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Abstract

The propensity of a trait to vary within a population may have evolutionary, ecological, or

clinical significance. In the present study we deploy sibling models to offer a novel and unbi-

ased way to ascertain loci associated with the extent to which phenotypes vary (variance-

controlling quantitative trait loci, or vQTLs). Previous methods for vQTL-mapping either

exclude genetically related individuals or treat genetic relatedness among individuals as a

complicating factor addressed by adjusting estimates for non-independence in phenotypes.

The present method uses genetic relatedness as a tool to obtain unbiased estimates of vari-

ance effects rather than as a nuisance. The family-based approach, which utilizes random

variation between siblings in minor allele counts at a locus, also allows controls for parental

genotype, mean effects, and non-linear (dominance) effects that may spuriously appear to

generate variation. Simulations show that the approach performs equally well as two exist-

ing methods (squared Z-score and DGLM) in controlling type I error rates when there is no

unobserved confounding, and performs significantly better than these methods in the pres-

ence of small degrees of confounding. Using height and BMI as empirical applications, we

investigate SNPs that alter within-family variation in height and BMI, as well as pathways

that appear to be enriched. One significant SNP for BMI variability, in the MAST4 gene, rep-

licated. Pathway analysis revealed one gene set, encoding members of several signaling

pathways related to gap junction function, which appears significantly enriched for associa-

tions with within-family height variation in both datasets (while not enriched in analysis of

mean levels). We recommend approximating laboratory random assignment of genotype

using family data and more careful attention to the possible conflation of mean and variance

effects.

PLOS ONE | https://doi.org/10.1371/journal.pone.0194541 April 4, 2018 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Conley D, Johnson R, Domingue B,

Dawes C, Boardman J, Siegal M (2018) A sibling

method for identifying vQTLs. PLoS ONE 13(4):

e0194541. https://doi.org/10.1371/journal.

pone.0194541

Editor: Andre Scherag, University Hospital Jena,

GERMANY

Received: August 11, 2017

Accepted: March 5, 2018

Published: April 4, 2018

Copyright: © 2018 Conley et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Framingham Heart

Study (FHS) genotyping data are available from

dbGAP for researchers who meet the criteria for

access to the data (url: https://www.ncbi.nlm.nih.

gov/projects/gap/cgi-bin/study.cgi?study_id=

phs000007.v29.p10). Minnesota Twin Family

Study (MTFS) are available from dbGAP for

researchers who meet the criteria for access to the

data (url: https://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study_id=phs000620.v1.p1).

Funding: This work was supported by National

Institutes of Health grant R35GM118170 (MS). The

https://doi.org/10.1371/journal.pone.0194541
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194541&domain=pdf&date_stamp=2018-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194541&domain=pdf&date_stamp=2018-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194541&domain=pdf&date_stamp=2018-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194541&domain=pdf&date_stamp=2018-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194541&domain=pdf&date_stamp=2018-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194541&domain=pdf&date_stamp=2018-04-04
https://doi.org/10.1371/journal.pone.0194541
https://doi.org/10.1371/journal.pone.0194541
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v29.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v29.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v29.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000620.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000620.v1.p1


Introduction

From effects of loci on trait means to effects of loci on trait variance

The extent to which a complex trait varies in a population is a product of mutation, genetic

drift and natural selection, as well as environmental variation and its interaction with geno-

type. Moreover, genotypes may differ in their propensities to vary. That is, particular geno-

types might be more sensitive than others to changes in the environment or to the effects of

new mutations. Sensitivity to the environment could come in the form of phenotypic plasticity,

whereby stereotyped phenotypic changes occur under particular circumstances, or in the form

of developmental instability, whereby random fluctuations in the internal or external environ-

ment lead to different phenotypic outcomes ([1–3]).

Sensitivity to the effects of mutations is related to cryptic genetic variation. In a population

in which individuals are relatively insensitive to the effects of mutations, allelic variation may

accumulate, while not presenting phenotypic effects. Replacing an allele that confers less

sensitivity to mutational effects with one that confers more sensitivity (or introducing an envi-

ronmental perturbation with similar effect) will cause the accumulated variation to have phe-

notypic consequences ([4, 5]). This release of cryptic genetic variation might have major

implications for the adaptation of populations to environmental change, as well as for the

genetics of human complex traits ([6–9]). Indeed, it has been proposed that release of cryptic

genetic variation might be responsible for the increased prevalence of human “diseases of

modernity” such as diabetes ([7]).

Model organisms have been used to identify genes that control sensitivity to mutations or

the environment [5]; [10]). Two approaches have been taken. One approach is to test for dif-

ferences in phenotypic variance between wild-type and mutant strains. For example, the

molecular chaperone Hsp90, when impaired, reveals cryptic genetic variation in the fly Dro-

sophila melanogaster, the flowering plant Arabidopsis thaliana, the fish Danio rerio and the

budding yeast Saccharomyces cerevisiae ([11–14]).

Evidence on whether Hsp90 controls environmental sensitivity is mixed ([15–17]). How-

ever, screens of the S. cerevisiae genome identified hundreds of genes that, when mutated,

cause increased variation in cell morphology among isogenic cells raised in the same environ-

ment. That is, these mutations increased sensitivity to fluctuations in the internal or external

environment ([18, 19]). A test of one of these genes, which showed a major increase in envi-

ronmental sensitivity upon deletion, revealed a high degree of epistasis with new mutations

but no net increase in mutational sensitivity upon deletion ([2, 20, 20]). A similar result was

found for impairment of Hsp90 ([21]). In general, the relationship between suppression of the

effects of environmental variation and suppression of the effects of mutational variation is

unclear ([5, 10]).

The second approach to identifying variance-controlling genes is to use linkage or associa-

tion analysis to map natural genetic variants that confer differential sensitivity. Such searches

for variance-controlling quantitative trait loci (vQTLs) have been conducted to identify deter-

minants of microenvironmental sensitivity (i.e., inherent stochasticity or sensitivity to fluctua-

tions within a nominally constant environment) and/or phenotypic plasticity (variation across

controlled environments) of various phenotypes, including morphological and life-history

traits as well as expression levels of individual genes, in a range of organisms including humans

([22–36]). Natural genetic variation affecting sensitivity to other segregating alleles has been

studied as well, and indeed there are natural variants of the Hsp90 gene that appear to reveal

cryptic variation ([37–39]).
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Existing methods for detecting vQTL

The first study claiming to map a locus that controls variance of a human trait examined body

mass index (BMI) using data from 38 cohorts that participate in the GIANT consortium for

genome-wide analysis (GWA) of single-nucleotide polymorphisms (SNPs) that affect human

height ([40])(although a prior study had examined variance in order to prioritize the search

for gene-by-environment and gene-by-gene interaction effects [41]). Yang et al. computed a

Z-score (inverse-normal transformation) for BMI for each of 133,154 individuals then per-

formed GWA on the squared Z-score. This squared Z-score captures the magnitude of each

individual’s deviation from the mean phenotype and therefore is meant to act as an individual-

based measure of variance. In this discovery sample they found SNPs in the FTO gene and the

RCOR1 gene that appear to control variation in human BMI. In a replication sample of 36,327

individuals from 13 cohorts, one SNP in the FTO gene was confirmed [40].

Challenge one: Isolating loci that affect variance in a trait from loci that

affect mean of a trait

There are several challenges with association analyses that identify vQTL. The first issue is

mean-variance confounding. A given locus can have: 1) effects on mean levels of a trait (mean

effects), 2) effects on variance in a trait (variance effects), or 3) effects on both mean levels of a

trait and variance in a trait. For isolating variance effects, it is critical to check that any detected

effects on “variance” adequately distinguish between the three types of loci. In particular, this

conflation of variance and mean effects was a concern in the analysis of Yang et al. ([40])

because normalized variation scores will tend to be higher for populations with higher mean

levels and because FTO is one of the most well-established genes that affects the mean level of

BMI in human populations ([42–50]). Research examining MMP3 protein levels in cerebro-

spinal fluid found similar overlap, where SNPs in linkage disequilibrium with a locus well-

established in predicting mean levels of the trait (rs679620 of the MMP3 gene) were associated

with both higher mean levels and higher variance in the trait ([51]).

Yang et al. addressed the effect of mean BMI by showing that there is no global correlation

between mean effects of SNPs and their variance effects. However, it must be considered that a

lack of correlation between mean and variance effects across the genome could be caused

merely by the fact that the vast majority of SNPs have negligible or nonexistent effects on both

mean and variation. In the present study, we show through simulation that the squared Z-

score method has an inflated type I error rate and detects variance effects for a trait simulated

to have mean effects only.

In addition to mean-variance confounding, methods to investigate vQTL must address sev-

eral other issues, some of which are shared with the estimation of mean effects and others of

which, such as mean-variance confounding, are unique to or particularly acute in the case of

variance effects ([31]). Methods for vQTL analysis beyond the squared Z-score method can be

grouped into: 1) non-parametric methods that test whether the three genotypes at a biallelic

locus (minor-allele homozygote, heterozygote, and major-allele homozygote) have equal or

unequal variance, and 2) parametric methods that relax the assumption in GWA linear regres-

sions that the residual error is identically distributed across all genotypes.

Non-parametric methods include Levene’s test, which uses a test statistic derived from the

squared difference between an individual’s level of a trait and the genotype-level mean or

median, the latter of which is used to make the method more robust to a non-normally distrib-

uted trait ([41, 52]) and the Fligner-Killeen (FK) test, which is similar to Levene’s test, in that it

uses the absolute difference between an individual’s level of a trait and the genotype-level

median, but then computes the test statistic based on ranks of these differences. The FK test
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can be used either as a standalone test for variance effects ([25]), or as the test statistic for the

scale component of the Lepage or other joint scale-location test ([53]). More recently proposed

non-parametric tests consider not only the variance of the trait distribution but other features

as well, such as skew ([54, 55]).

