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Abstract: The current study was conducted to investigate antifungal and insecticidal activities of
essential oil extracted from the Moroccan Withania frutescens L. (EOW), and their chemical compo-
sition was profiled. To achieve this goal, EOW was extracted by the hydro-distillation method and
their phytochemical constituents were characterized by gas chromatography-mass spectrometry
analyses (GC-MS). Insecticidal activity was evaluated by use of four tests: contact toxicity, inhalation
toxicity, and repellent tests. Antifungal activity was evaluated on Fusarium oxysporum f. sp. Ciceris
(F. oxysporum) using different concentrations of EOW. GC/MS analysis revealed that EOW was rich
in carvacrol (31.87%), thymol (30.08%), and camphor (9.13%). At a 1-µL/L dose, EOW exhibited
mortality rates of 23.13 ± 1.07% and 24.41 ± 1.21% against Callosobruchus maculatus (C.maculatus)
by inhalation and contact, respectively. Notably, EOW dose of 20 µL/L caused significant mortality
rates of 95.1 ± 3.5% and 76.69 ± 1.71% by inhalation and contact, respectively. EOW exhibited an
inhibitory effect on mycelial growth against the tested fungi F. oxysporum of 100% and 93.5 ± 1.1%
for the 9 and 4.5 mg/mL doses, respectively. The reduced mycelial growth rate for F. oxysporum was
recorded to be 0.3 ± 0.1 and 0.6 ± 0.1 mm/h for the EOW doses of 2.25 and 4.5 mg/mL, respectively.
The outcome of the present work showed that EOW has a promising antifungal and insecticidal
activity, and it can therefore be employed as a natural alternative insecticidal and mycocidal agent to
replace the chemically-synthesized ones.

Keywords: antifungal; insecticidal; Withania frutescens L.; fungi; Fusarium oxysporum f. sp. Ciceris;
Callosobruchus maculatus
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1. Introduction

Despite being small, pulse crops represent significant members of the legume family,
which includes more than 1800 species. Peas, beans, lentils, chickpeas, and faba beans
are examples of pulses, the seeds of which are primarily consumed as food. Pulses are
unsurpassed nutritionally-rich vegetable foods in terms of dietary protein content and
contain amino acids essential for human nutrition. It is thus fitting that pulses can re-
place the dietary protein deficiency of animal origin. Some pulses represent a natural
source of micronutrients such as vitamins (A, B, C, etc.), trace elements, and mineral salts
indispensable for sustaining healthy body functions [1]. However, pulse crops are very
often characterized by low and unstable yields during the harvest periods because of their
sensitivity to abiotic constraints (cold, heat, soil degradation), biotic constraints (diseases
and insect pests), and the rarity of resistant varieties to such constraints [2].

Yield instability is mostly recorded in crops due to the implication of different environ-
mental factors such as abiotic and biotic constraints. In addition, pulses along with legumes
may be subject to damage as a result of poor storage conditions. Fungi, molds, and insect
pests make post-harvest storage difficult and cause yield loss through a direct decrease in
weight and nutritional qualities of the product [3,4]. Post-harvest losses caused by insect
pests during storage have been reported to be a growing problem in Africa, leading to the
loss of more than 30% of stored dry food products [5].

Callosobruchus maculatus (C. maculatus) belongs to the cosmopolitan insect pests attack-
ing crops of leguminous plants [6]. The existence of this insect in leguminous stocks may
cause a great loss because of its rapid multiplication in warehouses. In this sense, it was
reported that C. maculatus can affect more than 50% of stock during a few months along
with damage to the organoleptic characteristics of products [7,8].

Fusarium oxysporum (F. oxysporum) is the most destructive disease of the chickpea
crop with huge annual yield losses [9]. For instance, the loses due to this fungal strain
reached 12–15% in Spain [10], 40% in Tunisia [11], and 10–50% in Pakistan [12]. Fusarium
can damage the crop when conditions are favorable for its development [11].

