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A decade ago, when the Human Microbiome Project was starting, urinary tract (UT) was
not included because the bladder and urine were considered to be sterile. Today, we are
presented with evidence that healthy UT possesses native microbiota and any major event
disrupting its “equilibrium” can impact the host also. This dysbiosis often leads to cystitis
symptoms, which is the most frequent lower UT complaint, especially among women.
Cystitis is one of the most common causes of antimicrobial drugs prescriptions in primary
and secondary care and an important contributor to the problem of antimicrobial
resistance. Despite this fact, we still have trouble distinguishing whether the primary
cause of majority of cystitis cases is a single pathogen overgrowth, or a systemic disorder
affecting entire UT microbiota. There are relatively few studies monitoring changes and
dynamics of UT microbiota in cystitis patients, making this field of research still an
unknown. In this study variations to the UT microbiota of cystitis patients were
identified and microbial dynamics has been modeled. The microbial genetic profile of
urine samples from 28 patients was analyzed by 16S rDNA Illumina sequencing and
bioinformatics analysis. One patient with bacterial cystitis symptoms was prescribed
therapy based on national guideline recommendations on antibacterial treatment of
urinary tract infections (UTI) and UT microbiota change was monitored by 16S rDNA
sequencing on 24 h basis during the entire therapy duration. The results of sequencing
implied that a particular class of bacteria is associated with majority of cystitis cases in this
study. The contributing role of this class of bacteria – Gammaproteobacteria, was further
predicted by generalized Lotka-Volterra modeling (gLVM). Longitudinal microbiota insight
obtained from a single patient under prescribed antimicrobial therapy revealed rapid and
extensive changes in microbial composition and emphasized the need for current
guidelines revision in regards to therapy duration. Models based on gLVM indicated
protective role of two taxonomic classes of bacteria, Actinobacteria and Bacteroidia class,
which appear to actively suppress pathogen overgrowth.
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INTRODUCTION