The main drawback of non-parametric tests for detecting vQTL’s is that the tests, which

compute differences between discrete genotype groups, cannot directly control for important

covariates, such as age, sex, and population structure. Some adopt a two-stage regression pro-

cedure for including covariate controls: first the trait is regressed on covariates, then the vari-

ance test of interest is performed on the residualized dependent variable ([55, 56]). However,

two-stage procedures have been shown in simulations to reduce power and induce bias ([51]).

Challenge two: Controlling for unobserved confounders that can bias the

estimate on minor allele count

This problem—how to include covariates in a way that does not induce bias—is acute because

of the importance of two types of controls when investigating variance-controlling loci: control

for population stratification and controls for nonrandom association between genotype and

environment. The former control is needed in all GWA analyses to separate the effect of any

particular locus from the effects of all other loci shared by virtue of common ancestry. The lat-

ter control might be particularly relevant to vQTL analyses because mean effects of genotypes

might impact the environment that is experienced, which might in turn impact variance

([57]).

Parametric approaches that use generalized linear models to jointly estimate the mean and

variance of a trait address this problem ([51, 58, 59]); these models can include controls for

population stratification as well as controls for observed covariates that influence genetic dis-

tribution into variance-affecting environments. The double generalized linear model (DGLM)

approach begins with the typical linear model for estimating mean effects where the residual

variance is the same across genotypes, then the model is relaxed to allow residual variance to

differ by genotype and to incorporate non-genetic covariates that might contribute to residual

variance; it iterates between estimating parameters for the mean versus parameters for the vari-

ance until convergence ([59]). DGLM thus allows joint estimation of mean effects and variance

effects, attempting to address mean-variance confounding, and permits controls for popula-

tion stratification directly in the model. The main drawback of DGLM is that, similar to other

methods that control for confounding by controlling for observed covariates (age; sex; the top

principal components) correlated with both the individual’s genotype and the outcome vari-

able, the method cannot control for unobserved confounding that may bias the estimate of a

SNP’s effect.

In particular, two types of unobserved confounders may be correlated both with an indi-

vidual’s genotype and mean or variance effects in a trait. First is population stratification. Pop-

ulation stratification is typically controlled for in these methods by inclusion of principal

components of the sample population’s genotypes among the vectors of covariates predicting

the mean and/or residual variance of a trait. This control is especially important for traits,

such as BMI, that are expected to show considerable environment-dependence. Especially

when pooling such traits across cohorts, there is a risk that systematic differences in environ-

ment correlate regionally with systematic differences in genetic variation. That is, it is plausi-

ble, due to population stratification, that any genetic signal is merely acting as a proxy for

culture and environment—a potential confounder that has been well-illustrated by the “chop-

sticks gene” example ([60]). Controlling for population stratification using principal compo-

nents (PCs) addresses some confounding, but there is residual between-family confounding
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even with these controls. This residual confounding can occur when environmentally influen-

tial factors are not randomly distributed across families but also do not correlate with the

eigenvectors in the genetic matrix.

The other critical covariate that might bias vQTL estimates is genotype-environment cor-

relation (rGE). Genotype-environment correlations may be caused by niche construction,

whereby individual organisms shape the environment (in a genotype-dependent way) ([61–

65])–dynamics we might expect to occur for phenotypes that have significant behavioral and

environmental etiologies, such as BMI. As a result, genotypes may be associated with vari-

ance in BMI and other traits not through direct genetic effects but through interaction with

alternative environments associated with variance such as more versus less sedentary

lifestyles. An analogous situation that illustrates this potentially confounding genotype-by-

environment interaction effect is that of caffeine consumption. A variant in a gene that

encodes a caffeine-metabolizing enzyme can lead to greater variation with no effect on the

mean through a mechanism of niche construction—i.e. individuals with the minor allele

avoid coffee altogether, or if they are unable to do so, they end up drinking more than those

with the major allele, thus leading to greater variance thanks to the coffee “environment”

([57]).

Approaches such as DGLM can control for observed covariates that are correlated with

genotype and influence construction of variance-affecting environments. However, these

methods cannot control for unobserved differences that produce these correlations. The pres-

ent paper uses a family-based model to control for these unobserved differences. Two existing

family-based models allow for investigations of variance-based loci in samples among related

as opposed to unrelated individuals, but do not leverage the family-based structure of the data

to control for unobserved confounders that vary between families ([58]; [66]). First is a family-

based version of the likelihood ratio test that adds a random effect meant to capture familial

correlation in a trait. Although the family-level random effect helps control for unobserved

variation between families that may influence variance in a trait through pathways other than

genotype, the model relies on the strong assumption of independence between these unob-

served features of family and the observed covariates. We show via simulation (see Results)

that when there is non-zero correlation between unobserved features of a family and observed

covariates, random effects approaches generate biased estimates of a SNPs’ effects, confirming

results shown in non-genetics contexts ([67]). Similarly, DGLM in a sample containing mono-

zygotic and dizygotic twins, which has the advantage of isolating non-genetic from genetic

sources of variance, does not control for unobserved features that vary between families and

that affect construction of variance-affecting environments ([66]).

Proposed solution: The sibling standard deviation method

We offer an alternative methodology—comparisons of variation within sibling sets while con-

trolling for parental genotype—that does not assume independence between observed covari-

ates and unobserved between-family differences. As a result, the method better approximates

random assignment of genotype in a laboratory. Utilizing a regression-based framework, the

approach retains the advantages of the DGLM and Bayesian regression approaches: the ability

to include covariates and control for mean effects when estimating variance effects through

estimation of parameters capturing both. The model uses sibling pairs as the unit of analysis

and regresses the standard deviation of the sibling pair’s trait on the pair’s count of minor

alleles with sibling pair-level controls that include controls for the mean level of the trait in the

sibling pair, parental genotype, pair sex (MM or FM or FF), mean pair age, and the within-pair

age difference (for the full model specification, as well as alternative specifications tested, see
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Methods). The control for the mean level of the trait in a sibling pair avoids inflated Type I

error rates for SNPs that affect the mean of a trait but not the trait’s variance.

The proposed methodology, although restricted in applicability to datasets that have a fam-

ily-based design with at least two offspring, makes a trade-off. The method has reduced statisti-

cal power because the sample size is halved when we treat siblings rather than individuals as

the unit of analysis. However, the advantage is an estimate of a minor allele’s contribution to

variance that, in the presence of unobserved confounders, correctly fails to find variance effects

when a locus only has mean effects.

This is a particularly important trade-off to make when we wish to rule out gene-environ-

ment correlations across populations as well as population stratification as alternative explana-

tions to variance-locus associations. As noted above, this is especially critical for a phenotype

such as BMI and a locus such as FTO given that environment and behavior (such as sedentari-

ness) alter the FTO-BMI relationship and may vary significantly across cohorts/societies

([68]). In cases where the goal is not to study control of variance per se, but instead is to probe

the existence of gene-environment or gene-gene interactions in a way that avoids the high-

dimensional parameter space problems of traditional approaches, the use of vQTL approaches

that have higher statistical power but also a higher rate of false positives for SNPs that affect

the mean of a trait but not the variance might be warranted.

In addition to power, another important feature of an approach to detect vQTL is the

flexibility to capture non-linear effects of alleles, which the DGLM, the parametric boot-

strap-based likelihood ratio test, and Bayesian regressions allow for by allowing genotypes to

be specified using three indicator variables to capture non-linearities. The present family-

based approach is potentially susceptible to confounding of variance effects by non-linear

effects of alleles, because the association mapping is done on the sibship unit so the genotype

is represented as the total number of major or minor alleles of each sib pair. Therefore, if

dominance were at play with respect to mean levels, then this might generate spurious effects

on variance ([69]). That is, if among heterozygotes there was no effect of an allele on mean

levels but among homozygotes there was, then this itself would generate apparent, but spuri-

ous, effects on variance even when controlling for linear mean effects. However, by compar-

ing subgroups among sibship pairs that have two minor alleles (out of four possible in total),

we are able to check for this possibility. Specifically, by comparing those 2-minor allele pairs

where both siblings are heterozygotes (i.e. each individual has one minor allele) with those

where both are homozygotes (where one sibling has zero minor alleles and the other has

two), we can rule out this possible statistical artifact of non-linear effects on mean levels.

Although the possibility of non-linearities that do not reflect true variance effects can never

be totally eliminated ([69]), this approach guards against a primary form of non-linearity—

dominance.

Preview of the results

Below we report two sets of analyses. In simulations, we show how unobserved confounding

can bias estimates of a SNP’s effect. Two approaches to estimating variance effects—the

squared Z-score method and DGLM—display inflated type I error rates in the presence of

this confounding. In contrast, the sibling standard deviation approach that we propose

detects variance effects when these effects are present but, by controlling for the mean of

the trait across siblings, correctly fails to find variance effects when only mean effects are

present.

In an empirical application, we then use the sibling SD approach to perform genome-wide

analyses of variance effects on two phenotypes: height and BMI. We replicate one genome-
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wide statistically suggestive hit for variation in BMI from the Framingham Heart Study (FHS)

data, our discovery sample, in our replication sample, the Minnesota Twin Family Study

(MTFS). We also test whether our potential variance-related alleles are merely reflecting domi-

nance effects among heterozygotes; we find no evidence for this. Finally, we perform gene-

based and pathway enrichment analysis. We find one pathway, related to gap junction func-

tion, that is significantly enriched in both our discovery and replication samples for associa-

tions with variance in height. We then discuss the implications of our findings for prior and

future research.

Results

Simulations

The simulations are divided into two parts. First, we show that while we can address unob-

served confounding when estimating the mean of a trait using a fixed effects estimator that

identifies the effect of an allele off of between-sibling variation, combining this approach with

two current approaches to variance detection—the squared Z-score method and DGLM—fails

to correct for this bias. This introduces the challenge: how can we estimate the effect of an allele

on trait variance in the presence of unobserved confounding? Part two evaluates the sibling SD

method as a solution.

