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ABSTRACT

Ribosome synthesis in eukaryotes requires a
multitude of trans-acting factors. These factors act
at many steps as the pre-ribosomal particles travel
from the nucleolus to the cytoplasm. In contrast to
the well-studied trans-acting factors, little is known
about the contribution of the ribosomal proteins to
ribosome biogenesis. Herein, we have analysed the
role of ribosomal protein Rpl3p in 60S ribosomal
subunit biogenesis. In vivo depletion of Rpl3p
results in a deficit in 60S ribosomal subunits and
the appearance of half-mer polysomes. This pheno-
type is likely due to the instability of early and
intermediate pre-ribosomal particles, as evidenced
by the low steady-state levels of 27SA3, 27SBs and
7S, /s precursors. Furthermore, depletion of Rpl3p
impairs the nucleocytoplasmic export of pre-60S
ribosomal particles. Interestingly, flow cytometry
analysis indicates that Rpl3p-depleted cells arrest in
the G1 phase. Altogether, we suggest that upon
depletion of Rpl3p, early assembly of 60S ribosomal
subunits is aborted and subsequent steps during
their maturation and export prevented.

INTRODUCTION

Ribosome biogenesis is a fundamental multistep process
that, in eukaryotes, takes place largely within the
nucleolus (1). Late steps in both 40S and 60S ribosomal
subunit (r-subunit) synthesis occur in the nucleoplasm and
after nuclear export of precursor particles in the cytoplasm
(2,3). Ribosome synthesis is evolutionarily conserved
throughout eukaryotes (4,5), and so far most of our
understanding of this process has been obtained from
studies with Saccharomyces cerevisiae (6,7). In the yeast
nucleolus, three of the four rRNAs (188S, 5.8S and 25S) are
transcribed as a single large primary transcript by RNA
polymerase I and processed to the first detectable rRNA
precursor (pre-rRNA), the so-called 35S pre-rRNA.
The fourth rRNA (5S) is independently transcribed as a

pre-rRNA (pre-5S) by RNA polymerase III. In the 35S
pre-rRNA, the mature rRNA sequences are separated by
two internal transcribed spacers (ITS1 and ITS2) and
flanked by two external transcribed spacers (5 ETS
and 3" ETS), which must be precisely and efficiently
processed to ensure correct formation of mature rRNAs
(Figure 1). Maturation of rRNAs is a well-defined
pathway (Figure 1) and involves numerous frans-acting
factors that are required for the processing and covalent
rRNA modification reactions, such as small nucleolar
RNA-protein (snoRNP) complexes, endonucleases and
exonucleases, and different base methylases (6,8).
Concomitantly to rRNA maturation, the pre-rRNAs
assemble in an ordered manner with the 79 ribosomal
proteins (r-proteins) and a large number of trans-acting
factors that are generally referred to as r-subunit assembly
factors (5,9) (for examples of trans-acting factors see
http://www.medecine.unige.ch/~linder/proteins.html).
The process of r-subunit assembly is still poorly under-
stood. An outline of this process was provided by sucrose
density gradient analyses in the 1970s, which identified
908, 66S and 43S pre-ribosomal particles (3,10,11). Recent
advances employing proteomic approaches have revealed
several distinct, successive pre-ribosomal particles and
refined the model for the maturation of both 40S and 60S
r-subunits [for a review (5,9,12)]. These proteomic
approaches have also led to the identification of novel
non-ribosomal proteins, increasing the number of trans-
acting factors involved in ribosome biogenesis to over 180.
Evidence towards an understanding of the function of
many of these trans-acting factors has been obtained by
using a complete repertoire of techniques, thus, addressing
their temporal association with pre-ribosomal particles
and revealing the pre-rRNA processing and nucleocyto-
plasmic export defects caused by their mutational
inactivation or depletion [for a review, see (5)].