Faced with the threat posed by these insects and fungi, their control is essentially
based on the use of chemical insecticides, especially fumigants whose repercussions can be
harmful to human health and the biological balance of the ecosystem. The use of chemical
insecticides is associated with some serious shortcomings as it is known to cause prominent
hazardous non-target toxicity, environmental pollution and can lead to the development
resistant strains or superbugs. The search for natural, eco-friendly, and innovative pest-
control strategies is justified [13].

In this context, the use of medicinal plants with an insecticidal effect is becoming in-
creasingly important throughout the world due to their eco-friendly charecteristics. Plants
are exploited in several forms to limit post-harvest losses either as a crude plant or through
its derivatives such as powders, essential oils, plant oils, or even purified compounds.
W. frutescens L. is an annual woody medicinal plant that belong to Magnoliophyta divi-
sion, class Magnoliopsida, order Solanales, family Solanaceae, and genera Withania. This
genus is indigenous to North Africa, South Asia, Western Asia, Southern Europe, the
Mediterranean, and the Canary Islands [14]. Chemical analysis of crude extracts prepared
from W. frutescens revealed the presence of several potentially bioactive phytoconstituents
including polyphenols, tannins, mucilage, terpenoids, flavonoids, and saponins. Previous
ethnopharmacological surveys reported the use of W. frutescens in controlling disease,
namely: tuberculosis, neurodegenerative, conjunctivitis, and cancer [15,16]. Similarity,
scientific reports showed that W. frutescens possesses several useful medicinalproperties
including antifungal, antibacterial, anti-inflammatory, antidiabetic, and wound healing [17].
However, reports on the medicinal properties of EOW are lacking.The present study was
therefore initiated to investigate the chemical composition, antifungal, and bio-insecticidal
effects of EOW against F. oxysporum and adult C. maculatus.
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2. Material and Methods
2.1. Plant Material

W. frutescens was harvested at the end of March 2019 from the surrounding area of
Fez-Morocco. The botanical identification was carried out by Amina Bari (Sidi Mohamed
Ben Abdellah University, Morocco). Next, plant specimens were deposited at the herbarium
of the University under the voucher number BPRN-69WF. Leaves of W. frutescens were
dried in the shade for 10 days before being ground into powder prior to extartcion.

2.1.1. Extraction of EOW

In the present work, the essential oil was obtained from leaves of W. frutescens (Figure 1)
by the hydro-distillation method using a Clevenger apparatus for 2 h. EOW was dried with
anhydrous sodium before being filtered and stored in darkness at 4 ◦C until further use.
The yield of EOW was calculated using the following Formula (1):

YHE = MHE/MD × 100 (1)

where YHE is the yield of essential oil (%), MHE is the mass of the EO (g), and MD is the
mass of dry plant matter (g)
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Figure 1. Leaves of Withania frutescens L. used for essential oil extraction.

2.1.2. Gas Chromatography—Flame Ionization Detector (GC-FID)

The extracted oil was diluted with hexane (1:10 dilution) before using 1 µL for chro-
matographic characterization. A trace gas ghromatograph (GC) equipped with a with
HP-5MS non-polar fused silica capillary column (60 m, 0.32 mm, film thickness 0.25 µm)
was used to fulfill analysis. The system was programmed with an oven temperature of
50 ◦C/2 min to 280 C at 5 ◦C/min, whereas the final temperature was held for 10 min.
The injection was done with split mode, ratios 1:20; nitrogen (N2) carrier gas, flow rate
1 mL/min. Injector temperatures were set to 250 and 280 ◦C for the detector (flame ioniza-
tion detector, FID) [18].