Human microbiome is a fairly new concept, fueled by the
advances in sequencing technology which allowed identification
of microorganisms directly from the environment (Oulas et al.,
2015). Combined with advances in computational tools and
databases it allowed for identification of microorganisms living
in and on our body - microbiota, as well as reading out the
collective genome encoded in those microorganisms –
microbiome (Qin et al., 2010). UT is one of the last body
niches discovered to be inhabited by microorganisms.
Microbiota inhabiting a healthy UT is dominated by slow-
growing species, which require complex nutrients for growth
and are often missed during standard urine culture (SUC)
procedure (Brubaker and Wolfe, 2016). Reason for that is the
long prevailing dogma about sterility of the UT, recently
overturned thanks to advances in sequencing methods and
enhanced urine culture methods (Whiteside et al., 2015;
Thomas-White et al., 2016). Discovery of urinary microbiome
(Nelson et al., 2010; Wolfe et al., 2012; Lewis et al., 2013; Hilt
et al., 2014; Brubaker and Wolfe, 2015) shifts our perception
about treating UTI as it acknowledges normal presence of
microorganisms not causing inflammation symptoms. Whether
composition of “normal” urinary microbiota has a protective,
detrimental or neutral role in it is still in focus of research. UTI
being one of the most commonly diagnosed infections in the
world, especially among women present great burden to health
systems and to quality of life of affected individuals, especially in
case of recurring infections. Urinary microbiota, unlike
microbiota at other body niches, has low-biomass and fairly
low species richness, usually dominated by one or two species.
Some studies are suggesting that majority of organisms identified
in healthy humans are common to men and women and that
male urinary microbiota is just a subset of female one (Gottschick
et al., 2017). Others suggest male and female urinary microbiota
can be distinguished based on abundance of specific genera, with
higher abundance of Lactobacillus and Prevotella genera being
characteristic for female and higher abundance of genus
Corynebacterium for healthy male urinary microbiota (Fouts
et al., 2012). By sequencing and culture techniques, most
commonly found microbes in healthy females at a genus level
are Lactobacillus, followed by Gardnerella, Corynebacterium,
Streptococcus, and Staphylococcus species (Wolfe et al., 2012;
Mueller et al., 2017; Neugent et al., 2020). Due to the fact that
male and female lower UT are structured differently, it is
challenging to distinguish from healthy male and female
urinary microbiota. Current SUC results have shown urinary
microbiota during an UTI is dominated by standard urinary
pathogens such as uropathogenic Escherichia coli, Klebsiella,
Pseudomonas, and Enterobacter species, but have also
identified novel bacteria associated with infection such as
Acidovorax, Rhodanobacter, and Oligella species (Flores-
Mireles et al., 2015; Moustafa et al., 2018). However, innate
limitations of SUC, which relate to culturing conditions and
differences in growth media, differences in interpretation
dependent on clinical condition and time to completion of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
findings have to be considered when interpreting these studies
results. UTI-related urinary microbiota’s metagenome showed a
number of antimicrobial resistance genes present, questioning
efficacy and wisdom of prescribing antibiotic treatment without
determining antibiotic sensitivity (Hasman et al., 2014; Mulder
et al., 2019). Applying oral antibiotics for UTI treatment has led
to decrease in the diversity of urinary microbiota and impacted
“equilibrium” of microorganisms present, with unexpected
increase in abundance of Lactobacillus species (Siddiqui et al.,
2012). However, there are a few studies exploring the link
between urinary microbiota, UTIs and antibiotic use
(Gottschick et al., 2017; Mulder et al., 2019). Excessive and
irrational use of antibiotics results in over-treatment of cystitis
and promotes growth of antibiotic resistant strains (Frost et al.,
2019; Malik and Bhattacharyya, 2019). In order to change this
negative trend, two major therapy parameters have to be
reassessed. Although the first parameter, antimicrobial
susceptibility is satisfactory, being performed routinely, the
second one - therapy duration is much more difficult to assess.
Despite good evidence that shorter duration of antibiotics
therapy have led to less adverse effects (Jancel and Dudas,
2002; Milo et al., 2005), optimal duration is still largely
unrecognized by medical community. Unfortunately, this leads
to rather arbitrary duration of treatment (“magic” numbers such
as 7, 10, and 14 days), being prescribed to patients in practice
(Pezzani et al., 2020). The main reason for this is mainly
historical; due to the fact that antibiotics research is neglected
by modern pharma (Harbarth et al., 2015) we rely on outdated
studies. Beside this issue, a rather slow take-up of new
technologies coming from genomics and proteomics in
medical practice is causing a gap between cutting edge research
in fields such as precision medicine on one side and primary care
on the other (Ho et al., 2020). The fact that highly
interdisciplinary teams are conducting research while primary
care physicians usually work alone is probably the main reason
why this gap will not be closing any time soon.

In this work, we present the results of 16S rRNA sequencing
of urinary microbiota from 28 patients with suspected cystitis.
Moreover, we have investigated a daily change in urine
microbiota content in a patient receiving prescribed antibiotic
treatment based on current national guidelines. Illumina
sequencing and bioinformatics estimated relative abundances
of taxa comprising patients urinary microbiota were used to
build generalized Lotka-Volterra models (gLVM), which
indicated a common taxonomic denominator in all analyzed
urine samples. Furthermore, gLVM suggested that interactions
between major taxonomy classes or UT microbiota
modeled according to simple predator-prey dynamics indicate
protective role of bacteria belonging to Actinobacteria and
Bacilli classes in case of bacterial cystitis associated with
Gammaproteobacteria class pathogen. Monitoring of one
patient microbiota for the entire duration of prescribed
antimicrobial therapy on 24 h basis, suggested that current
national guidelines on antimicrobial treatment and prophylaxis
of urinary tract infections should be revised when it comes to
therapy duration.
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MATERIALS AND METHODS

Sample Collection and Urinary Culture
The Ethics Committee of University Hospital Dubrava approved
the study protocol. Thirty-five urine samples were collected from
28 patients in Department for Clinical Microbiology and
Hospital Infections of the University Hospital Dubrava in
Zagreb, Croatia. Samples were collected in the period from
January to December 2016. All patients were volunteers and
gave the informative consent to donate their urine samples for
research purposes. There were 16 females and 12 male
participants and the average age was 66. In addition to urine
samples collected by clean catch method where each patient
provided first voided morning urine, six hospitalized catheter
patients were included in the study; patient demographics can be
seen in Supplementary Figure 1.