In contrast to the non-ribosomal proteins, the precise
role of the r-proteins in ribosome biogenesis is still largely
unexplored and most studies have been focused on their
function during translation [for examples, see (13—16) and
for a review, see (17)]. Moreover, and paradoxically, the
specific presence of r-proteins in pre-ribosomal particles is

*To whom correspondence should be addressed. Tel: +34 95 455 71 06; Fax: +34 95 455 71 04; Email: jdlcd@us.es

© 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



4204 Nucleic Acids Research, 2007, Vol. 35, No. 12

A 5" ETS ITS1 ITS2 3’ ETS
Ag A 188  5.8S 25S Bo
a [ —' ——
r BiL Bis — |
I AQ A3 E C2 C1
11 Lo
c d e f g h
B Primary RNA Primary RNA
pol | transcript pol lll transcript
=
Cleavage Bg \L
35S — eE—— T —
Cleavage Ag
33s — T
Cleavage A1 i/
328 T -
Cleavage Ao
Exonuclease
e 20S 27SA; N EE—
Cleavage Ag
Exonuclease \L Processing B4
Cleavage D

275A3 -Dm————
\L Exonuclease

27SBg mm——
Cleavage Co

Exonuclease
Exonuclease

5.8S +30g =

Exonuclease \L

Exonuclease \w Exonuclease

-+ I
5.88g 258

I
188

7S mm- -meee—— 25.5S 7S] - -——— 25.5S

6Sc mn -EE—— 25S’

Exonuclease\l/

27SB| DN ———
Cleavage Co

Exonuclease\l/

Exonuclease

5.8S +30, o
Exonuclease

6S. e -S—— 25S’
Exonuclease\l/\l/ Exonuclease

[ +
5.85 258

-
58

Figure 1. Pre-rRNA processing in S. cerevisiae. (A) Structure and processing sites of the 35S pre-rRNA. This precursor contains the sequences for
the mature 18S, 5.8S and 25S rRNAs that are separated by two internal transcribed spacer sequences, ITS1 and ITS2, and flanked by two external
transcribed spacer sequences, 5" ETS and 3" ETS. The mature rRNA species are shown as bars and the transcribed spacer sequences as lines. The
processing sites and the various probes used are indicated. (B) Schematic representation of the pre-rRNA processing pathway of the 35S pre-rRNA
and pre-5S rRNA. Cleavage and trimming reactions are indicated. The data presented in this study suggest that Rpl3p is required for stability of the
27S pre-rRNAs. For reviews on pre-rRNA processing and the known processing enzymes, see (6,8).

difficult to properly assign since r-proteins are common
contaminants in purified complexes (18). A very recent
report has systematically approached the role of individ-
ual 40S r-proteins in ribosome synthesis (19). This study
revealed that most of the 33 r-proteins of the 40S r-subunit
play distinct and essential roles in ribosome maturation
and nucleocytoplasmic transport (19). However, an
equivalent analysis of the 60S r-subunit proteins has not
yet been reported. There are some examples indicating
that mutation in or depletion of many 60S r-proteins cause
deficits in 60S r-subunits (20-35), however, the contribu-
tion to ribosome biogenesis of only few 60S r-proteins has
been analysed. So far, there is only detailed functional
data available for Rpl5p, which is required for binding
and stability of 5S rRNA (27,28), Rpl25p, which is
required for efficient pre-rRNA processing at site C, (31)

and Rpl10p, which is involved in recycling of Nmd3p and
subsequent subunit joining (33,36,37).

Rpl3p is required for 60S r-subunit accumulation (20,21)
and participates in the formation and proper activity of
the peptidyltransferase centre (PTC) (16,38-41). In order
to learn more about Rpl3p, we have investigated the effect
of genetic depletion of Rpl3p on ribosome maturation and
export from the nucleus to the cytoplasm. Our results
indicate that Rpl3p is required for the normal accumula-
tion of 60S r-subunits due to defects in pre-rRNA
processing of 27SA; and 27SBy s and export of pre-60S
r-particles. This suggests that Rpl3p has an essential role
in the assembly of early pre-60S r-particles and that
aberrant pre-ribosomal particles deficient in Rpl3p are
retained in the nucleus. Recently, it has been shown that
depletion of human Rpl3p alters proper chromosome



segregation during mitosis (42), a hallmark of most cancer
cells (43). In this study, we show that depletion of
Rpl3p leads to a G1 arrest, however, it does not seem to
interfere with proper chromosome segregation, measured
as percentage of plasmid loss.