Part one: Two approaches to variance estimation in the absence versus presence of an

unobserved confounder. When estimating mean effects, we can remove bias in the estimate

of the effect of a minor allele caused by unobserved confounding by using a fixed effects esti-

mator that demeans the outcome, genotype, and other observed covariates by the mean within

a family ([67]). Examining the trait simulated to have neither mean nor variance effects, Fig A

in S1 File shows that in the presence of any unobserved confounding, other estimators (a ran-

dom effects model that assumes zero correlation between unobserved confounders and

observed covariates; a pooled regression model with one randomly sampled sibling) return

biased estimates of the effect of an additional minor allele on the trait’s mean when there is

unobserved confounding. More specifically, it shows that across the 1000 replicates, we see

upward bias in the random effects and pooled regression estimators when we move from the

case of no confounding or a very low amount of confounding ρ = 0.01 to the case of some con-

founding (ρ = 0.05 and ρ = 0.1). Table A in S1 File, which presents the results of a Hausman

test comparing the null hypothesis that the estimated random effects coefficients are equal

to the estimated fixed effects coefficients, rejects the null at levels of confounding greater than

ρ = 0.01.

These results show how a fixed effects estimator that identifies the effect from sibling devia-

tions from a family’s mean count of alleles recovers an unbiased estimate. How can we trans-

late these findings from the case of investigating the effect of an additional minor allele on the

trait’s mean (QTL) to investigating the effect of an additional minor allele on the trait’s vari-

ance (vQTL)?

One approach is to use existing methods for variance detection on a transformed version of

the data. In particular, the fixed effects estimator is generated by demeaning the outcome,

genotype, and other covariates by the mean across the grouping unit (family in this case), as

represented as follows, where i indexes an individual, j indexes a family, k indexes a SNP, and

X represents genotype and other covariates. α represents an intercept specific to each family, β
represents coefficients on covariates that vary across individuals, families, and variants (e.g.,

minor allele count), and � represents an error term. The first equation shows the demeaning of

each of the terms and the second equation shows that this demeaning removes the family-level
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intercept from the regression.

yijk ¼ ðaj � �a jÞ þ bkðXijk �
�XjkÞ þ ð�ijk � ��jkÞ

yijk ¼ bkðXijk �
�XjkÞ þ ð�ijk � ��jkÞ

We can represent this demeaned version of the data more compactly as follows:

yijk ¼ bk
€Xijk þ €�ijk ð1Þ

One approach to translating the FE estimator to the vQTL context is to use the transformed

version of the data represented in Eq 1 with two existing methods for vQTL detection: the

squared Z-score method ([40]) and the DGLM ([59]). We explore the properties of each

approach in the sections that follow on three versions of the dependent variable:

1. Dependent variable simulated to have neither mean nor variance effects: the dependent vari-

able is simulated to have no relationship between the count of minor alleles and either the

mean or variance of the outcome (see Methods)

2. Dependent variable simulated to have mean effects only: the dependent variable is simulated

to have a positive relationship between the count of minor alleles and the mean of the out-

come (but not the outcome’s variance) (see Methods)

3. Dependent variable simulated to have variance effects only: the dependent variable is simu-

lated to have a positive relationship between the count of minor alleles and the variance of

the outcome (but not the outcome’s mean) (see Methods)

4. Dependent variable simulated to have mean and variance effects: the dependent variable is

simulated to have a positive relationship between the count of minor alleles and both the

mean and the variance of the outcome (see Methods)

Squared Z-score results. Table B in S1 File presents the results of regressing the squared

Z-score (estimated separately by sex) on the minor allele count with controls for sex, age, and

ancestry across the 1000 replicates. The table summarizes the percentage of replicates where

the coefficient on the minor allele count 6¼ 0 at p< 0.05. We want this percentage to be low

when the dependent variable is simulated to have no variance effects: so either null effects or

mean effects only in order to control for type I error. We want this percentage to be high when

the dependent variable is simulated to have variance effects: so either variance effects only or

mean and variance effects. The results shows that in the absence of an unobserved confounder,

we see moderately inflated type I error rates (estimating variance effects when only mean

effects are present in 5.9% of simulations). In the presence of an unobserved confounder, we

see more inflated type I error rates: 8% of simulations estimate variance effects when only

mean effects are present. Table C in S1 File shows that demeaning the data does not address

these inflated type I error rates.

DGLM results. The squared Z-score method generates one coefficient of interest that rep-

resents an allele’s contribution to variability in the form of increasing an individual’s squared

Z-score. The DGLM method, which estimates a linear regression for the trait mean and a

gamma regression from the squared residuals from the first model, generates two coefficients

of interest: (β refers to coefficients on mean effects; γ refers to coefficients on variance effects).

Table 1 summarizes the true β and γ for different types of simulated traits:
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Table D and Table E in S1 File look at these three cases. For the trait with null effects,

DGLM should estimate β = 0 for mean effects and γ = 0 for variance effects. For the trait with

mean effects, DGLM should estimate β 6¼ 0 and γ = 0. For the trait with variance effects,

DGLM should estimate β = 0 and γ 6¼ 0. Therefore, the table summarizes the percentage of

β 6¼ 0 and γ 6¼ 0 at the p< 0.05 level.

The results show that in the presence of between-family confounding between the genotype

and outcome variable, the method has two types of type I error. First, when the outcome has

neither mean nor variance effects and there is confounding, the method detects mean effects

when none are present in over 77% of simulations. Second, when the outcome only has vari-

ance effects and there is confounding, the method detects mean effects when none are present

in over 70% of simulations. Transforming the data via de-meaning reduces these type I error

rates but fails to detect variance effects when these are present (type II error).

Problems part one reveals. The previous section reveals a problem when choosing a

method for detecting the effects of an additional minor allele on the mean or variance of a trait

in the presence of unobserved confounding between an individual’s genotype and the trait. In

particular, while the fixed effects estimator provides an unbiased estimate of the effect of

minor alleles on the mean of a trait, de-meaning the data and then trying to estimate variance

effects using the squared Z-score or DGLM approach leads to inflated rates of type I error

when the loci has null or mean effects but no variance effects. In addition, the DGLM esti-

mated on demeaned data fails to detect variance effects when these effects are present.

These problems point to the need for a method that corrects for bias caused by unobserved

confounding but that is also able to detect effects of minor alleles on a trait’s variance when

these effects are present. The next section investigates properties of the sibling standard devia-

tion method as a proposed solution.

Part two: Properties of the sibling standard deviation method. To examine variance

effects, we estimate the sibling standard deviation method (see Methods). Before moving to

results across the 1000 replicates, Fig 1, which presents the sibling count of minor alleles and

non-adjusted mean sibling standard deviation for pairs with that count for one randomly cho-

sen replicate, highlights that the standard deviation of the trait increases (y axis) as we see an

increase in the sibling count of minor alleles (x axis) for the 1. trait simulated to have variance

effects only and 2. trait simulated to have both mean and variance effects. In contrast, the stan-

dard deviation appropriately does not increase for the 1. trait simulated to have mean effects

only and 2. the trait simulated to have neither mean nor variance effects.

Fig 2 shows that the results from the Fig 1 generalize across the replicates. The figure shows

the distribution of γ on sibling minor allele count from regressing the sibling standard devia-

tion of a trait on this count for two traits: the trait simulated to have mean effects only and the

trait simulated to have variance effects only. The figure shows the distribution is properly cen-

tered around zero for the trait with mean effects and properly centered around γ 6¼ 0 for the

trait with variance effects.

Table F in S1 File summarizes the percentage of simulations that reject the null of γ on

minor allele count equaling zero. The null hypothesis in this case, rather than a specific value

for the γ on minor allele count, follows other methods in posing the null of whether the

Table 1. Outcomes versus coefficients.

Simulated dependent variable Coefficient on minor allele count from DGLM

Neither mean nor variance effects β = 0; γ = 0

Mean effects only β 6¼ 0; γ = 0

Variance effects only β = 0; γ 6¼ 0

https://doi.org/10.1371/journal.pone.0194541.t001
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coefficient is equal to zero [51]. In the presence of no unobserved confounding, the sibling SD

approach has the expected type I error rate of correctly failing to detect between 95.4 and

95.8% of variance effects when only mean effects are present depending on the specification,

and correctly failing to detect between 94.6 and 95.7% of variance effects when neither mean

nor variance effects are present. The squared Z-score method correctly fails to detect 94.1% of

variance effects when only mean effects are present, indicating that the sibling SD method per-

forms equally well as that existing method in the no confounding case.

The lower type I error rate of the sibling SD method comes with comparable type II error

rates as other methods when we do not control for parental genotype: the sibling SD method

detects variance effects when these are present in 81.6% of cases, while the squared Z-score

method detects variance effects when these are present in roughly 87% of cases and the DGLM

method detects variance effects in 75.3% of cases. When we control for parental genotype in

the sibling SD method as the most stringent form of control on confounding, the method has a

higher type II error rate than the squared Z-score and DGLM. At the sample size used in the

simulation (1000 sibling pairs), the method is under-powered to detect variance effects when

we control for parental genotype, detecting these effects in roughly 40% of cases. Later, we

Fig 1. Raw means of sibling standard deviations (before age, sex, mean of trait, and parental genotype controls) by count of minor

alleles. The graph shows that the sibling standard deviation increases with the count of minor allele snps that have effects on variance

only, or effects on both the mean and variance of a trait, while stays flat for snp’s that only effect the mean or that not associated with

the trait.

https://doi.org/10.1371/journal.pone.0194541.g001
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discuss larger family-based study designs that are large enough to control for parent genotype

and still have sufficient power to detect variance effects.

In the presence of some unobserved confounding, the sibling SD method greatly outperforms

the other approaches in controlling type I error rates. While DGLM and the squared Z-score

method detect mean effects when only variance effects are present in 8-17% of simulations

depending on whether ancestry controls or included and whether the data are demeaned, the

sibling SD method detects mean effects when only variance effects are present at rates of

between 4.2% and 5.6% of cases depending on the specification. In addition, the method cor-

rectly detects variance effects when these effects are present in 80.8% (no parent genotype con-

trol), with the power dropping to 44.1% (parent genotype control) at the simulation sample

size of 1000 sibling pairs.