The initial cystitis diagnosis was based on SUC test, as
described previously (Oros et al., 2020). Inclusion criteria was
bacterial infection with >105 CFU/ml before introducing any
antibiotic therapy. No antibiotic therapy was started until SUC
result returned >105 CFU/ml result. Longitudinal study of
antibiotic influence on urobiome was monitored on 38-year-
old female patient with acute cystitis symptoms. Urine samples
were collected from the same female patient in form of first-void
specimen for 8 consecutive days during which this female patient
was taking 1 g daily monodose of Cephalexin (beta-lactam
antibiotic which belongs to class of first-generation
cephalosporins) oral therapy, as prescribed. From the eight
samples taken, first sample was collected after antimicrobial
susceptibility test and before starting the antibiotic therapy,
and the other 7 were taken successively after starting antibiotic
therapy in 24 h interval. Routine hospital microbiology SUC was
repeated on three samples (1st, 4th, and the last one). All urine
samples were stored at minus 20°C prior to further processing.

Sequencing of 16S rRNA Genes and
Subsequent Bioinformatics Analysis
Frozen samples were thawed at room temperature and
homogenized volume of 1.5 ml urine sample was centrifuged
at 10,000 × g for 5 min at 4°C, and supernatant was removed.
DNA was isolated from the urine pellet using a Maxwell 16 Cell
DNA Purification Kit on the Maxwell 16 research instrument
(Promega, Madison), according to the manufacturer’s protocol.
DNA concentrations were measured using a BioSpec-nano
spectrophotometer (Shimadzu Biotech), and samples were
stored at −80°C. Extracted DNA from all 35 urine samples was
used to sequence regions V3 and V4 of the gene coding for 16S
rRNA using the Illumina MiSeq platform following paired-end
sequencing protocol. Quantitative Insights into Microbial
Ecology 2 - QIIME2 (Bolyen et al., 2019) was used to perform
the analysis of sequenced reads. Raw data, obtained from
Illumina’s BaseSpace as fastq files, was demultiplexed and
quality filtered using q2-demux plugin and subsequently
denoised using DADA2 (Callahan et al., 2016). Taxonomy was
assigned to amplicon sequence variants (ASV) using the naive
Bayes taxonomy classifier, as implemented in QIIME2, against
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
the Greengenes 13_8 99% OTUs as reference taxonomic
sequences (McDonald et al., 2012). A total number of features
at the taxonomic level family (Level 5) were 468,817 with an
average number of features per sample being 17,363. The
microbial diversity and sample completeness were assessed
using rarefaction curve of alpha diversity, estimated using the
q2-diversity plugin with samples rarefied to 1130 sequences per
sample. The rarefaction curve of observed OTU-s dependent on
sequencing depth is shown in Supplementary Figure 2, showing
that all samples except LS2 reached saturation. In urine samples
U1-U27 the average number of OTUs at the maximum
sequencing depth is 24.7, minimal observed depth being 3 and
maximal 107. The average number of OTUs in urine samples
where the antibiotic effect was monitored (LS1-LS8) was 54.1.
Initial number of OTUs before the first Cephalexin dose was
administered was 30 (LS0), while the highest number of OTUs
(123) was observed on second day of antibiotic therapy (LS2) and
the lowest number of OTUs of 21 was observed on day 7 (LS7).
The data can be found in Supplementary Dataset 1.