MATERIAL AND METHODS
Strains, media and genetic manipulations

All yeast strains used in this study are derivatives of strain
W303 (MATa/MATo ade2-1/ade2-1 his3-11,15/his3-11,15
leu2-3,112/leu2-3,112 trpl-1/trpl-1 wura3-1jura3-1 canl-
100/canl-100). JDY511 (MATorpl3::HIS3MX6) is a
haploid RPL3 disruptant that requires a plasmid-borne
copy of RPL3 for cell viability (44).

Growth and handling of yeast and standard media were
performed by established procedures (45,46). Tetrad
dissections were performed using a Singer MS micro-
manipulator. Escherichia coli DHS5a strain was used for
common cloning and propagation of plasmids (47).

Construction of a GAL::RPL3 allele and in vivo depletion
of Rpl3p

The GAL::RPL3 strain was obtained after transformation
of JIDYS5I11 [YCplacl11-RPL3] with plasmid pZGA196
(a generous gift from G. Adam), which allows expression
of RPL3 under the control of the GALI promoter (48),
and subsequent segregation of YCplacl11-RPL3. Growth
behaviour on YPGal and YPD plates was further studied
to test the faithful complementation and the shut-off of
the GAL::RPL3 construct under permissive and non-
permissive conditions, respectively. For unknown reasons,
the GAL::RPL3 strain grows better in liquid YPGal
medium containing 1 M sorbitol (YPGalS).

For in vivo depletion, the GAL::RPL3 strain was grown
in YPGalS medium at 30°C until mid-exponential phase
(ODgqg of 0.8). Cells were harvested, washed and used to
inoculate cultures in YPD medium containing 1 M
Sorbitol (YPDS). Cell growth was monitored over a
period of 48 h, during which the cultures were regularly
diluted into fresh YPDS medium to maintain exponential
growth. As a control, the wild-type JDY511 [YCplac33-
RPL3] strain was used. At different time points, cells were
harvested and subsequently used for preparation of total
protein and RNA and of cell extracts for polysome
analysis.

Sucrose gradient centrifugation

Polysome preparation and analyses were performed as
previously described (49) using an ISCO UA-6 system
with continuous monitoring at A,sy.

Protein and RNA extractions, western blotting, northern
hybridization and primer extension analyses

Total yeast protein extracts were prepared and analysed
by western blotting according to the standard procedures
(47). The monoclonal anti-Rpl3p antibody was a gift from
J.R. Warner (32).
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RNA extraction, northern hybridization and primer
extension analysis were carried out according to the
standard procedures (50). In all experiments, RNA was
extracted from samples corresponding to 10 ODgq units
of exponentially grown cells and RNA corresponding to
equal amounts of cells (ca. 5 pg for the wild-type strain)
was loaded on gels or used for primer extension reactions.
Sequences of oligonucleotides used for RNA hybridiza-
tion and primer extension analyses have been described
previously (51).

Fluorescence microscopy

To test pre-ribosomal particle export, the appropriate
strains (see ‘Results’ section) were co-transformed with a
pRS315 plasmid harbouring a RPL25-eGFP reporter (37)
or a RPS2-eGFP reporter (52) and a pRS314 plasmid
expressing the nucleolar marker DsRedNOP1 (37). Then,
several transformants were grown to mid-log phase in
selective liquid medium, washed, and resuspended in
water. Acquisition was done in a Leica DMR microscope
equipped with a DC camera following the instructions of
the manufacturer. Digital images were processed with
Adobe Photoshop 7.0.

Cell morphology was studied under the microscope with
cells whose nuclei were stained with 4',6-diamidino-2-
phenylindole dihydrochloride (DAPI).

Flow cytometry

Cells grown in logarithmic phase to an ODggo of 0.1 to 0.3
were harvested, fixed with 70% ethanol and DNA was
stained with propidium iodide as previously described
(53). Stained cells were analysed using a Becton Dickinson
FACScan flow cytometer using CELL QUEST software
packages to collect and analyse the data (BDIS, San
José, CA).

