune-
fluorescence test (Euroimmun AG, Lüebeck, Germany) as part of
a routine diagnostic approach.

Flow Cytometry Analysis
We separated 200 µl of EDTA-anticoagulated whole venous
blood into four tubes. Each was immunostained with fluorescent-
labeled monoclonal antibodies for 30min at 4◦C in darkness.
After red blood cell lysis using FACS Lysing Solution (BD
Biosciences, San Jose, California, USA), the samples were washed
twice and resuspended in 200 µl of phosphate-buffered saline
(PBS) supplemented with 0.5% fetal bovine serum (FBS). The
frequencies of different lymphocyte subsets were determined
with Attune Acoustic Focusing Cytometer (Thermo Fisher
Scientific,Waltham,MA, USA). Isotype controls were performed
to establish appropriate gating (Table 1).

Cytokine Detection
Ficoll-Hypaque density gradient centrifugation (Sigma Aldrich,
St. Louis Missouri, USA) was performed to separate peripheral
blood mononuclear cells (PBMCs) from 6ml of heparinized
blood. Cells from the interface were collected and washed with
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PBS. Then the cell concentration was adjusted to 1 × 106

cells/ml in RPMI 1,640 including L-glutamine and NaHCO3

(Sigma Aldrich, St. Louis, Missouri, USA) supplemented with
100 U/ml penicillin, 0.1 mg/ml streptomycin (Life Technologies,
Carlsbad, California, USA) and 10% FBS in 24-well U-bottom
plates (Nunc, Langenselbold, Germany). To increase surface
expression of B cells, the PBMCs were stimulated with 0.1 mg/ml
CpG oligodeoxynucleotide (CpG ODN) 2006 (InvivoGen, San
Diego, California, USA) at 37◦C with 5% CO2 for 22 h. During
the last 5 h, a 2 µl/ml cell stimulation cocktail (eBioscience,
San Jose, California, USA) was added. Then, the cells were
immunostained with antihuman CD4 FITC or CD19 PE-Cy7
(eBioscience, San Jose, California, USA) for T or B cells,
respectively. Subsequently, the cells were washed, fixed, and
permeabilized with the Fix&Perm Kit (Invitrogen, Camarillo
California, USA). Antihuman IL-17-PE or IFN-γ FITC and IL-
10 PE (eBioscience, San Jose California, USA) were added to the

TABLE 1 | Detection of lymphocyte subsets by flow cytometry.

Lymphocyte subsets Combinations of monoclonal

antibody

CD19+CD27+ memory B cell CD19 PE-Cy7, CD27 FITC

CD19+CD27− naïve B cell CD19 PE-Cy7, CD27 FITC

CD19+CD24hiCD38hi regulatory B cell CD19 PE-Cy7, CD24 PE, CD38 APC

CD19+CD5+CD1dhi regulatory B cell CD19 PE-Cy7, CD5 APC, CD1d PE

CD4+CXCR5+ ICOS+ follicular helper T

cell

CD4 FITC, CXCR5 PE-Cy7, ICOS

APC

CD4+CD25hi regulatory T cell CD4 FITC, CD25 PE

CD19+BAFFR+ B cell CD19 PE-Cy7, BAFFR PE

CD4+ IL-17+ T cell CD4 FITC, IL-17 PE

CD19+ IFN-γ+ B cell CD19 PE-Cy7, IFN-γ FITC

CD19+ IL-10+ B cell CD19 PE-Cy7, IL-10 PE

permeabilized T or B cells for intracellular cytokine detection.
Appropriate isotype controls were conducted to determine the
cytokine detection gates.

Statistical Analysis
In this study, FlowJo X10.0 (FlowJo, LLC., Ashland, Oregon) was
used to gate and analyze the FCS files. The data were analyzed
with SPSS 22.0 software (SPSS Inc., Chicago IL, USA) while
figures were made with Graphpad Prism 6 software (GraphPad
Software inc., La Jolla CA, USA). Counting data was expressed as
count (%). Quantitative data conforming to normal distribution
were expressed as the mean ± SD, and one-way repeated
measurement ANOVA was applied to compare the proportion of
lymphocytes during each follow-up. Bonferroni method was used
to correct the significance level of posthoc pairwise comparison.
Non-normally distributed quantitative data were presented as
median and range, and Friedman rank-sum test was applied
to compare the proportion of lymphocytes during each follow-
up. Spearman or Pearson correlation analysis was used for
the correlation between clinical outcomes and flow cytometry
assessment. Correlation and clustering analysis was performed
with the corr package in R, version 4.0.3 (http://www.r-project.
org/). Statistical significance was set at p < 0.05.