Learning Directed Microbial Interactions
From Cross-Sectional Microbiome
Profiling Data Based on the Generalized
Lotka-Volterra Model
In order to learn directed microbial interaction from cross-
sectional microbiome profiling data BEEM-static R package
(Li, 2020a) was utilized. BEEM-Static is based on generalized
Lotka-Volterra model (Metz et al., 1996; Hofbauer and Sigmund,
1998) designed for cross-sectional datasets in order to learn and
model the directed microbial interactions (Li, 2020a). BEEM-
static in an extension of the original BEEM algorithm that
enables a precise ecological modeling based on the microbiome
sequencing longitudinal data (Li et al., 2019). Working directly
with the relative abundances, the experimental measurement of
the absolute abundances is unnecessary and therefore suitable for
microbiome datasets where the equilibrium status is unknown.
The input file for BEEM-static was an OTU table containing the
number of sequences that were observed in each taxonomic unit
in each sample, provided by QIIME. In this study, 249 different
taxonomic units were found on strain level. The model was built
on all taxonomy levels and the coefficient of determination,
denoted R2, was the highest on the class level (Steel et al.,
1960; Glantz et al., 2016). Because the coefficient of
determination provides a measure of how well observed
outcomes are replicated by the model, class level was chosen as
a baseline. Therefore, all OTUs were grouped on a class
taxonomic level, creating 35 different class taxonomic units. To
remove the OTUs not detectable in the majority of samples and
reduce the number of OTUs for a model, the original OTU table
was filtered to keep only top OTUs based on prevalence (OTU is
found in at least half of the samples), which was later transformed
into relative abundance. Usually, the default criteria are to
keep the OTUs that are found in at least 25% of the overall
samples. However, when these default criteria were used, only
one more OTU was retained in the model calculation. Due to
our restricted number of samples and the fact that BEEM-static
March 2021 | Volume 11 | Article 643638
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has been tested on >4,000 microbiome data points, we decided to
use 50% prevalence as a more stringent criteria. In both 25% and
50% prevalence, the same OTUs are still significant and because
overall they are the most abundant, any pruning variant in-
between these criteria would lead to the same outcome.
Microbiomes, which were not in equilibrium states, were
detected by BEEM-static and automatically removed from
the further analysis. In the pooled dataset originating from
a cohort consisting of 28 volunteers, seven classes were found
in at least 50% of samples and were kept. All seven were
in equilibrium state and were used to build the model. In
the second dataset, obtained from single patient receiving
an antibiotic therapy for 7 days, out of 11 classes present in
at least 50% of samples, seven classes were not in equilibrium
and were thus removed. Remaining four classes were used to build
the model. The package was obtained from GitHub (Li, 2020b)
and installed in RStudio (version 1.3.959) under R-4.0.2 on
Windows 10 computer. Both the input data and dedicated R
scripts used in this study can be accessed at https://github.com/
enmelvan/Dynamics-of-urinary-microbiota-associated-
with-cystitis.
RESULTS

Study Design
A gender-balanced cohort consisting of 28 volunteers (16 female,
12 male) referred to SUC test for cystitis symptoms was involved
in the study after signing the informative consent. The initial
diagnosis was based on patient’s symptom description and further
confirmed by standard urine culture test. Culture test inclusion
criteria were associated with bacterial infection characterized by
> 105 colony-forming units per ml (CFU/ml). The average age of
patients was 66 years. In addition to urine samples collected by
clean catch method, small number of catheterized patients was
included in the study. One patient with uncomplicated cystitis
symptoms caused by common urinary pathogen was singled out
and included in longitudinal study in order to monitor dynamics
of UTmicrobiota under prescribed treatment. Beside SUC tests, all
samples were subjected to Illumina 16S rRNA sequencing. The
goal of the study was to compare SUC tests with genomics based
tests and to assess the link between urinary microbiome and
cystitis. The goal of the longitudinal study monitoring urinary
microbiome dynamics under prescribed antimicrobial therapy was
to investigate the impact of the commonly prescribed
antimicrobial therapy on the urinary microbiota and to assess
the possibility of recommending optimal duration of the
antimicrobial therapy.