RESULTS
Rpl3p is required for 60S r-subunit maturation

Rpl3p is an essential r-protein in yeast (54) that, in the
1980s, was shown to be required for normal accumulation
of 60S r-subunits (20,21). Since then, the reports of
Fried and co-workers remained the only information
available on the role of this protein in ribosome biogenesis
(20,21). To study in detail the function of Rpl3p in
ribosome biogenesis, we first assessed steady-state levels
of ribosomes upon its depletion. To this end, JDY511
[pPZGA196] (GAL::RPL3 strain) and JDY511 [YCplac33-
RPL3] (RPL3 strain) were grown in liquid YPGalS and
shifted to liquid YPDS for different time points. In
YPGalS, the growth rate of the GAL.::RPL3 strain was
slightly slower than that of the wild-type RPL3 control
strain (doubling time of about 3 and 2 h, respectively),
but it even decreased after transfer to YPDS (doubling
times of 5.3, 7.6, 9.2 and more than 15 h after 6, 12, 18
and 24 h in YPDS, respectively). Western blot analysis
revealed a marked reduction of Rpl3p in GAL.::RPL3 cells
that coincided with the decrease in the growth rate in
YPDS (data not shown).
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Polysome extracts were prepared from cells harvested
from the YPGalS cultures and at different times after the
shift to YPDS. The GAL::RPL3 strain showed profiles
very similar to those of the RPL3 strain when grown in
YPGalS, although a slight deficit of free 60S versus 40S
was reproducibly observed (Figure 2A and C). However,
clear alterations in the profiles appeared after 6 h and
became more pronounced at longer times in YPDS
(Figure 2D and data not shown). The Rpl3p-depleted
strain showed a strong decrease in the levels of free 60S
r-subunits versus the levels of free 40S r-subunits and an
overall decrease in the 80S peak and in polysomes
(Figure 2D). In addition, there was an accumulation of
half-mer polysomes (Figure 2D). Wild-type cells showed
no alteration in the polysome profile when transferred to
YPDS (Figure 2B). These results indicate that depletion of
Rpl3p leads to a strong deficit in 60S r-subunits relative to
40S r-subunits.

Rpl3p is required for normal pre-rRNA processing

To characterize the basis of the net deficit in 60S
r-subunits of the GAL.::RPL3 strain, we then analysed
the effect of depletion of Rpl3p on pre-rRNA processing.
Total RNA was isolated from RPL3 and GAL::RPL3
strains at various time points after transfer from liquid
YPGalS to liquid YPDS, and steady-state levels of pre-
and mature rRNA species were determined by northern
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blot and primer extension analyses. Different oligonucleo-
tides hybridizing to defined regions of the 35S pre-RNA
were used to monitor-specific processing intermediates
(Figure 1A). As shown in Figure 3A, depletion of Rpl3p
resulted in a marked decrease in 25S rRNA steady-state
levels. This is likely due to an almost complete loss of the
27SB pre-rRNA species, which already becomes apparent
at the shortest shift time point to YPDS. In addition,
ongoing depletion of Rpl3p led to an accumulation of 35S
pre-TRNA and aberrant 23S, 22S and 21S pre-rRNAs.
These aberrant species extend from the 5 end of the 35S
pre-rRNA, site Ay and site A; to site Aj, respectively.
Hybridizations also identified another fragment, which
extends from the 5 end of the 35S pre-rRNA to site D
(Figure 3A). Depletion of Rpl3p also resulted in a mild
reduction in the levels of the 20S pre-rRNA and slight
reduction in the levels of 27SA, compared to those from
the GAL.::RPL3 grown in YPGalS (Figure 3A).

The steady-state levels of low-molecular-weight rRNAs
were also studied. As shown in Figure 3B, depletion of
Rpl3p caused a strong decrease in the 7S pre-rRNA levels
and a very slight reduction in the levels of mature 5.8S and
5S rRNAs, which was clearly noticeable only at the latest
shift time points to YPDS. No differences were observed
in the ratios of the long and short forms of the 5.8S rRNA.

To determine the levels of 27SA; and distinguish
between the 27SB; and 27SBg precursors, we assessed
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Figure 2. Depletion of Rpl3p results in a deficit in free 60S r-subunits and in the accumulation of half-mer polysomes. Strain JDY511 [YCplac33-
RPL3] (RPL3) was grown in YPGalS at 30°C (A) or shifted to YPDS for 24 h (B). Strain JDY511 [pZGA196] (GAL::RPL3) was grown in YPGalS
at 30°C (C) or shifted to YPDS for 6 h (D). Cells were harvested at an ODgq of 0.8, cell extracts were prepared and 10 Ayey of each extract were
resolved in 7-50% sucrose gradients. The A,s4 was continuously measured. Sedimentation is from left to right. The peaks of free 40S and 60S
r-subunits, 80S free couples/monosomes and polysomes are indicated. Half-mers are labelled by arrows.