2.1.3. Analysis of the Chemical Composition of EOW by GC/MS

The phytochemical identification of different chemical compounds contained in EOW
was carried out by GC-MS. In this sense, the essential oils were analyzed using a Thermo
Fischer capillary model coupled with the mass spectrometer system. A non-polar HP-5MS
capillary fused silica column with 60 m, 0.32 mm, 0.25 µm film thickness was used to achieve
analysis. The operating condition of the GC-MS analysis included an initial temperature
of 40 ◦C/2 min, and a speed of 2 ◦C/min with a final temperature of 260 ◦C/10 min;
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meanwhile, the injector temperature was 250 ◦C. Further, helium was used as a carrier gas
with 1 mL/min. EOW was diluted in hexane with a dilution ratio (10:100). Next, 1 µL
was injected with fractional injection and ionization mode. The sweep mass range was
m/z 40–650, the ion source temperature 200 ◦C, ionization energy 70 eV, and interface
line temperature 300 ◦C. The characterization of chemicals was done by determining their
retention indices (RI) referring to those of a serial n-alkane counterpart (C8-C20) [19].

2.2. Insecticidal Activity of EOW
2.2.1. Breeding of insects

C. maculatus used for EOW insecticidal activity testing was acclimatized under the
following laboratory conditions: 25 ± 1 ◦C, 65 ± 5% relative humidity, and a photoperiod of
10:14 h (light/dark). All experiments were performed under the same conditions. Chickpea
(Cicer arietinum) indigenous to Morocco lands was used for testing.

2.2.2. Toxicity of EOW against Callosobruchus Maculatus
Toxicity by Contact

In the present work, 100 g of chickpeas were used for testing purposes. To achieve this
goal, grains were infested by five pairs of insects (male and female) of 0–48 h packed in plas-
tic containers (1 µL) tightly closed. Next, EOW was added to the sample at concentrations
ranging from 1 to 20 µL/100 g before being shacked for two minutes. Untreated grains
confined with C. maculatus were used as control. After 48 h of treatment, C. maculatus mor-
tality was assessed. Eggs deposited in the grains were counted at 12 days post-treatment,
whereas emerged insects were counted regularly at 28 days. The observed mortality rate
was corrected by Abbott’s formula [20,21]:

Pc = 100× Po − Pt
100 − Pt

(2)

where Pc is the percentage corrected mortality, Po is the observed mortality in the trial and
Pt is the observed mortality in the control.

The percentage decrease in the number of eggs and adults emerged in each concentra-
tion of EOW was calculated using the following formula:

PR =
NC − NT

CN
×100 (3)

where PR is the percent oviposition or decrease in emerged insects, NC is the number of
eggs or insects hatched in the control, and NT is the number of eggs or insects hatched in
the treatment.

Toxicity by Inhalation

In glass jars of 1-L volume, small masses of the cotton were suspended with a thread
attached to the inside of the lid. EOW doses of 1, 5, 10, and 20 µL were dropped into
the cotton using a micropipette. Next, ten C. maculatus (male and female) whose ages
ranged from 0 to 48 h were placed into jars with different concertation of oil. For each dose,
three replicates were performed. The comparison was made with a control sample (cotton
without test solutions). The observed mortality rate was corrected by the formula [21]:

Pc = 100× P0 − Pt
100 − Pt

(4)

where Pc is the percentage corrected mortality, Po is the observed mortality in the trial, and
Pt is the observed mortality in the control.
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Repulsion Test

The repellent effect of EOW on C. maculatus adults was evaluated using the preferential
area method on filter paper. Briefly, 9-cm diameter discs prepared from filter paper were
used for this purpose. Discs were uniformly immersed with 0.5 mL of EOW at different
doses (1, 5, 10, and 20 µL/mL) corresponding to 0.016; 0.079; 0.157; and 0.315 µL/disc per
disc. Discs immersed with a similar volume of acetone were used for control. Next, the
Petri dishes were closed with Parafilm before being incubated for 30 min. The number of
bruchids present on the half of the disc treated with EOW was counted against the number
on the untreated part. Three replicates for each experiment were conducted under the same
environmental conditions as the insect rearing.