SUC Reveals Infections Caused by
Common Uropathogens
Out of total 28 subjects, SUC indicated 19 monobacterial infections
related to Proteus mirabilis (five patients), Klebsiella spp. (four
patients), Enterobacter spp. (three patients), Escherichia coli (three
patients), Enterococcus faecalis (two patients), and Pseudomonas
aeruginosa (two patients). Polymicrobial infections were associated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
with seven patients (samples U1, U4, U6, U7, U19, U24, and U25).
Urine culture test results of all samples are displayed in
Supplementary Table 1.

The influence of antibiotic therapy on urinary microbiome
was investigated on a patient whose cystitis symptoms were
linked to common bacterial pathogen by SUC displaying > 105

CFU/ml of K. pneumoniae. Based on recommendations of
clinical practice guidelines in Croatia (Skerk et al., 2009), an
antibiogram was used to prescribe standard antibiotic therapy in
optimal duration of seven days. Antimicrobial susceptibility test
indicated that infection caused by K. pneumonia strain was
resistant to Ampicillin thus the patient was prescribed
Cephalexin (Cefalexin). As part of the study, SUC monitoring
was performed on the third and final, seventh day of prescribed
antibiotic therapy. On the third day of antibiotic therapy SUC
revealed no pathogen and urine was proclaimed sterile. After
completing the antibiotic therapy course for the entire 7 days,
SUC test indicated Candida albicans infection in concentration
>103 and <105 CFU/ml.

Taxonomic Profiling of UT Microbiota
There were 15 distinct phyla shared by all 28 urine samples
collected from all study included patients, out of which
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria
accounted for more than 99% of detected taxa. Classes
Gammaproteobacteria and Bacilli dominated across all samples
(Figure 1). Single-family dominance was observed in 19 urine
samples in which Enterococcaceae, Enterobacteriaceae, or
Pseudomonadaceae contributed with over 90% of total bacterial
abundance. The more diverse spectrum of bacteria was observed
in samples U1, U2, U3, U5, U13, and U16 in which more than
four bacterial families were identified. 16S rRNA sequencing
successfully identified 123 different genera (Supplementary
Dataset 1), while the species rank was missing in majority of
samples due to inherent limitations of 16S rRNA sequencing
(Poretsky et al., 2014), therefore the results of 16S rRNA
sequencing were compared with SUC at the family taxonomic
level. SUC results were largely in accordance with 16S rRNA
sequencing, although a discrepancy between two methods was
observed in samples U1, U3, and U13 (Supplementary Table 1).

Dynamics of Urinary Microbiota
During Cystitis
We have used BEEM-static (Biomass Estimation and model
inference with an Expectation Maximization) to infer a model
based on 16S rRNA sequencing data for microbial community
dynamics (Li et al., 2019). This expectation-maximization algorithm
is based on generalized Lotka-Volterra (gLVM) ecological model
that can provide useful insights into microbial interactions and
dynamics (Venturelli et al., 2018). Before using BEEM-Static,
principal-component analysis (PCA) based on patient gender and
most abundant operational taxonomic units (OTUs), was used to
assess heterogeneity of urinary microbiome. PCA biplot indicated
that male and female samples cannot be clearly separated and
therefore we modeled them together and not separately
(Figure 2D).
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FIGURE 2 | Microbial interaction network based on microbiome profiling of 28 urine samples from patients displaying cystitis symptoms. (A) Seven most abundant
classes used for modeling. (B) Coefficient of determination R2 for each class input. (C) Network graph representing nonzero interaction terms in gLVM models learnt
individually from urine microbiome profiling using BEEM-static. Graph edges in red represent negative interactions. Edge widths are proportional to the interaction
strength, and node sizes are proportional to the log-transformed mean relative abundance of the corresponding class. Nodes are labeled with the class level
taxonomic annotations. (D) PCA biplot displaying microbiome variation between male and female patients.
FIGURE 1 | 16S rRNA sequencing of urine samples from patients diagnosed with UTI: Taxonomic representation of bacterial classes as identified by sequencing of
V3 and V4 region of 16S rRNA gene. The most abundant classes were marked in bold and sequences belonging to group marked as “Other” were not matched to
any sequence in Greengenes database.
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The input file for BEEM-Static was an OTU table containing
the number of sequences that are observed in each taxonomic
unit in each sample. In this study, 249 different taxonomic units
were found on taxonomic levels ranging from kingdom to
species (Supplementary Dataset 1). They were grouped on a
class taxonomic level, creating 35 different class taxonomic units.
To reduce the number of OTUs in order to use BEEM-Static
model, seldom appearing OTUs were removed. The original
OTU table was filtered based on the prevalence of OTUs,
retaining only those found in > 50% of the samples. In this
manner, seven most abundant OTUs (Figure 2A) were
transformed from counts into relative abundances across all 28
samples, creating an input file for BEEM-static (Supplementary
Dataset 2). Microbial interaction network based on mapping file
for seven most abundant classes is shown below (Figures 2B, C).
Classes which do not appear in the network, despite being
abundant (Otu161 and Otu184) are considered to be neutral
by model. Regarding the interactions depicted by the model, the
model was generally aligned with PCA biplot made previously,
despite the fact that Dimensions 1 and 2 retained about 52%
(28.6% + 23.5%) of the total information contained in the
data set.