the levels of these precursors and of the 27SA, pre-rRNA
by primer extension using a probe that hybridizes to both
the 27SB and 7S pre-rRNAs (probe f, see Figure 1B). As
seen in Figure 4, the data are consistent with those from
the northern hybridizations. Rpl3p depletion led to a
slight decrease in 27SA, pre-rRNA and a more drastic
reduction in 27SA5 pre-rRNA. Interestingly, the intensity
of the stop corresponding to site B;g decreased substan-
tially upon depletion of Rpl3p, whereas that of the stop at
site Bjp decreased 6 h after transfer to glucose medium
but increased to roughly normal levels at later time points.
Similar results were observed when using a probe that
hybridizes only to the 27SB pre-rRNAs (probe g; data not
shown). Thus, these results indicate that 27SBg was
primarily affected upon depletion of Rpl3p.
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Figure 3. Effects of Rpl3p depletion on steady-state levels of
pre-rRNAs and mature rRNAs. Strains JDYS511 [YCplac33-RPL3]
(RPL3) and JDY511 [pZGA196] (GAL::RPL3) were grown in YPGalS
medium and then shifted to YPD medium. Cells were harvested at the
indicated times and total RNA was extracted. (A) RNA corresponding
to equal amounts of ODgg units of cells were resolved on a 1.2%
agarose-formaldehyde gel, transferred onto a nylon membrane and
hybridized consecutively with different probes. (B) RNA corresponding
to equal amounts of ODggy units of cells was resolved on a 7%
polyacrylamide—urea gel, transferred onto a nylon membrane and
hybridized consecutively with different probes. Probe names are
indicated between parentheses (see Figure 1A for their location in the
35S pre-rRNA).

Nucleic Acids Research, 2007, Vol. 35, No. 12 4207

Altogether, our results indicate that depletion of Rpl3p
has a major impact on processing of 27SA;, which
then also leads to wunderaccumulation of the 27SBg
pre-rRNA. In addition, Rpl3p depletion affects negatively
ITS2 processing events; the low levels of 27SBg may
account for the diminution of 7Sg pre-rRNAs upon
depletion, however, the alternative form 27SB; continues
to be synthesized but fails to be converted to 7S
pre-rRNA. Finally, depletion of Rpl3p inhibits or
delays processing at sites Ag—A,, which leads to the
accumulation of normal 35S pre-rRNA and aberrant
23S, 22S and 21S pre-rRNAs. The appearance of these
aberrant rRNAs and the accumulation of the 5-D
fragment indicate that processing events in the 5-ETS
and ITS1 do not occur in the normal order following
depletion of Rpl3p.

Rpl3p depletion impairs export of pre-60S r-particles from
the nucleus to the cytoplasm

To determine whether the depletion of Rpl3p impairs
nuclear export of pre-60S r-particles, we first analysed the
localization of the 60S reporter construct Rpl25p-eGFP
(37) in wild-type and GAL::RPL3 strains.

Under permissive conditions (YPGalS medium),
Rpl25p-eGFP was found predominantly in the cytoplasm
in both strains. However, following a shift to non-
permissive conditions (YPDS medium) for as short as
6h, Rpl25p-eGFP accumulated in the nucleus in about
30% of the GAL::RPL3 cells. This phenotype was more
evident after 12 h in YPDS since around 70-90% of the
cells showed a nuclear accumulation of Rpl25-eGFP
(Figure 5). In many cells, we observed a very bright
fluorescence signal for Rpl25-eGFP that was not restricted
to the nucleolus, which was detected with the nucleolar
marker DsRed-Noplp. We did not observe nuclear
accumulation of the Rpl25p-eGFP reporter in the wild-
type RPL3 control strain grown in YPDS (data not
shown).