The percentage of repulsion (PR) was calculated according to the following for-
mula [22]:

PR =
NC − NT
NC + NT

×100 (5)

where PR is the percent repellency (%), NC is the number of insects in the control area and
NT is the number of insects in the treatment area.

2.3. Antifungal Activity of EOW

In the present work, the direct contact method was used to investigate the antifungal
effect of the essential oil extracted from the aerial part (leaves) of W. frutescens.

2.3.1. Preparation of the Suspension Cultures

In the present work, Fusarium oxysporum (BMFS19) was kindly provided by the Lab
of Biotechnology (Faculty of Science, Fez, Morocco). Next, spores of 5 days cultures were
seeded on the Petri dishes including one milliliter of sterile physiological water. Next,
the obtained suspension was estimated by measuring the optical density (OD) using
a spectrophotometer at 630 nm before being adjusted to obtain a suspension with 107

spores/mL [23].

2.3.2. Preparation of Culture Media and Incubation of Petri Dishes

Media were prepared by mixing different concentrations (v/v) of EOW and 0.2% agar
and potato dextrose agar (PDA) medium (Table 1). The obtained solution was autoclaved
at 120 ◦C for 20 min [24,25]. Next, 10 µL of spore inoculum were seeded onto the Petri
dishes except for the control medium. Thereafter, the Petri dishes were sealed with parafilm
before being incubated for 6 days at a temperature of about 26.5◦C [23,24].

Table 1. Preparation of the culture medium.

Medium PDA (mL) EOW (mL) Agar 0.2% (mL) Concentration (mL)

Control 40.00 0.0 0.0 0
1 36.00 0.4000 3.6000 1/100
2 38.00 0.2000 1.8000 1/200
3 39.00 0.1000 0.9000 1/400
4 39.50 0.0500 0.4500 1/800
5 39.75 0.0250 0.2250 1/1600
6 39.75 0.0125 0.1125 1/3200

2.3.3. Evaluation of Mycelial Growth

The evolution of the mycelial growth of Fusarium oxysporum was carried out each day
by measuring the diameter of the mycelial colony taking into consideration the controlled
growth. In this sense, the growth inhibition rate (IY) was calculated according to the
following formula [23,24].

IY =
Dt − Ds

Dt
×100 (6)
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where Dt is the diameter of colonies without EO and Ds is the diameter of colonies after
being treated with EO.

Determination of Minimum Inhibitory Concentrations

Determination of minimum inhibitory concentrations (MIC) of EOW against the
studied fungal was effectuated according to the previously reported protocols [26,27].
Briefly, Petri dishes with concentrations that showed a complete absence of mycelial growth
were selected to determine the minimum inhibitory concentrations (MICs).

Determination of the Mycelial Growth Rate (MG)

The mycelial growth rate of each concentration was determined by the formula [28]:

Cs = (D1/T1) + (D2 − D1)/T2)+ · · ·+(Dn − D(n − 1)/Tn) (7)

where Dn is the diameter of growth measured each day in millimeters and Tn is the time
expressed in days.

2.4. Statistical Analysis

The statistical ananlysis was conducted with one-way ANOVA and the reults obtained
are expressed as means plus standard deviations. In addition, Tukey’s test was used as
post hoc test for multiple comparions. Significant values were considered when P was less
than 0.05.

3. Results and Discussion
3.1. Identification of EOW Composition by GC/MS

The phytochemicals identified in EOW by GC/MS are summarized in Figure 2 and
Table 2. The extraction yield of EOW was about 0.28%, which is reasonable relative to
species among Solanaceas [18]. This yield is comparable to some plants that are industrially-
exploited as a source of essential oils such as Latin rosa L.(0.1–0.35%), Salvia rosmarinus L.
(1–2.5%), Mentha piperita L. (0.5–1%), Citrus Aurantium L. (0.5–1%), Lavandula angustifolia L.
(0.8–2.8%), Pimpinella anisum L. (1–3%), and Thymus vulgaris L.(2–2.75%) [29]. In addition,
the chemical composition of EOW contained certain chemicals that were also reported in
similar studies on the chemical composition of plants; such as pulegone compounds [30–32].