Gammaproteobacteria class (Otu0212), which was positioned
at the core of the model appears to be a common denominator
taxa in all tested urine samples. There was one notable negative
interaction between Actinobacteria class (Otu0007) negatively
impacting Gammaproteobacteria, which most of the UT
pathogens belong to. This negative interaction was predicted to
be stronger than interaction between both Bacilli (Otu0093) and
Bacteroidia (Otu0058) classes and Gammaproteobacteria class,
which implied that Actinobacteria relative abundancy was
negatively correlated with the level of Gammaproteobacteria in
affected individuals. The coefficient of determination (R2) is the
proportion of the variance in the dependent variable that is
predictable from the independent variable(s) (Steel et al., 1960;
Glantz et al., 2016). Since in our case, there were no independent
variables, we argue that relatively high R2 (close to 1) indicated
that the variation in the data was well explained by the model.
According to R2 values (Figure 2B), all seven classes which were
included, could be described by the model.

The Urinary Microbiota Under the
Influence of Antibiotic Therapy
The taxonomic distribution of urinary microbiota for the
single patient receiving an antibiotic therapy for 7 days is
shown in Figure 3. Before administration of Cephalexin,
Gammaproteobacteria were identified as a predominant class,
further confirming previous SUC indicated Klebsiella
pneumoniae infection. In a sample taken 24 h after taking the
first antibiotic monodose, Enterobacteriaceae, which constituted
over 95% of all bacteria detected 24 h before starting therapy,
were reduced to 1.28%. Concurrently, heterogeneity of overall
microbiota deepened, accompanied by rise in families
Lactobacillaceae and Pseudomonadaceae . Diversity of
microbiota was lower on days 3–4 with over representation of
genus Lactobacillus, which comprised 85.5% of microbiota on
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
day 3 and 91.9% on day 4, based on QIIME results. While an
increase of diversity is shown on days 5 and 6, Lactobacillus spp.
was relatively most abundant on day 7. On day 8, the last day of 1 g
monodosis oral Cephalexin therapy, family Pseudomonadaceae
had dominated microbiota with relative abundance of 74.61%
(Figure 3A).

In this period, ratio of Gram-positive to Gram-negative
bacteria in urine samples altered dramatically. Gram-negative
bacteria relative abundance has been gradually decreasing from
day one to day 4, followed by its increase on days 5 and 6
(Figure 3B).

Dynamics of Urinary Microbiota Under
Antibiotic Influence
In order to model the change of the microbiota during antibiotic
therapy on 24 h basis, the original BEEM algorithm for
longitudinal data was used. The input data for BEEM (Li et al.,
2019) consisted of an OTU table containing the number of
sequences that were observed in each taxonomic unit in each
sample and metadata containg t ime measurements
(Supplementary Dataset 3). Different taxonomic units were
grouped on a class taxonomic level, creating 35 different
classes. Only the most abundant OTUs (appearing in > 50% of
urine samples) were used to construct the model (Figure 4A). In
this case, four OTUs were normalized from counts into relative
abundances across all eight samples, serving as input data for
BEEM model. Microbial interaction network based on those
OTUs is displayed in Figure 4B.