We conclude that normal and/or aberrant pre-60S
r-particles accumulate in the nucleus upon depletion
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0 48 0 6 12 18 24 30 36 48 -« plus Sorbitol
- - W e e s — Ao
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Figure 4. Effects of Rpl3p depletion on steady-state levels of 27S
pre-rRNAs species. The same RNA samples described in the legend
of the Figure 3 were used for primer extension analysis. Probe f
(see Figure 1A for its location in the 35S pre-rRNA) was labelled
and used for the reactions. Note that this probe allows detection of
27SA, (as the stop at site Aj), 27SA; (as the stop at site Aj), 27SB
and 7S pre-rRNAs (as stops at sites By and Byg).
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Figure 5. Depletion of Rpl3p leads to nuclear retention of the 60S r-subunit reporter Rpl25p-eGFP. The GAL::RPL3 strain carrying the plasmids
pRS315-Rpl25p-eGFP and pRS314-DsRed-Noplp were grown in SGalS-Leu-Trp medium (Gal + Sorbitol) to early log phase and shifted for 12 h to
SDS-Leu-Trp (Glc+ Sorbitol). The subcellular localization of the Rpl25p-eGFP and DsRed-Noplp was analysed by fluorescence microscopy.

Triangles indicate the position of the nucleolus.

of Rpl3p. This phenomenon is specific for the large
r-subunit, since no accumulation of pre-40S r-particles
was observed when we studied the localization of the 40S
r-subunit reporter Rps2p-eGFP (52) (data not shown)

Depletion of Rpl3p leads to defects in cell cycle and
morphology

Our previous results (55) and unpublished observations
(I.V.R., unpublished results) as well as results from
Wozniak and co-workers (56) indicate that Rpl3p inter-
acts functionally and physically with the WD-repeat
Rrblp protein, which has been suggested to act as the
Rpl3p assembler onto pre-60S r-particles (55,56). Rrblp
has also been shown to be required for the metaphase/
anaphase transition during the cell cycle and proper
chromosome segregation (42). Rrblp also functionally
interacts with the origin recognition complex component
Orc6p, involved in the initiation of DNA replication
(42,57), and the yeast Pescadillo complex, which consists
in yeast of Nop7p, Erblp and Ytmlp and is required for
both ribosome biogenesis and normal progression through
the S phase of the cell cycle (42,58). Moreover, inactiva-
tion of human orthologues of Rrblp, Nop7p, Erblp/
Boplp, Orc6p and Rpl3p alters proper chromosome
segregation (42). To study whether yeast Rpl3p is required

for optimal progression through the cell cycle, we first
examined cellular morphology of GAL::RPL3 cells by
light microscopy. A normal morphology was observed for
most cells when grown in galactose medium (Figure 6A).
However, 6h after transfer to glucose medium,
GAL::RPL3 cells increased in size and a significant
percentage (about 5%) showed an elongated shape and
contained enlarged buds with pronounced apical
growth. Apparently, these elongated cells contained
duplicated, separated nuclei as shown by DAPI staining
(Figure 6A).

Then, we performed fluorescence-activated cell sorting
(FACS) analyses with yeast cultures of the GAL.:RPL3
and RPL3 strains in early logarithmic phase. In asyn-
chronous wild-type RPL3 cells, we detected two peaks
corresponding to cells with unreplicated (1C) and dupli-
cated (2C) genomes, with the 1C peak being slightly higher
than the one of 2C. A similar pattern was observed for the
GAL::RPL3 cells grown in galactose medium. However,
6 h after transfer to glucose medium, more GAL.:RPL3
cells remained 1C compared to the RPL3 strain, most
likely due to an arrest or delay in the transition through
the G1 phase of the cell cycle (Figure 6B).

We conclude that depletion of Rpl3p causes a severe
delay in the progression through the G1 phase of cell
cycle.
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Figure 6. Depletion of Rpl3p leads to an arrest of the cell cycle at the Gl phase and an abnormal cell morphology. (A) Cell morphology of
GAL::RPL3 cells grown in YPGalS (Gal + Sorbitol) or shifted for 12 h to YPDS (Glc+ Sorbitol). Cells were stained with DAPI for localization of
nuclei and then visualized by fluorescence and phase contrast microscopy. Merged images are shown. (B) FACS analysis of unsynchronized
GAL::RPL3 cells grown in YPGalS or shifted for 12 h to YPDS at 30°C. 1C and 2C peaks correspond to cells with unreplicated and duplicated

genomes, respectively.