RESULTS

Demographic and Clinical Findings
There were 20 patients with NMOSD taking TAC prospectively.
After excluding five patients having relapse within 1 year and
2 patients with MOG-ab or seronegative status, 13 AQP4-ab-
positive patients were included in this study, with antibody titer
ranging from 1:10 to 1:1,000. There were 11 patients taking oral
glucocorticoid as a combined therapy. The average onset age
was 40.6 ± 15.8 years while the disease course was 42.9 ± 20.6
months. A total of nine patients had a relapsing course while the

TABLE 2 | Demographic and clinical characteristics of patients with NMOSD taking TAC.

No. of Sex Onset Disease Disease Antibody titer EDSS score ARR before- Previous Combined therapy

patient age (y) duration (m) course before-after therapy after therapy therapy at last follow-up

1 F 48.7 29.0 Relapse AQP4-ab 1:32 4-4 3-0 None Prednisone 1#qd

2 F 62.0 49.0 Relapse AQP4-ab 1:100 5.5-4 1-0 None Prednisone 5#qd

3 F 46.0 21.9 Monophase AQP4-ab 1:100 4-3 1-0 None None

4 F 41.7 90.0 Relapse AQP4-ab 1:10 1-0 2-0 AZA Prednisone 2#qd

5 F 57.6 19.0 Monophase AQP4-ab 1:32 4-3 1-0 None None

6 F 19.4 64.5 Monophase AQP4-ab 1:1000 4-4 0-0 CTX None

7 F 34.2 50.0 Relapse AQP4-ab 1:100 1-0 1-0 None None

8 F 28.4 20.0 Relapse AQP4-ab 1:320 4-4 2-0 None None

9 F 67.9 22.0 Monophase AQP4-ab 1:32 5-1.5 1-0 AZA None

10 F 25.3 42.0 Relapse AQP4-ab 1:10 4-4 2-0 AZA None

11 F 46.4 53.0 Relapse AQP4-ab 1:32 3-2 1-0 None None

12 F 25.8 46.0 Relapse AQP4-ab 1:32 1-0 1-0 AZA None

13 F 24.1 51.0 Relapse AQP4-ab 1:32 2-1 1-0 None None

NMOSD, neuromyelitis optica spectrum disorder; TAC, tacrolimus; AQP4-ab, anti-aquaporin 4 antibody; AZA, azathioprine; CTX, cyclophosphamide; y, year; m, month; EDSS, Expanded

Disability Status Scale; ARR, annualized relapse rate.
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other patients had amonophasic course before TAC therapy. Five
patients used to take immunosuppressive agents and experienced
4–8 weeks of washout period. During the 12 months follow-up
period after TAC initiation, no patients experienced NMOSD
relapse. The EDSS score and ARR before TAC therapy were 4
(1–5.5) and 1 (0–3). After 12 months of TAC therapy, the EDSS
score and ARR were 3 (0–4) and 0 (0–0). The demographical and
clinical characteristics of this cohort were listed in Table 2.

Memory, Naïve, Regulatory, and BAFFR+B
Cells
The proportions of CD19+CD27+ memory B cells,
CD19+CD27− naïve B cells, CD19+CD24hiCD38hi, and
CD19+CD5+CD1dhi regulatory B cells were measured
and compared during each follow-up. The proportion of
CD19+CD27+ memory B cells in total lymphocytes decreased
from 3.90 ± 1.95% to 2.92 ± 1.52% gradually (p = 0.113)

FIGURE 1 | Representative flow cytometry figure of lymphocyte subsets. (A) CD19+CD27+ memory B cell and CD19+CD27− naïve B cell; (B) CD19+CD24hiCD38hi

regulatory B cell; (C) CD19+CD5+CD1dhi regulatory B cell; (D) CD19+BAFFR+ B cell; (E) CD4+CXCR5+ ICOS+ follicular helper T cell. (F) CD4+CD25hi regulatory T

cell; (G) IL-17 expressing CD4+ T cell; (H) Interferon (IFN)-γ expressing CD19+ B cell; (I) IL-10 expressing CD19+ B cell.
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FIGURE 2 | Proportion changes of lymphocyte subsets during baseline and after 3, 6, and 12 months of tacrolimus (TAC) therapy. (A) CD19+CD27+ memory B cell;

(B) CD19+CD27− naïve B cell; (C) CD19+CD24hiCD38hi regulatory B cell; (D) CD19+CD5+CD1dhi regulatory B cell; (E) CD19+BAFFR+ B cell; (F)

CD4+CXCR5+ ICOS+ follicular helper T cell. (G) CD4+CD25hi regulatory T cell; (H) IL-17 expressing CD4+ T cell; (I) IFN-γ expressing CD19+ B cell; (J) IL-10

expressing CD19+ B cell.

