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Abstract

In genome-wide association studies (GWAS), the association between each single nucleotide polymorphism (SNP) and a
phenotype is assessed statistically. To further explore genetic associations in GWAS, we considered two specific forms of
biologically plausible SNP-SNP interactions, ‘SNP intersection’ and ‘SNP union,’ and analyzed the Crohn’s Disease (CD) GWAS
data of the Wellcome Trust Case Control Consortium for these interactions using a limited form of logic regression. We
found strong evidence of CD-association for 195 genes, identifying novel susceptibility genes (e.g., ISX, SLCO6A1,
TMEM183A) as well as confirming many previously identified susceptibility genes in CD GWAS (e.g., IL23R, NOD2, CYLD,
NKX2-3, IL12RB2, ATG16L1). Notably, 37 of the 59 chromosomal locations indicated for CD-association by a meta-analysis of
CD GWAS, involving over 22,000 cases and 29,000 controls, were represented in the 195 genes, as well as some
chromosomal locations previously indicated only in linkage studies, but not in GWAS. We repeated the analysis with two
smaller GWASs from the Database of Genotype and Phenotype (dbGaP): in spite of differences of populations and study
power across the three datasets, we observed some consistencies across the three datasets. Notable examples included
TMEM183A and SLCO6A1 which exhibited strong evidence consistently in our WTCCC and both of the dbGaP SNP-SNP
interaction analyses. Examining these specific forms of SNP interactions could identify additional genetic associations from
GWAS. R codes, data examples, and a ReadMe file are available for download from our website: http://www.ualberta.ca/
,yyasui/homepage.html.
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Introduction

Analysis of genome-wide association studies (GWAS) often

focuses on identifying individual single nucleotide polymorphisms

(SNPs) that modify the risk of a phenotype, assuming the

underlying association of an individual SNP without considering

the involvement of any other SNPs. GWASs of Crohn’s Disease

(CD) have also focused largely on finding such marginal associations

of individual SNPs, where the association of each SNP with CD

risk is evaluated without considering other SNPs. If individual

SNPs (or the regions tagged by them) are independently critical in

the CD-risk-altering biological functions, this approach would be

effective. This may be the case for the association between

rs11209026 of the IL23R gene and CD risk, where the marginal

association is quantified as an estimated odds ratio of 2.661. The

other SNPs that are statistically significantly associated with CD

risk, however, show very weak associations with estimated odds

ratios typically in the range of less than 1.5. In addition, the sum of

such marginal associations is far from describing the estimated

degree of genetic contributions to the risk of CD [1]. A possible

explanation for this may be that an individual SNP (or a region

tagged by it) is not independently critical in the biological functions

that affect the CD-risk: rather, interaction among multiple SNPs

(or regions tagged by them) may jointly affect the CD-risk.

Specifically, the following two forms of SNP-SNP interactions

may be motivated biologically. One is the SNP intersection form

using the set theory terminology, in which all of the SNPs in a set

must take their respective high-risk genotypes for CD risk to be

elevated, where one, or a subset, of the set is insufficient to

influence CD-risk-altering biological functions. That is, an

increase in the CD-risk requires all SNPs (i.e., SNP-A and SNP-

B and …) to take their respective high-risk genotypes. This form of

interaction is similar to a set of sequential mutations that must

accumulate before a cell transforms in the multistage carcinogen-

esis theory. The other form of SNP-SNP interaction that is

biologically plausible is motivated by the notion of genetic

heterogeneity. Specifically, CD risk may be elevated through

multiple independent ways, each of which may be a SNP-

intersection or an individual SNP (i.e., (SNP-A and SNP-B) or

(SNP-C) each taking its respective high-risk genotype. This form of

SNP-SNP interaction is referred to as a SNP union, also derived
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from the set theory terminology. Under a single or combination of

SNP intersections and SNP unions, assessing the independent

marginal effect of each individual SNP without considering these

interaction forms will either fail to discover, or observe only weak,

association between the individual SNP and the phenotype of

interest.