Unlike in the previous model, which was based on different
patients with no antibiotic therapy, this model puts Bacilli
class (Otu0093) at the core of the model, and this class appears
to be negatively impacted by the Gammaproteobacteria class
(Otu0212), which is the most abundant one. This model revealed
one more difference regarding two positive interactions, weaker
one between Bacteroidia class (Otu0058) and Bacilli (Otu0093)
and stronger one between Actinobacteria (Otu0007) and Bacilli
(Otu0093) classes. We argue that in this patient receiving
antibiotic therapy Actinobacteria class appears to be postively
correlated with Bacilli class Lactobacillus genus belongs to, while
the Gammaproteobacteria class appears to be negatively correlated
with Bacilli, which favors the hypothesis of Lactobacillus protective
role. Having said this, the question remains whether the choice of
gLVM is really appropriate? Since no method is perfect, BEEM
estimations of gLVM parameters are not error free. Therefore, we
performed a simple correlation analysis, which included taxa used
by our models in order to further asses inferred interactions
between them (Figure 5).
DISCUSSION

Overall, our research indicates that major phyla Proteobacteria,
Firmicutes, and Bacteroidetes, which were detected in urine
samples of subjects with cystitis symptoms, as well as relatively
low number of genera per sample, are in accordance with
March 2021 | Volume 11 | Article 643638
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previous research dealing with cystitis patients (Siddiqui et al.,
2012). The biological significance of predominance by any
specific organism or the lack of a predominant microbe is not
yet known. However, our results indicate overabundance of one
class of bacteria in the urine of patients with cystitis symptoms—
Gammaproteobacteria, was the main causative agents of cystitis
in our study. Although urinary microbiota is low complexity in
comparison with other bodily niches (Karstens et al., 2018),
overrepresentation of an OTU belonging to a single class might
indicate that OTU “equilibrium” in urine microbiota could be
another equally important contributing factor.

In our longitudinal study, we had selected a single female
patient. This patient was selected because of clear clinical
presentation, having a last documented SUC finding of 105

CFU/ml Lactobacillus species and no cystitis symptoms for at
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
least 1 year, based on patient’s recollection and medical exams in
this period. Because this patient was pregnant, we were able to
establish sufficiently strict monitoring in order to rule out
antibiotics usage and unreported cystitis episodes. Shortly after
delivery, a common pathogen, K. pneumoniae was detected in this
patient’s urine after sudden onset of acute cystitis. This pathogen
was quickly eradicated with oral Cephalexin therapy, taken in
form of monodose 1 g per day. Our study has shown that
K. pneumoniae was extremely sensitive to this antibiotic since its
relative abundance in urine plummeted from 94.1% to marginal
1.04% after just 2 days under therapy. However, Lactobacillus sp.,
although initially abundant were also depleted by the last day of
therapy, making the urinary tract significantly more susceptible to
reinfection. We believe that the significant decline in Lactobacillus
sp. caused by 7-day therapy contributed to the development of
A

B

FIGURE 3 | 16S rRNA sequencing of urine samples during and 7-day antibiotic therapy observed in single patient with cystitis symptoms caused by K. pneumoniae
infection determined with standard urinary culture test. (A) Eight day period measurements of relative abundance of bacterial classes detected by urine sample 16S
rRNA sequencing coming from a single patient receiving antibiotic therapy for 7 days (first measurement taken one day prior therapy). Group “Other” represents
organisms, which contributed with less than 1% or could not be assigned. (B) Bar chart displaying a change in Gram-positive and Gram-negative bacteria
abundance during 7-day antibiotic therapy with Cephalexin monodose, 1 g per day.
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Candida infection, which was the latter cause of recurring cystitis
in this patient. Generalized Lotka-Volterra model based on QIIME
microbiome analysis of raw DNA sequencing data collected from
28 patients predicted Bacilli class with Lactobacillus as dominant
genus negatively impact on overgrowth of pathogens belonging to
Gammaproteobacteria class. The second model based on
longitudinal study data has further highlighted the role of
Gammaproteobacteria class pathogens related to cystitis
symptoms. However, this model is markedly different. This
second model predicted Gammaproteobacteria class negative
impact on the Bacilli class. Both models indicated members of
Actinobacteria class as an important contributor to UTmicrobiota
“equilibrium” both actively suppressing pathogen overgrowth and
having a protective influence on Lactobacillus during treatment.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
The marked difference in reversed positive-negative interactions
between Bacilli and Gammaproteobacteria classes in these two
gLVM models could arguably be attributed to the introduction
of antibiotic.