(Figures 1A, 2A) while the percentage of CD19+CD27−

naïve B cells in total lymphocytes reduced from 6.39 ±

3.12% to 5.61 ± 2.23% (p = 0.400), which both did not
change significantly (Figures 1A, 2B) after TAC therapy. The
frequencies of CD19+CD24hiCD38hi regulatory B cells in
CD19+ B lymphocytes increased from 0.69 ± 1.92% to 4.45 ±

3.83% (p = 0.010) (Figures 1B, 2C), while CD19+CD5+CD1dhi

regulatory B cells in CD19+ B lymphocytes enhanced from
11.76 ± 5.94% to 24.63 ± 10.52% with highly statistical
significance after TAC therapy (p < 0.001) (Figures 1C, 2D).
Compared with baseline, posthoc pairwise comparison exhibited
the differences of CD19+CD24hiCD38hi regulatory B cells
(p = 0.023) and CD19+CD5+CD1dhi regulatory B cells (p
= 0.002) were both statistically significant in 12 months.
The proportion of CD19+BAFFR+ cells in total lymphocytes
had a gradual decrease from 11.26 ± 4.13% to 8.00 ± 2.18%
with statistical significance after TAC therapy (p = 0.015)
(Figures 1D, 2E). And the difference nearly reached statistical
significance in 12 months compared to baseline in posthoc
pairwise comparison (p= 0.057).

Tfh and Regulatory T Cells
The proportions of CD4+CXCR5+ICOS+ Tfh and CD4+CD25hi

regulatory T cells were measured and compared during each
follow-up. The percentage of CD4+CXCR5+ICOS+ Tfh in CD4+

T lymphocytes enhanced from 0.64 ± 0.37% to 0.87 ± 0.61%
(p = 0.412) (Figures 1E, 2F), while CD4+CD25hi regulatory T
cells in total lymphocytes increased from 1.24± 1.21% to 1.37±
1.27% (p = 0.412) (Figures 1F, 2G), which both did not change
significantly after TAC therapy.

The Expression of Cytokines in Circulating
T and B Cells
The proportion of IL-17 expressing T cells in the total
lymphocytes changed slightly from 0.58± 0.21% to 0.61± 0.27%,
which exhibited no statistical difference after TAC therapy (p =

0.794) (Figures 1G, 2H). The frequencies of circulating IFN-γ
expressing B cells in the total lymphocytes decreased from 3.36±
1.74% to 1.79 ± 1.37% significantly (p = 0.018) (Figures 1H, 2I)
while IL-10 expressing B cells in the total lymphocytes decreased
from 0.56 ± 0.50% to 0.23 ± 0.15 % significantly (p = 0.042)
(Figures 1I, 2J) after TAC therapy, although, in a posthoc analysis,
the difference did not reach statistical significance in 12 months
compared with baseline.

Correlation and Clustering Analysis
We found that the EDSS score after TAC therapy was negatively
correlated with the proportion of CD4+CD25hi cell subsets (p
= 0.016, r = −0.652) (Figure 3A). We did not observe the
correlation between the change in EDSS score or ARR and the
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FIGURE 3 | Correlation analysis of clinical outcomes and proportion of

lymphocyte subsets. (A) Correlation of EDSS score after TAC therapy and the

proportion of CD4+CD25hi cell subsets. (B) Correlation and clustering analysis

of all lymphocyte subsets and clinical outcomes during TAC therapy. Bmem,

CD19+CD27+ memory B cell; Bnaïve, CD19+CD27+naïve B cell; Breg1,

CD19+CD24hi CD38hi regulatory B cell; Breg2, CD19+CD5+CD1dhi

regulatory B cell; BAFFR, CD19+BAFFR+ B cell; Tfh, CD4+CXCR5+ ICOS+

follicular helper T cell; Treg, CD4+CD25hi regulatory T cell; Th17, IL-17

expressing CD4+ T cell; BIFNγ, IFN-γ expressing CD19+ B cell; B10, IL-10

expressing CD19+ B cell; EDSS, Expanded Disability Status Scale; ARR,

annualized relapse rate. Variables that were more highly correlated appeared

closer together and were connected by stronger paths. Paths were also

colored by their sign (blue for positive and red for negative). The proximity of

the points was determined through multidimensional clustering.

change in the ratio of lymphocyte subsets after TAC therapy.
The correlation and clustering analysis of all lymphocyte subsets
and clinical outcomes during TAC therapy were exhibited in
Figure 3B.

DISCUSSION

This study preliminarily explored the influence of TAC on the
proportion of circulating lymphocytes. TAC may reduce relapse
by increasing the proportion of regulatory B cells and inhibiting
the proportion of BAFFR+B cells and IFN-γ+ B cells. EDSS score
may be correlated with some lymphocyte subsets before and after
TAC therapy.