To incorporate these specific forms of SNP-SNP interactions in

GWAS data analysis, we propose using logic regression to search

for sets of SNPs that are jointly associated with the phenotype of

interest in the form of a single SNP intersection or union, or in

combinations of thereof [2]. Logic regression is an innovative and

powerful statistical learning technique that is used to model an

outcome (e.g., the disease status in a case-control study) with

intersections and/or unions of multiple potential predictors that

are primarily binary, such as indicators of SNP genotypes (i.e.,

indicators of the minor-allele homozygous and indicators of the

heterozygous and the minor-allele homozygous). As such, logic

regression can select a model that may involve various intersec-

tions and/or unions of SNPs within a gene, or any set of SNPs

(e.g., SNPs of genes in a certain biological pathway), that are

associated with a phenotype. Logic regression has been applied

successfully to a number of SNP data analyses with selected candidate

genes [3–11]. To our knowledge, however, it has not been applied

to GWAS analysis due to the considerable computational demands

in searching for SNP intersection/union combinations among a

large number of SNPs in GWASs.

Materials and Methods

Incorporating specific forms of SNP-SNP interactions in
GWAS

Our logic-regression-based gene-level SNP-SNP-interaction

analysis of GWAS data can be summarized as follows. Combina-

tions of SNP intersections and unions can be expressed

mathematically as Boolean combinations, such as (X1 ‘ X2) ~

X3c, where ‘‘‘’’, ‘‘~’’, and ‘‘c’’ represents intersection (AND),

union (OR), and complement (NOT), and X’s are indicators of

SNP genotypes. The logic regression model takes the form:

logit E Y½ �ð Þ~b0zb1L1zb2L2z . . . zbpLp

where Y is a binary phenotype, CD cases versus controls, b0, b1,…

bp are the parameters, and L1, L2, …, Lp are Boolean

combinations of genotype indicators of SNPs within a gene, also

called logic trees. The logic trees are selected adaptively, using a

Simulated Annealing algorithm, and based on deviance as the

model fit measure [2]. Our logic-regression-based SNP-SNP

interaction analysis uses genes with at least two genotyped SNPs.

To reduce redundancy of logic trees that genotype indicators of

SNPs within a gene can form, we removed SNPs within each gene

sequentially, before logic regression, such that no pair of

remaining SNPs within a gene had linkage disequilibrium

(r2$0.8). In each logic regression fit, we allowed a maximum of

two Boolean combinations (Ls) of at most five indicators of SNP

genotypes in total. Note that these constraints are necessary in

GWAS because logic regression must search a large number of

potential combinations, and therefore comes with a high

computational cost. To correct for the inherent instability of the

performance measure when searching a large space, we refit the

logic regression 20 times, starting the algorithm with 20 different

initial values: this process was applied to the original dataset as well

as 20 datasets obtained by permutations of the case- control labels.

Of the 20 results produced by the 20 starting values, we selected

the best fit, measured by deviance.

Measure of evidence of association
Running logic regression for each gene in the original dataset, as

well as their 20 case-control-label permuted datasets, yields an

approximate Bayes Factor (BF) for each gene. The BF is

approximated by the corresponding Likelihood Ratio in this case

(which eliminates the need to specify priors, similar to the

approximation used by Bayesian Information Criterion for BF), in

the base-10 logarithm (equivalent to LOD Score), where the

denominator is the median of 19 (log10) maximum likelihoods

from the 19 permuted datasets (20 minus one because BF of a

permuted dataset should not use its own BF in calculating the

median of BF from the permuted datasets). An important feature

of this approximate BF is that the denominator standardizes for

the higher potential for genes with larger numbers of SNPs to

overfit. We follow the Wellcome Trust Case Control Consortium

(WTCCC) ’s framework of using BF as the measure of evidence of

the observed association between each gene and CD risk12.

Specifically, suppose we have N genes to be investigated, of which

10 genes are assumed to be truly associated with CD risk. The

prior odds for CD-risk association for any gene is therefore 10/(N-

10). To make the posterior odds of CD-risk association for a gene

to 10 (i.e., probability that the gene is associated with CD risk is

10/11, or approximately 0.91), a likelihood ratio for the

association over no association (i.e., the BF under the same-size

logic-regression model) has to be (N-10). Based on the number of

genes we examined in the WTCCC dataset (13,106 after

mapping), the WTCCC framework above specifies a BF of 4.12

as the threshold, above which there is strong evidence of

association between the gene and CD risk. The P-value for each

gene is calculated as the proportion of all permuted BF values of all

genes larger than the gene’s observed BF. This p-value calculation

properly takes the multiple testing into account.

We checked if our BF-based hypothesis testing has a proper size

(i.e. control over the false positive rate) by using a simulation study.