The difference in the extraction yield between plants can be ascribed for the implication
of different environmental factors [33]. The findings of the chemical analysis revealed that
the studied EOW was notably composed of many potentially active phytochemicals such
as Carvacrol (31.87%), Thymol (30.076%), and Camphor (9.13%). Taken together, our results
were found to be consistent with previous reports [18], which demonstrated the presence
of Camphor, Thymol, and Carvacrol as major chemical consituents of EOW [18].
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Table 2. Phytochemical composition of EOW identified by GCMS.

Peak R.T (min) Name Formula Area (%) RI Chemical Structure

1 6.70 Camphene C10H16 4.42 946

Life 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 2. Chromatography profile of EOW identified by GCMS. 

Table 2. Phytochemical composition of EOW identified by GCMS. 

Peak  R.T (min) Name Formula Area (%) RI Chemical Structure 

1 6.70 Camphene C10H16 4.42 946 

 

2 6.81 1,8-Cineole C10H18O 6.93 1031 

 

6.00 8.00 10.00 12.00 14.00 16.00 18.00

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

Tim e-->

Abundance

TIC: EO  FET .D

  6.70

  6.81

  7.46

  7.63

  7.74

  8.09

  8.95

  9.28
  9.38

 10.03

2 6.81 1,8-Cineole C10H18O 6.93 1031

Life 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 2. Chromatography profile of EOW identified by GCMS. 

Table 2. Phytochemical composition of EOW identified by GCMS. 

Peak  R.T (min) Name Formula Area (%) RI Chemical Structure 

1 6.70 Camphene C10H16 4.42 946 

 

2 6.81 1,8-Cineole C10H18O 6.93 1031 

 

6.00 8.00 10.00 12.00 14.00 16.00 18.00

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

Tim e-->

Abundance

TIC: EO  FET .D

  6.70

  6.81

  7.46

  7.63

  7.74

  8.09

  8.95

  9.28
  9.38

 10.03



Life 2022, 12, 88 8 of 14

Table 2. Cont.

Peak R.T (min) Name Formula Area (%) RI Chemical Structure

3 7.47 Fenchone C10H16O 4.43 1086

Life 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

3 7.47 Fenchone C10H16O 4.43 1086 

 

4 7.63 α-Thujone C10H16O 2.88 1102 

 

5 7.74 β-Thujone C10H16O 1.53 1114 

 

6 8.09 Camphor C10H16O 9.13 1146 

 

7 8.95 Pulegone C10H16O 5.37 1237 

 

8 9.28 Thymol C10H14O 30.08 1290 

 

9 9.39 Carvacrol C10H14O 31.87 1299 

 

10 10.03 
Piperitenone 

oxide 
C10H14O2 3.37 1368 

 

  

4 7.63 α-Thujone C10H16O 2.88 1102

Life 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

3 7.47 Fenchone C10H16O 4.43 1086 

 

4 7.63 α-Thujone C10H16O 2.88 1102 

 

5 7.74 β-Thujone C10H16O 1.53 1114 

 

6 8.09 Camphor C10H16O 9.13 1146 

 

7 8.95 Pulegone C10H16O 5.37 1237 

 

8 9.28 Thymol C10H14O 30.08 1290 

 

9 9.39 Carvacrol C10H14O 31.87 1299 

 

10 10.03 
Piperitenone 

oxide 
C10H14O2 3.37 1368 

 

  

5 7.74 β-Thujone C10H16O 1.53 1114

Life 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

3 7.47 Fenchone C10H16O 4.43 1086 

 

4 7.63 α-Thujone C10H16O 2.88 1102 

 

5 7.74 β-Thujone C10H16O 1.53 1114 

 

6 8.09 Camphor C10H16O 9.13 1146 

 