Empirical application to height and BMI

Sibling SD results: Height and BMI. The simulation results show that in the absence

of an unobserved confounder, the sibling SD method performs equally well as existing

Fig 2. Results of sibling standard deviation method across 1000 replicates. The figure shows that both in the presence and absence of family-level confounding

between the genotype and outcome variable, the method, which examines the effect of an additional minor allele in the sibling pair on the trait’s standard deviation,

correctly estimates no variance effects (β = 0) when the outcome is simulated to have mean effects only, and correctly detects variance effects (β 6¼ 0) when the

outcome is simulated to have variance effects only.

https://doi.org/10.1371/journal.pone.0194541.g002
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approaches to variance detection (squared Z-score; DGLM); in the presence of a small degree

of unobserved confounding (ρ = 0.1 between a family indicator and offspring genotype), the

sibling SD method performs significantly better than these two approaches in correctly failing

to detect variance effects when only mean effects are present. We now apply this method to

two phenotypes: height and BMI. When we use data from quartets in the FHS and control for

mean sibling-pair height, sex, mean pair age, within-pair age difference, and parental genotype

in genome-wide regressions on the standard deviation of the sibling pair height we find four

SNPs that are genome-wide suggestively significant (p<10-5) and meet other Hardy-Wein-

berg equilibrium (HWE) and minor-allele frequency (MAF) controls (see Methods):

rs2804263 (MAF 30.8%); rs2073302 (MAF 39.1%); rs8126205 (MAF 37.1%) and rs4834078

(MAF 24.0%) (Fig 3). For BMI, there were two SNPs that meet genome-wise suggestive signifi-

cance: rs30731 (MAF 48.7%) and rs41508049 (MAF 10.3%)(Fig 4, with a regional linkage map

of the SNP that replicates in Fig B in S1 File). Our method, as expected, controls well for popu-

lation structure: QQ plots for the height and BMI p-values do not show the telltale “early lift-

off” typical of failure to control this confounder (Fig C in S1 File).

The absence of genome-wide significant SNPs but presence of genome-wide suggestive

SNPs may indicate that the method’s statistical power is low. A power analysis for the sample

size utilized in the discovery dataset indeed supports this suggestion. For example, a single

SNP would need to explain over 4.8% of the variation in the trait for the study to achieve 80%

statistical power at the FHS sample size and a significance threshold of p< 10−5 (Fig D in S1

File). An effect size of this magnitude is not expected for human complex traits (e.g., the largest

effect of a single SNP for mean height explains approximately 1% of the variation). Power is

very low near R2 = 0.01 (Fig D in S1 File) in this particular sample. However, the figure shows

how newly-released samples are adequately powered to detect the effects and highlight the

method’s potential utility for better-powered studies.

Apparent effects on variance can be generated if effects of alleles at a locus are not additive

(i.e., there is dominance) or if means and variances are correlated. Addressing the first issue,

Fig 3. Manhattan plot of sibling variation in height among FHS 3rd generation sibling pairs. Results for the pairwise

sibling standard deviation in height regressed against the sibling-pair minor count of alleles with controls for sex of

sibship, mean age of siblings, age difference of siblings, sibling mean height, parental genotype.

https://doi.org/10.1371/journal.pone.0194541.g003
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our approach does not control for non-additivity of allele effects at a locus, as it assumes a lin-

ear model. However, it does allow a test of whether an effect on variation net of mean was actu-

ally an artifact of non-linear effects on average rather than an actual variance effect. If the true

relationship between phenotype and a sibling’s minor allele dosage were non-linear (i.e.

revealed dominance effects) our initial findings could be entirely driven by divergence among

those sibling pairs with two minor alleles. For example, if an individual with two minor alleles

were significantly taller than an individual with either one or zero minor alleles (recessive

effect) then when we collapsed the sibling pairs with two minor alleles, we could generate arti-

factual variation effects because among those sibships with two minor alleles, some would be

distributed 0-2 (and thus one sibling would be taller than the other) while other sibships would

be 1-1 (and thus would be the same height). Put together, it would appear that two minor

alleles increased the variation net of mean effects. And if strong enough, such a misspecified

effect could exert enough leverage to make a linear effect on variation appear across all allele

numbers (zero to four for the sibship). These concerns appear not to apply to our analysis. A

two-sample t-test of equality of means that compares homozygotes and heterozygotes for each

significant SNP on the respective trait finds no differences in levels for either trait at the

p< 0.05. Fig 5, which presents the mean and standard errors, shows the lack of significant

differences.

For the second issue, we can investigate correlated mean and variance effects in the present

data. Others have shown this correlation depends on the minor allele frequency of the SNP

and the effect size (the effect of the SNP on z2 is (1 − 2p)a2, where p represents the minor allele

frequency and a represents the additive effect [40]). To test these in an independent sample,

the top SNP for variance in BMI found by Yang et al. ([40]) shows clear association with mean

BMI in the same data set from the GIANT consortium (Fig E in S1 File), whereas the four

suggestively significant SNPs in our analysis do not show an association with mean height in

the GIANT consortium data (Fig F in S1 File). Further highlighting the importance of our

Fig 4. Manhattan plot of sibling variation in BMI among FHS 3rd generation sibling pairs. Results for the pairwise

sibling standard deviation in BMI regressed against the sibling minor allele count with controls for sex of sibship, mean

age of siblings, age difference of siblings, sibling mean BMI, and parental genotype.

https://doi.org/10.1371/journal.pone.0194541.g004
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regression-based control for sibling-pair mean are the observations that: 1) sibling-pair stan-

dard deviation shows a strong positive correlation with sibling-pair mean, and 2) this correla-

tion is not eliminated by using the sibling-pair coefficient of variation rather than the standard

deviation (Fig G in S1 File).

For replication analysis, we used respondents from the MTFS. (For list of proxy MTFS

SNPs with information on MAF and linkage with FHS SNPs see Table G in S1 File) These fam-

ilies included phenotypic and genotypic information on pairs of twins as well as their parents,

allowing us to replicate the sibling-based analysis with parental genetic controls so as to mimic

random assignment of alleles. The MTFS has both dizygotic (DZ) and monozygotic (MZ)

twins. Because MZ sibships do not vary in terms of cryptic genetic variation and may

Fig 5. Test for spurious association with variance due to non-linear effects on mean levels. Mean and standard error for height

(inches) and BMI among with two minor alleles is shown separately for homozygotes (one sibling with zero minor alleles and the

other sibling with two) and heterozygotes (each sibling has one minor allele), for each genome-wide suggestively significant SNP for

the respective trait (A. height; B. BMI). One significant SNP for height (rs8029740) is not depicted because there is only one sibling

pair with the 1-1 allele combination and 0 sibling pairs with the 0-2 combination. A two-sample t-test for equality of means,

estimated separately for each SNP, revealed no significant differences between the two groups for the top hits for each trait.

https://doi.org/10.1371/journal.pone.0194541.g005
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experience much more similar environments to each other than do genetically distinct sib-

lings, we also repeated our replication analysis only with DZ twin sets but found that exclusion

of MZ twins did not affect results. Another concern is that twins (even DZ twins) may experi-

ence more similar environments than singleton siblings; thus, our replication analysis may suf-

fer from attenuation bias to the extent that the cause of variation is environmental and not

cryptic genetic differences (which should, by contrast, be equivalent for singleton full siblings

and DZ twins). Among the SNPs that were genome-wide suggestively significant for the height

analysis, only two of the four had viable proxy SNPs in the MTFS dataset after quality control:

rs2804263 and rs4834078 both had proxies whereas rs2073302 and rs8126205 did not (Table G

in S1 File). When we ran the analysis for the proxy SNPs in the MTFS dataset, none achieved

statistical significance. Among the SNPs that were genome-wide suggestively significant for

the BMI analysis, both SNPs had viable proxy SNPs in the MTFS dataset after quality control

(Table G in S1 File). When we ran the analysis for the proxy SNPs in the MTFS dataset, one

SNP achieved statistical significance: rs30731 (proxy in MTFS: rs28636).

In addition to checking whether the significant SNPs from the FHS analysis replicate in the

MTFS sample, we also 1) took the top hits from the FHS sample, 2) found proxy SNPs in Yang

et al., and 3) investigated the p-values for these top hits with the squared Z-score in their analy-

sis. None of the top hits from our study significantly predicted the squared Z-score in their

study. There could be multiple reasons for this lack of overlap. First, the Yang et al. hits could

be false positives due to failing to control for unobserved confounding. Alternately, the present

analysis may have had false negatives that miss top hits from Yang et al. due to the lack of sta-

tistical power. We cannot distinguish between these two observations in the present analysis.

Investigating rs30731/rs28636 for within-sibling variation in BMI. rs30731/rs28636, a

SNP that significantly affects within-sibling variation in BMI and that replicated in the MTFS

sample, is located on the MAST4 gene, which encodes a member of the microtubule-associated

serine/threonine protein kinases. The proteins in this family contain a domain that gives the

kinase the ability to determine its own scaffold to control the effects of their kinase activities.

GWAS studies have uncovered several significant associations between other SNPs on this

gene and traits ranging from BMI to autism/PDD-NOS (Table H in S1 File). One exception is

a GWAS of childhood obesity conducted by the Early Growth Genetics Consortium ([70]).

The study found a genome-wide suggestively significant hit for rs28636 in the discovery sam-

ple that did not replicate. This non-replication could be due to the SNP being a variance-affect-

ing locus that might show up in estimation of mean effects.