We randomly chose 200 genes from Chromosome 1 (Chromo-

some 1 contains approximately 1,300 genes after mapping). We

simulated a total of 50 null hypothesis datasets by shuffling case-

control labels randomly and imposing an equal number of cases

and controls in each dataset. We ran the logic-regression-based

SNP-SNP interaction analysis and estimated p-value for each of

the 200 genes in each of the 50 null datasets. The 10,000 p-values

roughly followed a uniform distribution (data not shown),

indicating that our testing procedure has a proper size and proper

control over the false positive rate.

WTCCC and dbGaP Studies
We applied the logic-regression-based SNP-SNP interaction

analysis method to the WTCCC’s GWAS data comparing 2,005

CD cases to the 1,502 members of the British 1958 birth control

cohort (58C) plus the 1,500 controls of the UK Blood Service

sample: these used Affymetrix GeneChip Human Mapping 500K

Array Sets [12]. We also repeated the analysis with two much

smaller GWASs: the Database of Genotype and Phenotype

(dbGaP) non-Jewish case-control GWAS data on 513 cases and

515 controls; and dbGaP Jewish case-control GWAS data on 300

cases and 432 controls. The dbGaP GWAS used the Illumina

Sentrix HumanHap300 Genotyping BeadChip [13]. For exclusion

of cases and controls from the WTCCC analysis, we followed the

WTCCC’s recommendations based on the sample call rates and

evidence of recent non-European ancestry [12]. Specifically, 24

control subjects were excluded from the 1958 British birth cohort

of controls, 42 control subjects were excluded from the UK Blood

Service cohort of controls, and 257 CD cases were not used in the

analysis. In the two dbGaP analyses, we removed subjects with

Joint SNP Analysis of Crohn’s Disease GWAS
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sample call rates less than 95% (15 controls and 17 cases were

excluded from the non-Jewish data, and three controls and nine

cases were excluded from the Jewish data).

The genotype calls of the WTCCC were generated by the

Chiamo calling algorithm. Following the WTCCC’s recommen-

dations, we only considered genotype calls with confidence score

.0.9, and treated the rest of the calls as missing genotypes. SNPs

with SNP call rates less than 95% were removed. We also removed

SNPs based on their minor allele frequencies: the default minor

allele frequency cutoff in the GenABEL R package was used (2.5/

N where N is the number of subjects), resulting in cutoffs of 0.05%

for the WTCCC database and 0.3% for the Jewish and non-Jewish

dbGaP databases. We used a cutoff of 0.2 for the Hardy-Weinberg

Equilibrium (HWE) test’s false discovery rates, based on controls.

SNP-gene mapping files were retrieved from the OpenBioinfor-

matics website (http://www.openbioinformatics.org/gengen/

tutorial_calculate_gsea.html#_Toc210887414).

We checked the homogeneity of the three populations,

WTCCC, dbGaP non-Jewish and Jewish, by running Principal

Component Analysis using the R package GenABEL [14]. We

computed a matrix of genomic kinship between all pairs of

subjects, based on the 22,498 SNPs common to the three datasets.

More specifically, we calculated the average Identity-by-State

(IBS) for the 6,400 subjects (4,684, 720, and 996 subjects from the

WTCCC, dbGaP non-Jewish, and dbGaP Jewish studies, respec-

tively), as the pairwise similarity measure. We then performed

Principal Component Analysis based on the pairwise-similarity

matrix of average IBS. A plot of the first two principal

components, displayed in Figure S1, suggests that dbGaP Jewish

population was genetically quite different from the WTCCC and

the dbGaP non-Jewish populations, but the latter two populations

also showed some appreciable between-population differences and

within-population heterogeneity (Figure S1).