7 8.95 Pulegone C10H16O 5.37 1237 

 

8 9.28 Thymol C10H14O 30.08 1290 

 

9 9.39 Carvacrol C10H14O 31.87 1299 

 

10 10.03 
Piperitenone 

oxide 
C10H14O2 3.37 1368 

 

  

6 8.09 Camphor C10H16O 9.13 1146

Life 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

3 7.47 Fenchone C10H16O 4.43 1086 

 

4 7.63 α-Thujone C10H16O 2.88 1102 

 

5 7.74 β-Thujone C10H16O 1.53 1114 

 

6 8.09 Camphor C10H16O 9.13 1146 

 

7 8.95 Pulegone C10H16O 5.37 1237 

 

8 9.28 Thymol C10H14O 30.08 1290 

 

9 9.39 Carvacrol C10H14O 31.87 1299 

 

10 10.03 
Piperitenone 

oxide 
C10H14O2 3.37 1368 

 

  

7 8.95 Pulegone C10H16O 5.37 1237

Life 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

3 7.47 Fenchone C10H16O 4.43 1086 

 

4 7.63 α-Thujone C10H16O 2.88 1102 

 

5 7.74 β-Thujone C10H16O 1.53 1114 

 

6 8.09 Camphor C10H16O 9.13 1146 

 

7 8.95 Pulegone C10H16O 5.37 1237 

 

8 9.28 Thymol C10H14O 30.08 1290 

 

9 9.39 Carvacrol C10H14O 31.87 1299 

 

10 10.03 
Piperitenone 

oxide 
C10H14O2 3.37 1368 

 

  

8 9.28 Thymol C10H14O 30.08 1290

Life 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

3 7.47 Fenchone C10H16O 4.43 1086 

 

4 7.63 α-Thujone C10H16O 2.88 1102 

 

5 7.74 β-Thujone C10H16O 1.53 1114 

 

6 8.09 Camphor C10H16O 9.13 1146 

 

7 8.95 Pulegone C10H16O 5.37 1237 

 

8 9.28 Thymol C10H14O 30.08 1290 

 

9 9.39 Carvacrol C10H14O 31.87 1299 

 

10 10.03 
Piperitenone 

oxide 
C10H14O2 3.37 1368 

 

  

9 9.39 Carvacrol C10H14O 31.87 1299

Life 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

3 7.47 Fenchone C10H16O 4.43 1086 

 

4 7.63 α-Thujone C10H16O 2.88 1102 

 

5 7.74 β-Thujone C10H16O 1.53 1114 

 

6 8.09 Camphor C10H16O 9.13 1146 

 

7 8.95 Pulegone C10H16O 5.37 1237 

 

8 9.28 Thymol C10H14O 30.08 1290 

 

9 9.39 Carvacrol C10H14O 31.87 1299 

 

10 10.03 
Piperitenone 

oxide 
C10H14O2 3.37 1368 

 

  

10 10.03 Piperitenone
oxide C10H14O2 3.37 1368

Life 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

3 7.47 Fenchone C10H16O 4.43 1086 

 

4 7.63 α-Thujone C10H16O 2.88 1102 

 

5 7.74 β-Thujone C10H16O 1.53 1114 

 

6 8.09 Camphor C10H16O 9.13 1146 

 

7 8.95 Pulegone C10H16O 5.37 1237 

 

8 9.28 Thymol C10H14O 30.08 1290 

 

9 9.39 Carvacrol C10H14O 31.87 1299 

 

10 10.03 
Piperitenone 

oxide 
C10H14O2 3.37 1368 

 

  



Life 2022, 12, 88 9 of 14

3.2. Insecticidal Activity

In the present work, different dosages of EOW (0.1, 5, 10, and 20 µL/L air volume)
were used to determine its toxicity against C. maculatus by use of ihalation test, as previosuly
described in erlier work [34]. Adult mortality of C. maculatus was recorded every 24 h for
four days, and the findings are given in Figure 3.
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Figure 3. Mean percentage mortality of C. maculatus adults exposed to increasing doses (µL/L) of
essential oils extracted from Withania (EOW) by inhalation (A) and by contact (B) as a function of
increasing duration (h) of exposure (insects-EOW).