Pathway and gene set analyses for all significant SNPs. In addition to investigating the

gene function for the replicated SNP, we also performed two analyses that pool SNPs: gene-

based and pathway-based pooling (see Methods). For the gene analysis, we found using PAS-

CAL that the gene on which the significant SNP for BMI variability was located (MAST4) was

significantly enriched (p = 0.0015 in the FHS data; p = 0.1 in the replication data). Table I in S1

File shows other significant gene sets identified using PASCAL that replicated at various p-

value thresholds in the MTFS data. VEGAS1 yielded no further significant gene sets.

i-GSEA4GWAS and PASCAL for pathway analysis each yielded some pathways that

appeared to be significantly enriched (Table 2). One of these pathways, associated with within-

sibship variance in height in the FHS data, replicated in the MTFS data: HSA04540 Gap Junc-

tion (p = 0.002 for each data set)(Fig H in S1 File). HSA04540 includes members of several sig-

naling pathways, including growth factors and their receptors, although any connection

between these factors and organismal growth, as manifested in ultimate height, remains to be

determined. Importantly, this pathway was not significant in the GWA for mean levels effects

in either dataset. Table J in S1 File shows replicated pathways for BMI and height variability

estimated using PASCAL. Important to note, however, is that while HSA-04540 was significant
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across datasets using the i-GSEA4GWAS tool, the PASCAL tool does not test for this pathway

so we could not check its robustness across multiple pathway analysis softwares.

Discussion

Our analysis extends earlier work that aimed to map variance-controlling loci in humans

([40]). Although the prior work enjoyed greater statistical power, it also had more potential for

bias—due both to environmental confounding and to conflation of mean and variance effects.

Indeed, Yang et al. identified a locus regulating BMI variability that is also strongly associated

with mean levels and for which a gene-by-environment interaction effect on mean has been

shown. In the present study, we first show via simulation that two widely-used methods for

detecting variance-effecting loci—the squared Z-score method and DGLM—fail to adequately

distinguish between a locus affecting the trait mean and a locus affecting the trait variance in

the presence of unobserved confounding. The sibling SD method, by controlling for the sibling

mean of a trait and identifying off of random, between-sibling variation in allele counts, does

distinguish between these effects. Applying the method to data, we were able to perform

within-family analysis on two samples of white Americans, completely free of population strat-

ification, largely devoid of rGE confounding, and with controls for mean level effects as well as

checks for non-linear (i.e. dominance) effects on mean levels. One SNP for BMI variability,

located on the MAST4 gene, replicated. Notably, the SNP, unlike many on FTO, has not been

found to affect mean levels of BMI. Like the latest methods to map variance-controlling loci in

controlled crosses ([59]), our approach therefore avoids common confounds. At the same time

it overcomes problems specifically associated with human traits, including the construction of

variance-affecting environments, that existing regression-based methods for detecting vQTLs

fail to address because they allow controls solely for observed confounders (e.g., [51, 58, 59,

71]).

Though underpowered in the FHS and MTFS sample sizes used in the present analysis (Fig

D in S1 File), our results strongly support the benefits of approximating a randomized genetic

experiment by analyzing within-family variation while controlling for parental genotype. Such

an analysis addresses the possibility that it is merely cross-family environments interacting

with a mean effect and/or population structure that produce apparent association with vari-

ability. Meanwhile, parameterizing the estimand as spread (SD) net of sibship mean levels pro-

vides a robust, flexible way to conceive of variation—that is, rather than parameterizing the

relationship between mean and variance a priori by using the coefficient of variation or some

Table 2. Enriched canonical pathways for height and BMI sibling-pair standard deviations in FHS, estimated using i-GSEA4GWAS.

Pathway/Gene set name P-value FDR Sign. Genes/Slctd. Genes/All Genes

HEIGHT

GLYCEROLIPID METABOLISM < 0.001 6.0000000000000001E-3 20/35/45

HSA00561 GLYCEROLIPID METABOLISM < 0.001 8.9999999999999993E-3 27/49/58

VEGFPATHWAY < 0.001 1.5666665999999999E-2 47046

HSA03030 DNA POLYMERASE 1E-3 2.76E-2 45920

BILE ACID BIOSYNTHESIS 3.0000000000000001E-3 3.175E-2 46712

HSA04540 GAP JUNCTIONM� 2E-3 4.1666667999999997E-2 42/78/98

HSA00564 GLYCEROPHOSPHOLIPID METABOLISM 5.0000000000000001E-3 0.24111110999999999 20/49/68

BMI

HSA00591 LINOLEIC ACID METABOLISM < 0.001 6.0000000000000001E-3 11652

�Replicates in MTFS data

https://doi.org/10.1371/journal.pone.0194541.t002
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similar summary statistic. The trade-off inherent to our approach is that environmental and

phenotypic variation within sibships may be attenuated, reducing statistical leverage; the

extent of such a dynamic is wholly dependent on phenotype, of course. Although the within

and between family components of the variation in the phenotype can be measured to deter-

mine whether or not the phenotype is suitable for such an approach, the extent of variation

within and between sibships in the unmeasured environmental factors that matter is, of

course, unknown.

Moving forward, we see three applications of the method: (1) combining the method with

twin studies to better distinguish between GxG versus GxE effects that each contribute to trait

variability; (2) examining the heritability of plasticity in a trait as a supplement to examining

the heritability of levels of a trait; and (3) generating weights for polygenic scores to predict

trait variance. We discuss each in turn.

Variability across MZ versus DZ twins

First, we can combine the present within-family approach to measuring phenotypic variability

with the classic twin comparison approach of behavior genetics, we obtain a method to distin-

guish between GxE and GxG interaction effects that may be revealed in a vGWAS for variation

regulating loci. Namely, if a particular allele produces more variability among dizygotic twins

than among monozygotic ones, we can infer that the difference between those allelic effects is

attributable to two forces: 1. Putatively greater environmental differences within DZ twin pairs

than within MZ twin-ships; and/or 2. The greater (cryptic) genetic variation within DZ pairs

as compared to their MZ counterparts. Since prior work ([72]) shows that the equal environ-

ments assumption seems to hold for a wide range of outcomes, thus weakening support for 1

as the explanation, we can attribute the bulk of the difference in trait variation between DZ

versus MZ twins to the theory that the allele in question is not only buffering the environment

but also serving as a phenotypic capacitor (i.e. repressing cryptic genetic variation).

Estimating the heritability of plasticity

Another way to combine the present approach with classical statistical genetic techniques is to

supplement estimates of the heritability of levels of a trait with estimates of the heritability of

plasticity in a trait. For instance, GREML involves partitioning the observed phenotypic dis-

tance in a trait between individuals into the sum of genetic and environmental contributors to

this distance. If we switch from individuals as the unit of analysis when measuring this distance

to sibling pairs as the unit of analysis, we can calculate the phenotypic distance between sib-

lings in each pair and the average genotype at each locus across the two siblings. The, we can

place unrelated sibling pairs in a Genetic Relatedness Matrix and contrast the genetic distance

between sibling pairs to the amount of variability for the phenotype the pairs display to recover

estimates of the heritability of this variability.

Constructing vPGS

Currently, researchers develop and use polygenic scores (PGS) that predict mean levels of a

trait. We can extend the polygenic score approach to develop scores that predict variance in a

trait (vPGS). Coefficients for a vPGS construction in a prediction sample would be obtained

from a vGWAS done within families with sibling sets in the discovery sample to obtain

estimates that better distinguish between mean and variance effects, but the application of

coefficients could then be to the individual person. Fig D in S1 File shows that the method is

adequately powered to detect effects of SNPs that explain fewer than 1% of the variation in

traits in samples like the UK Biobank that could be used at this discovery stage.
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Having a polygenic risk score that predicts particular forms of phenotypic variability may

be helpful for researchers hoping for non-null results with respect to a given phenotypic

measure who are therefore looking to recruit sensitive subjects for experimentation that

involves specific environmental exposures. Per the earlier discussion, if calculated from

pairs of MZ twins, such a polygenic score would capture only environmental sensitivity.

But if a vGWAS of MZ twins and DZ twins were conducted, the results could be differenced

out to provide a measure of phenotypic capacitance—i.e. regulation of internal, genetic

variation.

Beyond telling experimenters which subjects may be more genetically sensitive, such a phe-

notypic capacitance score may have important predictive power in terms of disease. Namely,

cancer, autoimmune diseases, metabolic syndrome and other irregularities of cell or system

stability may themselves be predicted by a genetic architecture that is less robust. Thus, a

genetic screening for a tendency toward developmental plasticity (i.e. if the plasticity score was

calculated on developmental indicators such as height) may be diagnostic. If applied to behav-

ioral phenotypes, such a score could be predictive of mental disorders that reflect a lack of can-

alization of mind, so to speak, such as schizophrenia.

In light of this discussion, we think that there is benefit to combining prior, pedigree-based

approaches with newer GWAS methods to better estimate variance effects (as well as levels

effects). Thus, we recommend that consortia of cohorts with genome-wide data on sibling

pairs at the minimum, quartets ideally, be formed to advance GWA to a more solid foundation

of inference that approximates the unbiased estimates of lab-based genetic manipulations by

taking advantage of random differences in sibling genotypes.

Materials and methods

Simulation study

Generating genotype and trait data. The simulation proceeds in four steps. First, we gen-

erate genotypes for parents and offspring. Second, we generate an unobserved family-level

confounder that is correlated to varying degrees with the observed sibling genotype. Third, we

use the genotype to generate four traits:

1. Trait with neither mean nor variance effects

2. Trait with mean effects but not variance effects

3. Trait with variance effects but not mean effects

4. Trait with both mean and variance effects

In this third step, we generate four versions of each of the four traits: 1) a version that is not

affected by between-family confounding; and three versions affected by varying degrees of

between-family confounding. Fourth, we explore how the process in steps one through three

generates between-family confounding that is not fully addressed by controls for the subpopu-

lation that generates the genotype. Finally, we compare the performance of the sibling standard

deviation approach to other methods. We describe the first four steps in the present section,

and summarize the results of step five in the results.

All steps were repeated for 1000 replicates of size 2000 (1000 sibling pairs with 2 offspring

each, generated from 4 ancestral sub-populations).