Results

There were 195 genes with strong evidence of association

between the gene and CD risk in the logic-regression gene-level

SNP-SNP-interaction analysis of the WTCCC GWAS data, 40 of

which are listed in Table 1 (all are shown in Table S1). Notably, all

nine regions of the genome showing strong evidence of association

by the single-SNP analysis of WTCCC data12, as well as seven out

of the eight regions showing moderate evidence of association,

were represented among the 195 genes. Thirty-seven (63%) of the

59 chromosomal locations, that were previously identified by a

meta-analysis of single-SNP studies that involved over 22,000 cases

and 29,000 controls [1], were included in the 195 genes. Also

included in the 195 genes that showed strong evidence of

association were three genes located in IBD1 (Chr 16q12), two

genes in IBD2 (Chr 12q13), six genes in IBD3 (Chr 6p21, HLA

region), eight genes in IBD5 (Chr 5q31-33), two genes in IBD6

(Chr 19p13), and one gene in IBD7 (Chr 1p36), well-established

regions of chromosomes for CD risk: no gene in IBD4 (Chr 14q11-

12) was included, however. In addition, there were a number of

chromosome regions that did not show strong or moderate

evidence of association in the single-SNP analysis of WTCCC, but

had three or more genes appearing among the 195 genes, namely,

1q32, 2q14, 8p12, 10q22, 10q26, 11p14, and 18q22. These are

indicated by green highlighting in the tables. Furthermore, there

are clusters corresponding to certain families of genes in the 195

genes. For example, genes associated with phosphoprotein

phosphatase activity (e.g., PPM1K, PPM1L, PPP2R2C, PTPN2)

showed strong evidence of association with CD risk, of which only

PTPN2 had been previously indicated.

Table 1. Forty genes with the strongest evidence for
association with Crohn’s Disease risk, with chromosomal
locations, numbers of SNPs, approximate p-values, and Bayes
factors.

Gene Name Chromosome #SNPs p-value C.BF

ISX 22q12 84 ,3.861026 148.5

SEMA6A* 5q23 152 ,3.861026 96.2

GTF3C4 9q34 4 ,3.861026 91.8

PTGFRN 1p13 15 ,3.861026 85.5

ADRA1B** 5q33 45 ,3.861026 82.3

MYLK3 16q11 2 ,3.861026 77.0

HTR3B 11q23 10 ,3.861026 75.7

RRP15 1q41 29 ,3.861026 75.4

RGL1 1q25 20 ,3.861026 69.9

SORBS1 10q23 46 ,3.861026 65.5

CALCOCO1 12q13 15 ,3.861026 57.9

TMEM156 4p14 13 ,3.861026 52.7

XRCC6BP1 12q14 38 ,3.861026 45.9

FXR1 3q28 7 ,3.861026 37.7

GARNL1 14q13 4 ,3.861026 34.9

GPR161* 1q24 7 ,3.861026 30.9

SORCS1** 10q23-q25 265 ,3.861026 30.6

SAC* 1q24 13 ,3.861026 28.4

LRP1B 2q21 241 ,3.861026 27.2

C18orf62 18q23 79 ,3.861026 25.9

CSRP1 1q32+ 17 ,3.861026 24.2

POU6F2 7p14 58 ,3.861026 22.6

LEF1 4q23-q25 31 ,3.861026 22.3

SEL1L 14q31 170 ,3.861026 21.9

SVIP 11p14+ 88 ,3.861026 21.7

VRK1 14q32 128 ,3.861026 19.3

GLRX3 10q26+ 79 ,3.861026 18.4

ID4* 6p22 79 ,3.861026 15.3

CDH10 5p14 107 ,3.861026 14.9

NOD2** 16q21 5 ,3.861026 14.6

NHLRC1* 6p22 7 ,3.861026 14.0

FMN2 1q43 60 ,3.861026 14.0

IL23R** 1p31 11 ,3.861026 13.6

PTGER4** 5p13 46 ,3.861026 13.5

CTNNA3 10q22+ 257 ,3.861026 13.3

PNPLA6 19p13 5 ,3.861026 13.0

FBXO15 18q22+ 94 ,3.861026 12.5

ATG16L1** 2q37 7 ,3.861026 12.4

RTP2 3q27 4 ,3.861026 12.0

KCNIP4 4p15 154 ,3.8610-6 11.8

**indicates genes in the chromosomal locations where the WTCCC single-SNP
analysis showed strong evidence.
*indicates genes in the chromosomal locations where the WTCCC single-SNP
analysis showed moderate evidence.
+indicates chromosomal locations are those with three or more genes in the
195 genes (see Table S1) showing strong evidence in our WTCCC logic-
regression-based analysis, but without strong or moderate evidence in the
single-SNP analysis of WTCCC.
doi:10.1371/journal.pone.0043035.t001
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Intestine Specific Homeobox (ISX) was the gene most strongly

associated with CD risk in our WTCCC logic-regression-based

analysis and represents a new CD susceptibility gene. Homeobox

genes encode DNA-binding proteins, of which many are thought

to be involved in early embryonic development. ISX is a

transcription factor that regulates gene expression in the intestine

[15]. The logic structure of ISX is shown in Table 2. Based on the

genotypes of the SNPs in the two trees, the following three risk

groups shown in Table 2 emerge: a reference risk group (1540

cases/2562 controls); a low risk group (1 cases/372 controls,

estimated odds ratio 0.0045); and a high risk group (207 cases/2

controls, estimated odds ratio 172.2). Both the low and high risk

groups are defined by uncommon variants with over 150-fold

effect sizes. We confirmed the allele frequencies of these SNPs with

the Hapmap CEU population as an informal check of the

possibility of genotyping errors for the rare variants.