DISCUSSION

In this work, we report the functional characterization of
Rpl3p in ribosome biogenesis. Rpl3p, which is the largest
r-protein (387 residues in S. cerevisiae;, 43.7 kDa), is
evolutionarily conserved in both sequence and structure in
eukaryotes, eubacteria and archea (59,60). Examination of
the structure of Rpl3p reveals that it contains two tightly
packed globular domains and two extensions (61). As
discussed by Dinman and co-workers (16,38,41), the
globular domains are located on the solvent side of the
60S r-subunit and bind to the domain VIA of yeast 25S
rRNA or bacterial 23S rRNA (59), very close to the site
where the ribosome interacts with the elongation factors
eEF1 and eEF2. The extensions anchor Rpl3p to the
central core of the 25S rRNA. One of the extensions is at
the N-terminus of the protein (residues 10 to 24) and the
other is internal to the protein (residues 217 to 278).
The latter extension comes very close to the PTC where it
can stabilize the surrounding rRNA (59).

Rpl3p has been extensively studied with respect to its
role in translation, more specifically as an important
functional component of the PTC (16,38-41). In bacteria,
Rpl3p is one of the few proteins essential for the PTC
activity (62). In yeast, the first identified rp/3 mutations
conferred resistance to the PTC inhibitors trichodermin
and anisomycin (63) and inability to maintain the M;
killer virus (64). More recently, it has been shown that
these mutations also affect the efficiency of programmed -1
ribosomal frameshifting due to a decrease in the PTC

activity (16,40). In contrast to its characterization in
translation, very little is known about the role of Rpl3p in
ribosome biogenesis. To our knowledge, pre-rRNA
processing has not been studied upon loss-of-function of
bacterial Rpl3p. In yeast, the depletion of Rpl3p leads to a
net deficit of 60S r-subunits [(21,54) and our results of
Figure 2], and although pulse-chase experiments have
been performed, they were not of enough resolution to
assess the kinetics of pre-rRNA processing (21). In this
paper, we describe the role of yeast Rpl3p in pre-rRNA
processing. Northern blot and primer extension analyses
indicate that there is a drastic reduction in the steady-state
levels of almost all 27S pre-rRNAs and both 7S pre-
rRNAs upon depletion of Rpl3p. As a consequence, there
is an underaccumulation of mature 25S rRNAs. However,
the levels of 5.8S and 5S rRNA were only mildly affected
at late time points of depletion. This is in agreement with
the common observation that 5.8S rRNA behaves more
stable than 25S rRNA upon depletion of many trans-
acting factors required for 60S r-subunit biogenesis [for
examples, see (49,65)] and the published data indicating
that 5S rRNA forms a stable RNP with the 60S r-protein
Rpl5p (28). Intriguingly, primer extension analysis shows
that the levels of 27SB; pre-rRNA do not change
significantly upon depletion of Rpl3p. Since it is likely
that Rpl3p may not have a direct role in pre-rRNA
processing reactions, we assume that the depletion of
Rpl3p leads to abortive assembly of early pre-60S
r-particles, which entails destabilization and degradation
of the 27SA; pre-rRNA and its immediate products 27SB
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and 7S pre-rRNAs. The almost constant steady-state
levels of 27SBy pre-rRNA upon Rpl3p depletion might
reflect changes in the relative degradation rate of aberrant
pre-60S r-particles containing this precursor but deprived
of Rpl3p. These aberrant pre-60S r-particles, which should
contain the 60S r-protein Rpl25p properly assembled,
might be defective for nucleocytoplasmic transport, as
suggested by the retention of the Rpl25p-GFP in the
nuclei of Rpl3p-depleted cells. This defect is apparently
specific as export of small r-subunits was unaffected.
Furthermore, our northern analyses clearly indicate that
depletion of Rpl3p causes a decrease in the efficiency of
processing at the early cleavage sites Ag, A; and A,,
thereby slightly affecting the levels of mature 18S rRNA
and its 20S precursor. As a consequence, a 22S, a 21S and
more abundantly a 23S aberrant pre-rRNA accumulated.
This type of defect in 18S rRNA synthesis is a general
feature of mutations that interfere with the synthesis of
mature 25S and 5.8S rRNA (6). It has been proposed that
these pre-rRNA processing defects arise from inefficient
recycling of tranms-acting factors that improperly disas-
semble from defective pre-60S r-particles (5,66). Finally,
there is an accumulation of a 5 ETS-D fragment,
suggesting that the aberrant 23S pre-rRNA can be
processed to site D upon depletion of Rpl3p. In general,
point mutations in Rpl3p cause similar but much weaker
pre-rRNA processing defects than its depletion (I.V.R.,
unpublished result). This finding suggests that the inability
to incorporate Rpl3p has a more dramatic effect on the
fate of pre-60S r-particles than the incorporation of
functionally hampered Rpl3p mutant variants.