Step one: Generating genotypes. We use the following process to generate genotypes for

parents and offspring, repeated separately for each of the 1000 replicates:
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1. Generate parent genotypes: we use the function simMD taken from the source code for R’s

popgen package to generate parent genotypes, and use the following parameters in the

present simulation:

• N = 2000 parents, N = 1000 families with 2 offspring per family

• 4 subpopulations, with c = 0.01 representing the extent to which each subpopulation dif-

fers in allele frequencies of SNPs from typical values

• 1 causal snp. Traits with no effects were thus generated by setting the coefficient on the

parameter that governs the relationship between 1) the allele on trait mean, and 2)

the allele on trait variance, to zero.

• Allele frequency (p) of each SNP randomly drawn from a uniform distribution with

bounds at [0.1, 0.9]

2. Generate offspring genotypes: we use the parent genotypes generated in step 1 to generate

offspring genotypes assuming random mating and segregation

3. Step one and step two result in parent and offspring genotypes we use in steps two and

three of the simulation

Step two: Generating a family-level confounder correlated with genotype. Consider the

following model for the relationship between a SNP and phenotype for an individual i, nested

in family j, for snp k. For now, we just consider identifying the causal effect of an allele on the

mean of Y:

yijk ¼ aþ bkXijk þ �ijk

Linear regressions such as those run in GWAS, which often restrict the sample to unrelated

individuals, ignore the grouping structure of the family and estimate the following model:

yik ¼ aþ bkXik þ �ik

Random effects models acknowledge this grouping structure by positing that each family

has its own intercept that shifts the outcome up or down. The random effects models then esti-

mate these αj using a distribution that pulls some of the family-specific intercepts (âj) towards

the mean intercept across families (μα) depending on σα ([73]):

yijk ¼ aj þ bkXijk þ �ijk � � Nðma; s
2

a
Þ

Random effects methods generate unbiased estimates for βk (the causal effect of an allele for

snp k on a trait) when there is no unobserved confounding at the family level that is correlated

with genotype of other observed covariates (cor(Xijk, αj) = 0))([67]). However, these methods

generate biased estimates when cor(Xijk, αj) 6¼ 0). To generate simulations to test this bias in

the genetics context, we use the following process to generate a family intercept that is corre-

lated with offspring genotype, and through the process described in step three, is also corre-

lated with the trait:

1. Operationalize genotype as the sibling pairs’ summed minor allele count at that locus

2. Choose a ρ parameter for the degree of correlation, and construct a variance-covariance

matrix Q representing the correlation between the genotype and family-level intercept. E.g.,

Family-based vQTL
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if ρ = 0.1:

1 0:1

0:1 1

" #

3. Take the cholesky decomposition of Q

4. Generate a starting value for the family-level intercept that is not correlated with genotype

(αj * N(0, 1)); this starting value provides a baseline set of intercepts uncorrelated with

genotype that we will then rescale to be correlated with genotype to varying degrees.

5. Multiply cholesky decomposition by matrix containing the genotype and the non-corre-

lated intercept to generate αj correlated with the sibling pair’s genotype

6. Repeat the previous steps for four values of ρ representing different degrees of

confounding:

a. ρ = 0 (no confounding)

b. ρ = 0.01

c. ρ = 0.05

d. ρ = 0.1

Step three: Generating traits. To generate traits, we used a similar process for simulating

traits as used in [58]. We generated four general types of traits (traits with neither mean nor

variance effects; traits with mean effects only; traits with variance effects only; traits with both

mean and variance effects) using the following general setup, and varying the γ and � parame-

ters, where i represents an individual and k indexes a SNP. Sex was simulated from a binomial

distribution with p = 0.5. Age was simulated from a normal distribution * N(μ = 50, sd = 10).

G1 indicates heterozygotes, while G2 indicates minor allele homozygotes. Across all simula-

tions with mean or variance effects, an additional minor allele results in increases in the mean

or in the variance:

yik ¼ G1ikg1 þ G2ikg2 þ 0:5� sexi þ 0:05� agei þ �ik ð2Þ

1. Neither mean nor variance effects:

• γ1 = γ2 = 0

• � * N(0, 1)

2. Mean effects only

• γ1 = 0.15; γ2 = 0.35

• � * N(0, 1)

3. Variance effects only

• γ1 = γ2 = 0

Family-based vQTL
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• � * N(0, 1) for major allele homozygotes; � * N(0, 1.152) for heterozygotes; � * N(0,

1.42) for minor allele homozygotes

4. Mean and variance effects

• γ1 = 0.15; γ2 = 0.35

• � * N(0, 1) for major allele homozygotes; � * N(0, 1.152) for heterozygotes; � * N(0,

1.42) for minor allele homozygotes

For the simulation to address the possibility of confounding by unobserved, between-family

factors, we also modify Eq 2 to include the family-level intercept that is correlated with

observed genotype at varying levels (no correlation, medium correlation, high correlation),

and refer to the latter two outcomes as “confounded outcomes”, where i refers to an individual

and j indexes the family that the sibling pair was generated from:

yijk ¼ G1ijkg1 þ G2ijkg2 þ 0:5� sexij þ 0:05� ageij þ aj þ �ijk ð3Þ

Step four: Controlling for ancestry. To control for ancestral background in the methods

that follow, we control for an indicator for which of the four subpopulations generated the

individual/pair’s genotype. We used an indicator for ancestry rather than ancestry derived

from genotype because, and following the general simulation method used in [58] where traits

were generated using one SNP because each SNP-trait association is estimated separately, the

genotype has only SNP.

As the strength of between-family confounding increases, the correlation between these

indicators for population stratification and the family-level intercept increases. To illustrate

this increase, we run the following regression for each of the four degrees of correlation

between family-level intercepts and observed genotypes:

family intercepti ¼ aþ b1 � subpopi þ �i ð4Þ

We then calculated the percent of β1 6¼ 0 with p< 0.05 across the 1000 replicates with that

simulated level of correlation. Table K in S1 File summarizes the results. It shows that as we

move from zero confounding to some confounding, the relationship between the ancestral

indicator and the family-level intercept becomes more significant. However, the results also

show, and as we show in the results that follow, while this correlation between the population

stratification indicators and family-level confounding reduces bias in estimates that this con-

founding causes, the control does not fully eliminate bias.

Eq 4 looks at the strength of relationship between ancestral background and the family

intercept at various degrees of confounding, and shows how this strength increases as the

degree of confounding increases. The reason this confounding biases estimates of the effect of

the minor allele count on a trait is because this family intercept is also correlated with geno-

type. To show this, we run the following regressions at each level of confounding:

sibling minor allele counti ¼ aþ b1 � family intercepti þ �i ð5Þ

Table L in S1 File presents the mean β1 across each level of confounding, and shows that as

confounding increases, the relationship between family intercept and the minor allele count

increases. In the presence of zero between-family confounding, the slightly positive β1 is

caused by the correlation between parent and offspring genotypes that generates correlated

genotypes between siblings of the same parents.
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Power

For the trait simulated to have variance effects, the average effect size was R2 = 0.01. With the

N = 1000 sibling pairs sample sized used in the analysis, the power to detect these effects is

81%, results we see confirmed in Table F in S1 File, which shows roughly 80% power to detect

variance effects when these are present.

Analysis

All analysis was performed using R. The following packages were used to estimate the models

(see Results)M with code that names all the arguments/parameters from the functions used in

each package posted at the following link: https://scholar.princeton.edu/dconley/princeton-

biosociology-lab

• Power analysis: pwr packages with pwr.f2.test command

• Pooled regressions: lm with default settings

• Random effects model: plmwith model = “random”

• Fixed effects model: plmwith effects = “within” and index of the family identifier

• DGLM: dglmwith a gaussian-family link function and REML as estimation method

• Squared Z score method: after estimating the Z-score separately by sex, lm with default

settings

• Sibling SD method: after estimating the sibling standard deviation, lmwith default settings

Empirical application

Data. Data for discovery analysis come from the Framingham Heart Study (FHS), second

(parental) and third (sibling) generation respondents. (This dataset is publicly available

through dbGaP http://www.ncbi.nlm.nih.gov/gap. QC code can be obtained from the FHS

investigators ([74]) The FHS is, in fact, one of the cohorts included in the GIANT meta-analy-

sis performed by Yang et al. ([40]). Height and weight were taken from clinical measurements

and then BMI was calculated as (weight in kilograms)2 / height in meters. Genotypes were

assayed using the Affymetrix GeneChip Human Mapping 500K Array and the 50K Human

Gene Focused Panel. Genotypes were determined using the BRLMM algorithm. Our analysis

began with the original 500,568 SNPs, and resulted in 260,469 SNPs available for analysis after

cleaning (e.g., HWE screens and a MAF cut-off of 0.05). The screens were conducted using all

available individuals with genetic data, not only those that were included in this analysis.

Genome-region association plots were produced using SNAP ([75]), except for those of pub-

lished GIANT consortium data, which were produced using LocusZoom ([76]). Regional link-

age maps were produced using SNAP ([75]) and data from the 1,000 Genomes CEU Panel

([77]).

Among third-generation respondents, the numbers in our sample by sibship size are pre-

sented in Table 3. The 200 families with only one sibling in the data drop from the sibling

Table 3. Distribution of third generation siblings included in data by sibship size.

# 3rd-G Sibs in Family: 1 2 3 4 5 6 7 8 9

N (pairs): – 292 483 504 250 150 189 28 36

Families: 200 292 161 84 25 10 9 1 1

Total actual N of sibling pairs after random selection of one per family: 583

https://doi.org/10.1371/journal.pone.0194541.t003
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analysis. Those with more than two contribute multiple pairs to the data; however, our final

analysis selects only one pair per second-generation family as the more complicated error

structure with multiple pairs leads to early takeoff on QQ plots. The siblings are genetically

related but are not DZ or MZ twins.