We note that using the WTCCC dataset for discovery and the

dbGaP non-Jewish and Jewish datasets for replication is untenable,

because of the observed population differences (Figure S1) and the

difference in study power due to the large differences in sample

sizes. Another disadvantage is the difference in genotyping

platforms between these data sets, including their genotyping

errors and genomic coverage. Nonetheless, we applied the same

method of analysis to the dbGaP’s non-Jewish and Jewish GWAS

datasets. Since this analysis focused on the 195 genes with strong

evidence of association with CD risk in the WTCCC analysis, the

BF threshold for strong evidence for this stage of the analysis is

2.29. We applied this threshold to the larger BF of the two dbGaP

GWAS analyses. Table 3 lists 17 genes that showed strong

evidence for their CD-risk association in both stages of the

analysis. Seven of the seventeen genes in Table 3 are located in

regions of the genome that showed strong or moderate evidence of

association with CD by the single-SNP analysis of WTCCC data

[12]. Of the remaining ten genes, TMEM183A and NEK2 are both

located in Chromosome 1q32. Chromosome 1q32 has been shown

to be associated with the risk of Ankylosing Spondylitis that is

linked to CD [16]: this region was not identified by the single-SNP

WTCCC or dbGaP analyses. A gene of organic anion transporter,

SLCO6A1, showed strong evidence of association in all three

GWASs, in spite of no previous implication of CD-risk association:

this is significant in view of the known association of SLC22A4 and

SLC22A5 (IBD5), genes of organic cation transporters, with CD

risk [17]. In addition to SLCO6A1, three genes (IL23R, NOD2, and

TMEM183A) showed consistently strong evidence across the three

datasets.

Discussion

Our results illustrate the power of the logic-regression-based

GWAS analysis in identifying specific forms of SNP-SNP

interactions associated with a phenotype and explaining a greater

extent of CD genetics. We found strong evidence of CD-

Association with 195 genes including both previously identified

loci through the single-SNP analysis, in addition to newly

identified susceptibility genes.

In this paper, we reduced the computational demand of logic

regression by limiting the search to SNP combinations within the

same gene, and also by fixing the size of SNP combinations in the

search. These strategies have a definite disadvantage: the search

will not be comprehensive and true underlying SNP-SNP

interactions that are more complex than the limited size under

consideration will not be discovered. In view of the current

practice of assessing the marginal effects of individual SNPs one at

a time, however, we submit that the limited form of logic

regression proposed here provides a clear advance over, and an

alternative to, the individual-SNP analysis. It can search for more

biologically-plausible forms of SNP effects (combination of SNP

intersections and/or unions) with greater degrees of association

indicated by appreciably larger values of odds ratios, although the

search remains approximate due to the limited size.

Despite the limitation of our approach by the small fixed size of

logic regression models, the successful discovery of CD suscepti-

bility genes demonstrates the potential utility of the logic-

regression-based SNP-SNP interaction analysis of GWAS in

providing additional insights to the marginal single-SNP analysis

approach of GWAS. Some of the genes (or their chromosomal

regions) identified by our approach were previously identified only

in linkage studies and not by GWAS: this also attests to the utility

of the proposed approach.

False positive discoveries by GWAS in which a large number of

SNPs are examined for association with a disease are a major

concern. Any discoveries including those reported here have to be

validated rigorously in further investigations for exclusion of false

positive from population stratification and genotyping errors. The

candidate gene approach is also a valid alternative to the data-

driven approach of GWAS, whether driven by a functional or

biological hypothesis or possibly following the potential discoveries

of GWAS. The application of logic regression is less computa-

tionally involved in candidate-gene studies, compared to GWAS.