Results revealed that the lowest concentration (1 µL/L air volume.) of EOW resulted
in 23.13 ± 1.07% and 24.41 ± 1.21% mortality in adult C.maculatus by inhalation and
contact, respectively, 96 h post-exposure (Figure 3). The highest concentration (20 µL/L air
volume) caused mortality rate of 95.1 ± 3.5% and 76.69 ± 1.71% by inhalation and contact,
respectively. By contrast, no insect mortalities were observed in the control. LC50 value
obtained for inhalation test was determined to be 13.28 ± 2.62 µL/L air volume, which is
lower than that obtained with contact test (18.41 ± 1.29 µL/L).

In the bioassay, egg laying of C. maculatus occurred within 24 hrs of mating and
the number of eggs laid varied according to applied doses of EOW. A significant dose-
dependent reduction in egg-laying behavior, where a maximum reduction of 81.26 ± 2.01%,
was recorded with the 20 µL EOW/L air volume (Figure 4B). It was evident that EOW
caused significant reduction in the viability rate of eggs relative to the control, reaching
84.0 ± 2.65% with the maximum dose of 20 µL EOW/L (Figure 4A). Taken together, our
results were found to be consistent with those reported elsewhere [34]; whereby essential
oil isolated from Mentha pulegium L. resuted in adverse effects on the egg-laying behavior
of C. maculatus.

The results represented here showed that the EOW under investigation exhibited
strongly repellent activity against C. maculatus with a rate of 95.12 ± 3.42%, in dose-
dependent manner (Figure 5). Therefore, the potential of EOW as a valuable source of
ecofriendly insecticidal agents against C. maculatus has been confirmed. It is evident that
pest control strategies relying upon the use of chemically-synthesized products have been
associated with alarmingly growing environmental concerns. Therefore, it is primitive to
switch to pest-control products of natural origin such as plant-derived essential oils; which
could be a game-changer in fighting pests due to their powerful insecticidal activityagainst
different larval stages [35]. One major advantage of using natural essential oils extracted
from plants is their wide safety margins as they are characterized as being environmentally
friendly insecticides and are considered a valuable source for the development of novel
natural bioactive agents as an effective alternative to synthetic ones [36].
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≤ repellency ≤ 80%; Class e (80.1 ≤ repellency ≤ 100%.

Several studies have documented the beneficial action of essential oils on reducing
longevity of pest species in stored grains including C. maculatus. Because of their high
volatility, essential oils along with their constituents, particularly monoterpenes, exert
insecticidal effects and disrupt insect growth at different life stages [28–30]. Efficacy of
essential oils varies according to their phytochemical profiles and the target insect, e.g., bean
sprout, is more sensitive to phenolic monoterpenes [36–39]. Indeed, monoterpene mixtures
are neurotoxic agents acting on different targets. For example, it has been reported that
slinalool caused a reduction in the amplitude and frequency of the action potential, whereby
leads to a reduction in the post-hyperpolarization phase that follows the transmission of the
nerve impulse. By contrast, estragol has been reported to exhibit more specific reduction in
the post-hyperpolarization phase. The simultaneous action of the two compounds caused
paralysis and eventually the death of the insects [39]. On the other hand, the effect of
essential oils on reproduction is the result of both an inhibition of oogenesis and an increase
in the retention of eggs in females lateral oviducts. In this context, previous studies have
reported the modifications in the environment surrounding the oviposition sites can lead
to inhibition of oogenesis and retention of eggs in oviducts [32,33].
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3.3. Antifungal Activity of EOW