The Minnesota Twin Family Study (MTFS) replication data were genotyped on the

Illumina 660W Quad array ([78]) and phenotypes can be found elsewhere ([79]) Quality con-

trol procedures were applied separately to each individual cohort. Individuals with a call

rate< 0.95 (N = 22), estimated inbreeding coefficient > 0.15 (N = 2), or showing evidence of

non-European descent from multidimensional scaling (N = 298, mainly individuals with Mex-

ican ancestry) were removed. Individuals were considered outlying from European descent if

one or more of the first four eigenvectors were more than three standard deviations removed

from the mean. SNPs with MAF < 0.01, call rate< 0.95 or HWE-test p-value < 0.001 were

removed. The reason for the lower MAF threshold in the MTFS sample rather than FHS sam-

ple is that for the latter data, internal QC procedures remove SNPs at this threshold prior to

releasing the data to researchers. For our analysis, we included both the MZ and DZ twin pairs

because restricting to DZ twin pairs that more closely approximate the sibships in the FHS dis-

covery sample does not change the substantive findings. Because the discovery sample and the

replication sample were genotyped on different arrays, we deployed SNAP to find correspond-

ing SNPs ([75]). The resulting sample size for our analysis was 1,048 pairs.

The Boston University Medical Center IRB approved the use of the discovery analysis data

(Framingham Heart Study). The University of Minnesota IRB approved the use of the replica-

tion analysis data (Minnesota Twin Family Study). The Princeton University IRB approved

the secondary analysis of each data (Protocol 8322).

In addition to the GWA analysis in the discovery and replication sample, we performed

two sets of analyses that pooled SNPs across multiple software implementations. First, we

investigated gene-based pooling using VEGAS1 ([80]) with the following parameters: CEU

subpopulation specified, no assumed allele frequency difference by sex, and using all SNPs

(not just best hits) within the gene region itself (+/-0 KB). We estimated pathway-based pool-

ing using i-GSEA4GWAS ([81]). Because estimation of significant pathways and gene sets can

be sensitive to different algorithms’ methods of computing p-values and controlling type I

error rates, we test the robustness of these findings with PASCAL ([82]). These analyses were

performed for both BMI and height in both the discovery and replication sample. For the dis-

covery sample, gene-based and pathway-based analyses were performed using 260,434 variants

input; 239,526 variants used; 14,783 genes mapped; 221 gene sets selected. For the replication

sample, gene-based and pathway-based analyses were performed using 522,726 variants input;

487,692 variants used; 16,840 genes mapped; 259 gene sets selected.

Statistical analysis. All analysis was performed using R. The power analysis depicted in

Fig D in S1 File to estimate the power of the approach at varying putative effect sizes was per-

formed using the pwr package in R [83], varying n to reflect the present sample sizes and

recently-released samples with larger sibling populations and showing power separately for

two p value thresholds (p< 10−5 for discovery analyses; p< 0.05 for replication). More pre-

cisely, we used the following procedure:

1. Vary the putative R2 explained by a SNP from 0.0 to 0.01, incrementing by 0.0001

2. Translate R2 into effect size ( R2

1� R2)

3. Since we are analyzing power to estimate the β in a linear regression, using the

pwr.f2.test command to estimate power at varying effect sizes
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Heteroscedasticity-robust standard errors should not substantially affect power under the

present sample size ([84]).

For the main analysis, sibling-pair standard deviations (SD) were fit by linear regression

using the lm command with default options to the following model, where the key regressor is

the number of minor alleles for the pair of siblings at a given locus. Because this number is for

two individuals, the range is 0 to 4:

SDj ¼ aþ gk � sibling minor allele dosagejk þ d� parent minor allele dosagejkþ

gZj þ �jk

j indexes a sibling pair, k indexes a SNP, minor allele dosage is the total number of minor

alleles in a sibling pair, parent minor allele dosage is the total number of minor alleles across

the parents, Zj is a vector of sibling pair-level controls that includes controls for the mean level

of the trait in the sibling pair, pair sex (MM or FM or FF), mean pair age, and the within-pair

age difference, and �jk is the residual for sibling pair j at snp k. As we show in the simulation

study, the method returns similar results if parental genotype is or is not included. And if we

do not include parental genotype, we can include an additional term—the difference in minor

allele counts between siblings—that helps increase the precision of the estimate of γk. Qualita-

tive results do not change if we instead specify the mother’s and father’s genotypes separately.

In the model, SDj is the standard deviation of a trait within a sibling pair, calculated as follows,

where i indexes an individual sibling in the pair, j indexes the pair, x refers to the trait, and �x
refers to the mean of the trait across the two siblings:

SDj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

i¼1
ðxij � xjÞ

2

2 � 1

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

i¼1

ðxij � xjÞ
2

s

Huber-White standard errors robust to clustering on pedigree ID (to account for correlated

errors among cousins: sibling pairs that share the same grandparents but not the same parents)

were calculated for the FHS analysis in the following way, where i = sibling pair 1, j = sibling

pair 2, n = total sibling pairs, g = pedigree grouping, and k = SNP. σ refers to the residual vari-

ance across the sample, and σi refers to the residual variance for an individual.

For the simple case where s2 ¼ s2
i 8i and SST2

x ¼
Pn

i¼1
ðxi � �xÞ2:

varðb̂kÞ ¼

Xn

i¼1
ðxi � �xÞ2s2

SST2
x

To account for errors that may be heteroskedastic and correlated within a shared pedigree,

we adjust the variance to be robust to cases where s2 6¼ s2
i and where for g ¼ g 0 (two sibling

pairs share same grandparent/pedigree ID). ûig represents the observed residual for participant

i belonging to pedigree g. For the case of pedigree ID’s with two or more sibling pairs, this

becomes the following variance robust to heteroskedastic and correlated errors, with an indi-

cator function for when the sibling pairs belong to the same pedigree:

varðb̂kÞ ¼

Xn

j¼1

Xn

i¼1
ðxi � �xÞ2ðxj � �xÞ2ûig ûjg01½g ¼ g 0�

SST2
x

Family-based vQTL

PLOS ONE | https://doi.org/10.1371/journal.pone.0194541 April 4, 2018 24 / 31

https://doi.org/10.1371/journal.pone.0194541


For the case of pedigree ID’s with one sibling pair only, the above equation reduces to the

following variance robust to heteroskedastic errors ([85]):

varðb̂kÞ ¼

Xn

i¼1
ðxi � �xÞ2û2

ig

SST2
x

Supporting information

S1 File. Fig A, Estimated coefficients on SNPs for simulated dependent variable with no
effects and confounding between a family-level indicator, genotype, and outcome. The red

dashed line represents the true snp level effect (β = 0), while the density curves show the range

of estimated b̂ for each of the models. We see the fixed effects model correctly centers the b̂

near the β = 0, while the other family-level random effects (random intercept) and pooled

regression show estimates with significant upward bias in the presence of confounding above

ρ = 0.1. However, the random effects has the advantage of smaller sampling variance (more effi-

cient estimator) across all levels of confounding because it pools estimates across families. Fig

B, Regional linkage map for FHS genome-wide suggestive SNPs for sibling-pair standard

deviation in BMI from 1,000 Genomes, CEU Panel. Maps produced by SNAP ([75]). Fig C,

QQ plots associated with Manhattan plots in Fig 1. A) Observed versus expected p-value dis-

tributions for analysis of sibling-pair standard deviation in height for FHS generation-three

respondents with controls for parental genotype, mean height of sibling pair, sex, and sex dif-

ference. B) Same as in (A) except for BMI instead of height. Shaded gray regions depict 95%

confidence intervals. Fig D, Power to detect an effect size of R2. The figure contrasts power at

three potential sample sizes (defined as the number of sibling pairs in the data)(see Methods):

1) the Framingham Heart Study (FHS) sample used in the present analysis; 2) the Adolescent

and Longitudinal Study of Health (AddHealth) sample; and 3) the UK Biobank sample. Like-

wise, the figure contrasts two potential p-value thresholds: p< 10−5 for the discovery analysis;

p< 0.05 for the confirmation analysis. The figure shows that although the sample used in the

present analysis (FHS) is not adequately powered to detect realistic effect sizes of R2 < 0.01,

newly-released datasets with larger sibling subsamples are adequately powered to detect effects

using the method. Fig E, Regional Association Plot of rs7202116, top hit for variance in

BMI found by Yang et al. (2012), on mean level of BMI from GIANT consortium data.

Figure produced using LocusZoom ([76]). Fig F, Regional Association Plot of genome-wide

suggestively significant (p<10-5) hits from Fig 1 on mean height from GIANT consortium

data. (A—D) Plots for the SNPs rs2804263, rs2073302, rs8126205, and rs4834078, respectively,

show no markers in the respective regions that approach even genome-wide suggestive signifi-

cance (p<10−5). Figures produced using LocusZoom ([76]). Fig G, Relationship between sib-

ling-pair mean BMI and sibling-pair standard deviation (SD) or coefficient of variation

(CV). A) Sibling-pair SD versus mean (ρ = 0.43). B) Sibling-pair CV versus mean (ρ = 0.25).