When and how is Rpl3p assembled? The ribosome
assembly process is very difficult to assess experimentally
and is not very well understood. In bacteria, it has been
possible to reconstitute in vitro functional r-subunits from
isolated mature rRNAs and purified r-proteins (67,68).
These studies indicate that Rpl3p is amongst one of the
first r-proteins that initiate in vitro assembly. In clear
agreement with this fact, Rpl3p is present on the so-called
p150S precursor particles in vivo [for a review, see (69)]. In
eukaryotes, since there is no in vitro ribosome self-
assembly system from their components, the order of
assembly of r-proteins into pre-ribosomal particles has not
been characterized. In vivo, pulse-chase studies have
suggested that yeast Rpl3p associates at a relatively early
stage of the ribosomal maturation process (70). The
purification of Rpl3p within early 66S pre-ribosomal
particles Eq, E; and E, is in agreement with these results
(71-74).

Rpl3p is one of several extension-containing r-proteins
(75). Steric considerations require that these proteins bind
rRNA at a stage prior to the formation of significant
ternary structure. Steitz and co-workers have hypothe-
sized that during assembly, the globular domains of
bacterial Rpl3p bind first to sequences of domain VI of
23S rRNA, which adopt a structure similar to the final one
present in the mature 50S r-subunit (59). This binding is
strong and stabilizes the protein on the rRNA. Then, the
extensions of Rpl3p, which depend on interactions with
the surrounding rRNA to properly fold [for a real
example, see (76)], bind sequentially to regions of internal

rRNA domains to be accommodated inside the r-subunit
and gain a stable structure (59,75). Since the overall
structure of Rpl3p and its location in the large r-subunit is
highly conserved between eubacteria, archaea and eukar-
yotes (60), we can imagine a similar mode of assembly for
the yeast Rpl3p in early pre-60S r-particles. We have
recently isolated nine independent recessive rp/3 muta-
tions, which are synthetically lethal with a subset of trans-
acting factors involved in early steps in the synthesis of
60S r-subunits including the putative RINA helicase
Dbp6p, the nucleolar protein Rsa3p and the putative
Rpl3p assembler Rrblp [(44,51,77) and 1.V.R., unpub-
lished results]. Further studies, using these above mutants
as well as directed mutants where the extensions and the
globular domains have been specifically altered, should
help to dissect the contribution of the different Rpl3p
domains to early 60S ribosome biogenesis events and to
get insight into the mode of assembly of Rpl3p in pre-60S
r-particles.

Finally, we herein describe that depletion of yeast Rpl3p
leads to a G1 delay or arrest of the cell cycle, which is
accompanied by a percentage of cells with abnormal cell
morphology. In yeast, cell-cycle defects have been
previously described for mutant or depleted strains in
other ribosome biogenesis factors. In these cases, cell-cycle
progression is impaired not only at the G1 phase but
throughout the different stages of the cell cycle
(42,57,78-84). The possible involvement of Rpl3p in cell
cycle has been studied in other organisms; in zebrafish,
while haplo-insufficiency in many r-proteins genes predis-
pose to cancer, that in RPL3 gives rise to similar tumour
incidence as for a control line (85). On the other hand,
transient depletion of human Rpl3p increases the percen-
tage of abnormal mitosis and alters proper chromosome
segregation (42). Interestingly, mutation in yeast Rrblp
arrests cell cycle at the G2/M phase by blocking mitosis
and inducing chromosome instability, and transient
depletion of GRWD, the human orthologue of Rrblp,
results in an increase of abnormal mitosis and an
alteration in chromosome segregation (42). However,
our initial experiments, using a centromeric-plasmid loss
assay (86), suggest that rp/3 mutation, at least the alleles
we have tested, does not lead to defects in plasmid
replication and maintenance (I.V.R., unpublished results).
Further work is clearly needed to better understand the
role of Rpl3p in ribosome biogenesis and clarify its
putative link to cell-cycle progression.
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