The mycelial growth of the studied fungal strain F. oxysporum was significant in
the absence of EOW, resulting in mycelial diameter of 60 mm (Figure 6a). However,
this growth was strongly inhibited in the presence of EOW in a dose-dependent manner
(0.28 to 9 mg/mL). Mycelial growth was evaluated as a function of both time and EOW
concentration tested by measuring the diameter of fungal mycelium (Figure 6b). Figure 6
clearly shows a dose-dependent significant inhibition of mycelial growth in the presence of
EOW compared to the negative control (0 mg/mL). Concerning the kinetics of mycelial
growth, it was noticed that mycelial growth differed according to the concertation applied,
such that the lowest EOW concentrations (2.28 and 4.5 mg/mL) permitted mycelial growth,
which had gradually started from the second day of incubation. However, total inhibition of
mycelial growth was recorded with EOW maximum concentration of 9 mg/mL (Figure 6c).
From this figure, it can be seen that the absence of essential oil allowed mycelial growth
from the first day of incubation compared to the control (Figure 6c). Therefore, it can be
concluded that EOW has a potent fungistatic effect in a dose-dependent manner. Fungal
inhibition rates of EOW are represented in Figure 6d, depictingthe evaluation of the
inhibition percentage of the studied essential oil. A significant inhibitory activity leading to
a maximal fungicidal effect (100% total inhibition) was observed at the EOW concentration
of 9 mg/mL (Figure 6d). Hence, it can be concluded that EOW strongly controlled F.
oxysporum mycelial growth rate exhibiting both fungistatic and fungicidal potencies that
were dependent on the concentration used. For example, it was noticed that the inhibition
of F. oxysporum growth rate increased with increasing oil concentration so that a total growth
rate inhibition was recorded for the maximum EOW concentration of 9 mg/mL. Thus, the
obtained results unequivocally confirm that the essential oil under investigation exhibits
effective growth-control potencies against F. oxysporum in a dose-dependent fashion. Based
on the investigated parameters in the current study, such as mycelial growth, mycelial
growth kinetics, inhibition rates, and mycelial growth rate, we can confirm that EOW has
strong antifungal activity against F. oxysporum.
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Figure 6. Results of the antifungal activity of EOW on Fusarium oxysporum f. sp. (a) Effect of EOW 

on Fusarium oxysporum f. sp mecylium; (b) Phograph of Fusarium oxysporum f. sp; (c) Effect of EOW 

on Fusarium oxysporum f. sp growth kinetics; (d) Effect of EOW on Fusarium oxysporum f. sp growth 

speed and inhibition rate. 
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speed and inhibition rate.

This observed strong fungicidal activity exerted by EOW against the studied fun-
gal strain cloud be ascribed for its chemical constituents, particularly thymol, which
was detected by GC-MS. These results were corroborated by those reported in earlier
studies [18,27], which showed that thymol and carvacrol are among the most active com-
pounds in essential oils against microbes [18,27]. These two molecules have a very broad
spectrum of antimicrobial activity and are naturally-present in the essential oils of most
plant species [40–43]. The mechanism-of-action whereby these natural compounds kill
fungi has been investigated elsewhere [44–46]. Essential oils rich in phenolic compounds
have been reported to cause phenol toxicity against fungi is by the inactivation of fun-
gal enzymes that have SH group in their active sites [44–46]. Phenolic terpenes are also
involved by binding to the amine and hydroxylamine groups of microbial membrane pro-
teins, causing alteration of permeability, and eventually leading to leakage of intracellular
constituents [47–50].

4. Conclusions

The use of natural aromatic products derived from medicinal plants as fungal and pest
control strategies can have several valuable advantages over current synthetic products. The
outcome of the present work suggests that EOW has powerful insecticidal and antifungal
activities, which could be explained by its richness in potentially bioactive compounds
such as carvacrol and thymol. Further detailed investigations on the ecofriendly essential
oil extracted from Moroccan W. frutescens, in terms of toxicity against non-target organisms
along with testing its purified compounds, are highly warrented.
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