Fig H, Manhattan plots for enriched pathway HSA04540 Gap Junction for height variabil-

ity. A) FHS discovery sample; B) MTFS replication sample. Table A, Results of Hausman test

comparing b̂FE with b̂RE across the simulations. The results show that at zero and very small

amounts of confounding, the test fails to reject the null hypothesis that b̂RE is a consistent esti-

mator, but at higher levels of confounding, the test rejects this null hypothesis. Table B, Results

of regressing squared Z-score of trait on minor allele count across 1000 replicates with

non-demeaned data. The results show an inflated type I error rate for the trait simulated to

have either null effects or mean effects but no variance effects in the presence of an unobserved

confounder between genotype and outcome (underlined rows). Table C, Results of regressing

squared Z-score of trait on minor allele count across 1000 replicates. Regressions are
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estimated using the demeaned data. The results show an inflated type I error rate for the trait

simulated to have either null effects or mean effects but no variance effects in the presence of

an unobserved confounder between genotype and outcome (underlined rows) even after trans-

forming the data. Table D, Results of DGLM on non-demeaned (non-transformed) for sim-

ulated DV with different types of effects across 1000 replicates. The results show two types

of inflated type I error rates. First, when a variant has null effects (neither effects on the mean

nor effects on the variance) and there is confounding, the DGLM has an inflated type I error

rate, detecting β 6¼ 0 in 77.8% of simulations. Second, when a variant has variance effects but

no mean effects, the method also has an inflated type I error rate, detecting β 6¼ 0 in 11% of

cases in the absence of confounding and 70% of cases in the presence of confounding. Table E,

Results of DGLM on demeaned (non-transformed) for simulated DV with different types

of effects across 1000 replicates. The results show an inflated type I error rate (estimate β 6¼ 0

despite the presence of allele affects on the variance and not the mean) that is smaller but still

present in the demeaned data. The results also show that while demeaning reduces the type I

error rate (false detection of mean effects), the transformation leads to type II errors (fails to

detect variance effects when these are present). Table F Results of regressing sibling SD of

trait on minor allele count across 1000 replicates. The results show the percentage of simula-

tions for which the coefficient on the minor allele count is significant at the p< 0.05 level when

we regress the sibling standard deviation of the trait on this count and controls. In order for the

method to adequately control for Type I error, we want this percentage to be low for the traits

simulated to have 1. neither mean nor variance effects or 2. mean effects only. In order for the

method to be adequately powered, we want this percentage to be high for the traits simulated

to have: 1. variance effects only and 2. both mean and variance effects. For the first goal, the

results show that in contrast to the squared Z-score and DGLM, which each, in the presence of

an unobserved confounder, display type I error rates of around 20% in detecting variance

effects in traits simulated to have mean effects only, the sibling SD method avoids this type of

error (underlined rows) both with and without controls for parental genotype. The results also

illustrate that the method detects variance effects when the trait either has variance effects only

or when the trait exhibits both mean and variance effects. The first half of the table also shows a

lower type I error rate than squared Z-score when there is no unobserved confounder.

Table G, Proxy SNPs and results for replication analysis using Minnesota Twin Family

Study data. Table H, Replicated GWAS hits for other SNPs on MAST4 Results are from the

NCBI Phenotype-Genotype Integrator. Table I, Gene set analysis results using PASCAL.

The table shows significant gene sets in FHS that replicated in MTFS at different p-value

thresholds (MAST4, the location of the replicated SNP, does not appear because although

it was p< 0.01 in the FHS dataset, it was p = 0.1 in the MTFS dataset). Table J, Pathway

analysis results using PASCAL The table shows significant pathways in FHS that replicated

in MTFS at different p-value thresholds. The pathway that replicated using the i-GSEA4G-

WAS tool is not among those tested by PASCAL. Table K, Illustrating correlation between

population indicators and family-level intercept across 1000 replicates at four degrees of

family-level confounding. The results show that at low levels of confounding (ρ� 0.1), the

broad ancestry indicators are correlated with the indicator for family genotype but are too

broad to fully capture the confounding. As the confounding increases beyond low levels, the

ancestry indicators better capture the confounding. Table L, Relationship between family

intercept and observed genotype. The table shows that as the degree of between-family con-

founding increases, there is a stronger relationship between the intercept that shifts levels of a

trait up or down between families and the genotype.

(PDF)
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28. Janhunen M, Kause A, Vehviläinen H, Järvisalo O. Genetics of Microenvironmental Sensitivity of Body

Weight in Rainbow Trout (Oncorhynchus mykiss) Selected for Improved Growth. PLOS ONE. 2012; 7

(6):e38766. https://doi.org/10.1371/journal.pone.0038766 PMID: 22701708

29. Jimenez-Gomez JM, Corwin JA, Joseph B, Maloof JN, Kliebenstein DJ. Genomic Analysis of QTLs and

Genes Altering Natural Variation in Stochastic Noise. PLOS Genetics. 2011; 7(9):e1002295. https://doi.

org/10.1371/journal.pgen.1002295 PMID: 21980300

30. Perry GML, Nehrke KW, Bushinsky DA, Reid R, Lewandowski KL, Hueber P, et al. Sex Modifies

Genetic Effects on Residual Variance in Urinary Calcium Excretion in Rat (Rattus norvegicus). Genet-

ics. 2012; 191(3):1003–1013. https://doi.org/10.1534/genetics.112.138909 PMID: 22554889

31. Rönnegård L, Valdar W. Recent developments in statistical methods for detecting genetic loci affecting

phenotypic variability. BMC Genetics. 2012; 13:63. https://doi.org/10.1186/1471-2156-13-63 PMID:

22827487

32. Shen X, Pettersson M, Ronnegard L, Carlborg O. Inheritance Beyond Plain Heritability: Variance-Con-

trolling Genes in Arabidopsis thaliana. PLOS Genetics. 2012; 8(8):e1002839. https://doi.org/10.1371/

journal.pgen.1002839 PMID: 22876191

33. Stinchcombe JR, Caicedo AL, Hopkins R, Mays C, Boyd EW, Purugganan MD, et al. Vernalization sen-

sitivity in Arabidopsis thaliana (Brassicaceae): the effects of latitude and FLC variation. American Jour-

nal of Botany. 2005; 92(10):1701–1707. https://doi.org/10.3732/ajb.92.10.1701 PMID: 21646087

Family-based vQTL

PLOS ONE | https://doi.org/10.1371/journal.pone.0194541 April 4, 2018 28 / 31

https://doi.org/10.1038/nature749
http://www.ncbi.nlm.nih.gov/pubmed/12050657
https://doi.org/10.1038/24550
https://doi.org/10.1371/journal.pgen.0030043
http://www.ncbi.nlm.nih.gov/pubmed/17397257
https://doi.org/10.1016/j.molcel.2013.01.026
http://www.ncbi.nlm.nih.gov/pubmed/23434373
https://doi.org/10.1073/pnas.0712200105
https://doi.org/10.1111/mec.12195
https://doi.org/10.1111/mec.12195
http://www.ncbi.nlm.nih.gov/pubmed/23437837
https://doi.org/10.15252/msb.20145264
https://doi.org/10.15252/msb.20145264
http://www.ncbi.nlm.nih.gov/pubmed/25609648
https://doi.org/10.1371/journal.pbio.0060264
http://www.ncbi.nlm.nih.gov/pubmed/18986213
https://doi.org/10.1371/journal.pgen.1003733
http://www.ncbi.nlm.nih.gov/pubmed/23990806
https://doi.org/10.1371/journal.pbio.2000465
https://doi.org/10.1371/journal.pbio.2000465
http://www.ncbi.nlm.nih.gov/pubmed/27768682
https://doi.org/10.1371/journal.pgen.1000049
http://www.ncbi.nlm.nih.gov/pubmed/18404214
https://doi.org/10.1073/pnas.1503830112
https://doi.org/10.1038/msb.2013.53
http://www.ncbi.nlm.nih.gov/pubmed/24104478
https://doi.org/10.1371/journal.pone.0008635
http://www.ncbi.nlm.nih.gov/pubmed/20072615
https://doi.org/10.1073/pnas.0701936104
https://doi.org/10.1534/genetics.112.146779
http://www.ncbi.nlm.nih.gov/pubmed/23150607
https://doi.org/10.1371/journal.pone.0038766
http://www.ncbi.nlm.nih.gov/pubmed/22701708
https://doi.org/10.1371/journal.pgen.1002295
https://doi.org/10.1371/journal.pgen.1002295
http://www.ncbi.nlm.nih.gov/pubmed/21980300
https://doi.org/10.1534/genetics.112.138909
http://www.ncbi.nlm.nih.gov/pubmed/22554889
https://doi.org/10.1186/1471-2156-13-63
http://www.ncbi.nlm.nih.gov/pubmed/22827487
https://doi.org/10.1371/journal.pgen.1002839
https://doi.org/10.1371/journal.pgen.1002839
http://www.ncbi.nlm.nih.gov/pubmed/22876191
https://doi.org/10.3732/ajb.92.10.1701
http://www.ncbi.nlm.nih.gov/pubmed/21646087
https://doi.org/10.1371/journal.pone.0194541


34. Takahashi KH, Okada Y, Teramura K. Genome-Wide Deficiency Mapping of the Regions Responsible

for Temporal Canalization of the Developmental Processes of Drosophila melanogaster. Journal of

Heredity. 2011; 102(4):448–457. https://doi.org/10.1093/jhered/esr026 PMID: 21525178

35. Takahashi KH, Okada Y, Teramura K. Deficiency Screening for Genomic Regions with Effects on Envi-

ronmental Sensitivity of the Sensory Bristles of Drosophila Melanogaster. Evolution. 2012; 66(9):2878–

2890. https://doi.org/10.1111/j.1558-5646.2012.01636.x PMID: 22946809

36. Tonsor SJ, Elnaccash TW, Scheiner SM. Developmental Instability Is Genetically Correlated with Phe-

notypic Plasticity, Constraining Heritability, and Fitness. Evolution. 2013; 67(10):2923–2935. PMID:

24094343

37. Chen B, Wagner A. Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious vari-

ation in wild fly populations. BMC Evolutionary Biology. 2012; 12:25. https://doi.org/10.1186/1471-

2148-12-25 PMID: 22369091

38. SgròCM, Wegener B, Hoffmann AA. A naturally occurring variant of Hsp90 that is associated with

decanalization. Proceedings of the Royal Society of London B: Biological Sciences. 2010; 277

(1690):2049–2057. https://doi.org/10.1098/rspb.2010.0008

39. Siegal ML, Masel J. Hsp90 depletion goes wild. BMC Biology. 2012; 10:14. https://doi.org/10.1186/

1741-7007-10-14 PMID: 22369621

40. et al Y. FTO genotype is associated with phenotypic variability of body mass index. Nature. 2012;

490(7419):nature11401.
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