Memory B cells were generally classified as CD19+CD27+,
which mainly secreted inflammatory cytokines such as IFN-γ
and tumor necrosis factor α (TNF-α) while seldom secreted
anti-inflammatory cytokines such as IL-10, thereby promoting

the relapse of NMOSD. And naïve B cells were mainly defined
as CD19+CD27−, which mainly secreted IL-10 while seldom
secreted IFN-γ, thereby inhibiting the relapse of NMOSD (4, 19).
Compared with the aforementioned studies, our research results
further showed that the proportion of circulating memory B
cells gradually decreased during TAC therapy. Although the
difference was not statistically significant (p = 0.113) possibly
from the small sample size, this result could explain the decreased
secretion of IFN-γ with a highly statistically significant difference
(p = 0.018). The proportion of circulating naïve B cells had a
decreased trend during TAC therapy, and the difference did not
reach statistical significance (p = 400). As the proportion of B
cells secreting IFN-γ decreased, this could explain the similar
decrease in the proportion of B cells secreting IL-10, and the
difference reached statistical significance (p = 0.042). Previous
studies demonstrated that the serum IFN-γ and IL-10 in patients
with MG under TAC therapy were reduced, which was consistent
with our study (14). Therefore, suppressing the proportion of
memory B cells may be one of the mechanisms by which TAC
exerted an immunosuppressive effect.

Regulatory B cells had different subsets including
CD19+CD24hiCD38hi and CD19+CD5+CD1dhi, with the
function of secreting IL-10, inducing the function of regulatory
T cells, inhibiting Th1, Th17, effector T cells, monocytes,
and dendritic cells (20). Studies have shown that the ratio
of CD19+CD24hiCD38hi and IL-10 levels during the acute
attack stage were significantly lower than those of healthy
control (9). Compared with the aforementioned results, ours
further demonstrated that the ratio of CD19+CD24hiCD38hi

and CD19+CD5+CD1dhi increased during TAC therapy with
statistical significance (p = 0.010 and p < 0.001, respectively).
Therefore, increasing the proportion of regulatory B cells
may be another mechanism by which TAC performed an
immunosuppressive function.

BAFF maintained the survival and differentiation of B
cells by binding BAFFR which was mainly expressed on the
surface of B cells (21). Previous studies have shown that
the levels of cerebrospinal fluid and serum BAFF in patients
with NMOSD were increased, which was positively correlated
with the EDSS score (22). Studies have also shown that
the proportion of CD19+BAFFR+ cells in patients with MG
increased, while the proportion of CD19+BAFFR+ cells in
patients with MG decreased after taking TAC, which was
correlated with the improvement of clinical symptoms (14,
23). Similar to the aforementioned results, our study found
that the proportion of CD19+BAFFR+ cells decreased during
TAC therapy, and the difference was statistically significant
(p = 0.015). But we did not find a correlation between
CD19+BAFFR+ cells and ARR or EDSS score. This may come
from the different pathogenesis and outcome measures of MG
and NMOSD.

Tfh, which could help B cells differentiate into memory B cells
and plasma cells, played a very important role in autoimmune
diseases. Tfh had many types and CD4+CXCR5+ICOS+ was
one of the subsets (24). Studies have found that the proportion
of follicular helper T cells during relapse was significantly
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higher than that in the remission period and healthy control
(8). It was generally believed that Th17 cell-related cytokines
and chemokines in serum and cerebrospinal fluid of NMOSD
were elevated, and whether there were abnormalities in the
number and function of regulatory T cells in NMOSD was
still controversial (6, 7). Previous studies have found that TAC
could specifically inhibit the number and proportion of Tfh in
lymph nodes and blood in kidney transplant patients without
affecting regulatory T cells and other subpopulations (13). Similar
to the aforementioned results, we did not find differences in
the ratio of CD4+CD25hi cells, CD4+CXCR5+ICOS+ cells, and
CD4+IL-17+ cells during TAC therapy (p = 0.412, 0.245, and
0.794, respectively). The reason might be that the patient was
in the remission period and the proportion of T cells in the
aforementioned three groups was relatively small. However,
we found that the EDSS score after treatment had a negative
correlation with the proportion of CD4+CD25hi cells (p= 0.016,
r = −0.652). Therefore, the changes in the proportion of T
cells in the aforementioned three groups might affect the clinical
outcomes of NMOSD after TAC therapy.

Our study had some limitations. First, the number of
included patients and follow-up time were limited, therefore, the
immunological measures before and after TAC therapy could not
be fully evaluated. Second, some patients took small doses of
prednisone during TAC therapy, which may have an impact on
the immunological measures. In addition, some patients having
relapses during TAC therapy were not included. Studies with a
larger sample size were needed to further analyze the correlation
between clinical and immunological measures.

CONCLUSION

Possibly through increasing regulatory B and suppressing
BAFFR+ B and IFN-γ+ B subsets, TAC could decrease relapse.
EDSS score may be correlated with some lymphocyte subsets
after TAC therapy.
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