Overall, our results indicate this antibiotic was an excellent
choice for rapid removal of pathogen from the patient’s UT,
however, continuation of therapy after 3 days in this particular
case has dramatically impacted host’s urinary microbiome, and
enabled opportunistic pathogens from class Pseudomonadaceae
and ultimately C. albicans to occupy their niches in UT and in the
end cause cystitis symptoms to relapse. This strongly suggests that
time under therapy is an equally important therapy parameter as
the initial choice of antimicrobial drug. Our study suggests that
introduction of genomics based methods, alongside traditional
FIGURE 5 | Table displaying calculated Pearson Product Moment correlation coefficients for all model inferred interactions for both pooled patient dataset and
single patient dataset. In the table, column marked Class 1 corresponds to model’s interaction network outlier classes, while Class 2 denotes the class centered at
the core of model. Third column contains calculated Pearson Product Moment correlation coefficients (PPMCC). This is a measure of linear correlation between two
sets of data, and although the results obtained can be correlated with those obtained by the gLVM model based on pooled patient dataset, direct comparison is
nontrivial because PPMCC ignores many other types of relationship or correlation.
A

B C

FIGURE 4 | Microbial interaction network based on daily monitoring of urine from a single patient under prescribed antibiotic therapy. (A) Four most abundant
classes, which were in equilibrium state (B) Network graph representing nonzero interaction terms in gLVM models learnt individually from urine microbiome profiling
using BEEM-static. Graph edges in red represent negative interactions and blue edges represent positive. Edge widths are proportional to the interaction strength,
and node sizes are proportional to the log-transformed mean relative abundance of the corresponding class. Nodes are labeled with the class level taxonomic
annotations described in the table. (C) Coefficient of determination (R2) for each class used by the model, vertical dashed line depicted in red color was set at
R2 = 0.5, indicating that interaction with Otu0058 (R2 = 0.39) should be taken with caution.
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culture-based ones, can be a great aid in assessing this second
parameter. We are fully aware that our study was limited in a
sense that we monitored urinary microbiome change during
antibiotic therapy in a single patient. In future, more patients
with different therapy durations should be monitored and
monitoring should be performed in prolonged periods after
completing antibiotic therapy.
CONCLUSIONS

In the present study, dysbiosis of UT microbiota associated with
cystitis was characterized. Briefly, the results revealed increases in
the abundances of bacteria associated with UT infections, decrease
in the abundances of potential beneficial bacteria, and changes in
the interactions of the constituent taxa making up microbiota in
patients with cystitis. The two gLVM models based on 16S rDNA
sequencing suggested that Actinobacteria phylum bacteria are
interacting with both pathogen and beneficial representatives of
UT microbiota. This highly diverse bacterial phylum characterized
by extraordinary metabolic versatility and ability to produce most
of the clinically used antibiotics and a plethora of other
natural products is not sufficiently explored in regards to human
UT and from this study it appears to harbor some highly beneficial
representatives of healthy UT microbiota. Moreover, longitudinal
microbiota insight obtained from a single patient under prescribed
antimicrobial therapy revealed rapid and extensive changes in
microbial composition of UT and emphasized the need for current
guidelines revision in regards to Cephalexin therapy duration,
although further studies are needed to explore this for other
commonly prescribed antibiotics.
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