Proper phenotyping is a key for increasing the chance to identify

susceptibility genes specific for a clinical phenotype of interest. A

Table 2. Logic structures, frequencies, and associated Crohn’s Disease odds ratios of the ISX gene (p-value,3.861026).

rs11089728CC
rs9610191
TT

rs17778240
TT

rs17778240
TT rs5999715AC Logic-based Risk Groups

Genotype
Freq

Case N = 1748 797 (45.6%) 10 (0.6%) 466 (26.7%) 466 (26.7%) 214 (12.2%)

Cont N = 2936 1326 (45.2%) 18 (0.6%) 776 (26.4%) 776 (26.4%) 17 (0.6%)

Logic 1 AND (OR) Frequency Odds Ratio

Logic 2 AND Case Cont

Logic-based Risk Groups Logic 1 = No Logic 2 = No 1540 2562 1.0

Logic 1 = Yes Logic 2 = No 1 372 .0045

Logic 1 = No Logic 2 = Yes 2 0 172.2

Logic 1 = Yes Logic 2 = Yes 205 2

doi:10.1371/journal.pone.0043035.t002
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recent paper on Crohn’s disease [18] provided a good example on

this point: it focused specifically on the small intestinal inflamma-

tion phenotype of the disease and showed that impairments in Wnt

signalling and Paneth cell biology are pathophysiological hall-

marks of this clinical phenotype.

Increasing attention has been paid recently to pathway-based

analysis of GWAS [19]. Our approach can be extended from

gene-level SNP-SNP interaction to pathway-level SNP-SNP

interaction. This approach would be biologically appealing, as it

uses sets of SNPs within the same pathway rather than within the

same gene; however, the logic space to be explored in the

pathway-level analysis is appreciably larger than in the gene-level

counterpart. The search space may be restricted based on some

biological criteria, such as restricting the search to non-synony-

mous coding variants. Such SNP-SNP interaction analysis at the

pathway level could, however, provide further valuable insights

into genetic interactions on the modification of phenotype risks.
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Table S1 One hundred and ninety five genes with the
strongest evidence for association with Crohn’s Disease
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Sample Size (Cases/Controls) (1748/2936) (498/498) (291/429)

Gene Name Chromosome #SNPs p-value C.BF #SNPs p-value C.BF #SNPs p-value C.BF

IL23R** 1p31 11 ,3.861026 13.6 14 ,3.861026 9.3 18 1.461023 3.8

NOD2** 16q21 5 ,3.861026 14.6 4 2.961025 5.8 4 8.761023 2.8

TMEM183A 1q32+ 10 7.661025 5.3 5 6.061024 4.3 5 1.961023 3.7

SLCO6A1 5q21 15 5.761025 5.4 11 4.761024 4.4 11 1.661022 2.4

PTGER4** 5p13 46 ,3.861026 13.5 50 1.661024 4.9 53 1.661021 0.9

CYLD** 16q12 30 ,3.861026 11.2 22 2.261023 3.6 21 1.161021 1.2

SOCS6 18q22+ 111 3.461025 5.6 147 4.761022 1.8 145 1.561022 2.5

ACAD11 3q22 4 ,3.861026 6.2 5 3.761021 0.3 5 1.261023 3.9

CLSTN2 3q23 120 ,3.861026 6.3 100 4.061024 4.4 104 7.661021 20.5

SOX11 2p25 194 ,3.861026 9.6 194 2.861023 3.4 188 3.061021 0.4

CEBPB 20q13 15 5.961024 4.2 27 2.261021 0.7 28 5.561023 3.1

C1orf141** 1p31 10 ,3.861026 10.3 6 4.161023 3.2 7 3.561021 0.3

NEK2 1q32-q41+ 11 8.861025 5.1 13 4.061021 0.2 12 4.961023 3.1

NKX2-3** 10q24 14 7.661026 6.0 7 8.461023 2.8 7 2.961021 0.5

BSN** 3p21 4 ,3.861026 7.0 3 1.261022 2.6 3 7.061021 20.4

RBMS3 3p24-p23 157 2.161024 4.7 177 8.861021 20.8 175 6.961023 2.9

C10orf57 10q22+ 6 6.361024 4.2 9 8.161021 20.6 9 1.461022 2.5

**indicates genes in the chromosomal locations where the WTCCC single-SNP analysis showed strong evidence.
+indicates chromosomal locations are those with three or more genes in the 195 genes (see Table S1) showing strong evidence in our WTCCC logic-regression-based
analysis, but without strong or moderate evidence in the single-SNP analysis of WTCCC.
doi:10.1371/journal.pone.0043035.t003
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